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Abstract
We present shared representative filtering for real-time high-resolution depth completion with RGB-D sensors. Conventional
filtering-based methods face a dilemma when the missing regions of the depth map are large. When the filter window is small,
the filter fails to include enough samples. On the other hand, when the window is large, the method could oversmooth depth
boundaries due to the error introduced by the extra samples. Our method adapts the filter kernels to the shape of the missing
regions to collect a sufficient number of samples while avoiding oversmoothing. We collect depth samples by searching for a
small set of similar pixels, which we call the representatives, using an efficient line search algorithm. We then combine the
representatives using a joint bilateral weight. Experiments show that our method can filter a high-resolution depth map within
a few milliseconds while outperforming previous filtering-based methods on both real-world and synthetic data in terms of both
efficiency and accuracy, especially when dealing with large missing regions in depth maps.

CCS Concepts
• Computing methodologies → Computational photography; Image processing;

1. Introduction

Modern RGB-D sensors generate high-resolution videos in real-
time, enabling applications such as human-computer interaction,
environment modeling, autonomous driving, and augmented real-
ity. However, the depth maps generated by these cameras usually
contain holes: pixels with missing or invalid depth values, due to
stereo matching error, range limitation, transparency, reflections, or
misalignment between depth and color frames. Figure 1(a) shows a
depth map with large holes captured by a modern RGB-D camera,
Intel RealSense D435. 44.3% of pixels have missing depth. It is es-
sential to fill the holes efficiently and correctly, as many real-time
applications demand complete depth data.

Despite a long history of research, correctly recovering a large
number of missing pixels from high-resolution images for real-time
applications remains challenging. For applications such as aug-
mented reality, the time budget for each frame is only around 16
milliseconds to achieve at least 60 frames per second, and depth
completion is only one step among many. Most previous methods
focused on high-quality, offline depth completion, including meth-
ods based on global optimization [HCKLH13, PKT∗14, SHZ∗16],
partial differential equations [MFL∗12], iterative depth propaga-
tion [GLZL13, PP17], and deep-learning-based methods [ZF18].
On the other hand, joint bilateral filtering and upsampling [ED04,

PSA∗04,KCLU07] are widely adopted in real-time applications for
their efficiency thanks to the high parallelism. Methods based on
joint bilateral filtering estimate the depth value of an invalid pixel
by taking the weighted average of its nearby valid samples within a
fixed local window. Unfortunately, while they are effective for fill-
ing small holes, their accuracy degenerates quickly as the missing
regions become large.

The main challenge of depth completion for large invalid regions
is the requirement to search over a large area for valid and reli-
able samples for filtering. Figure 1 demonstrates several issues of
a conventional joint bilateral filter. When the filter size is small, an
invalid pixel can remain invalid if no valid samples locate in its lo-
cal filter window (point A in Figure 1(b)). The depth estimation can
also be incorrect if all valid samples in the local filter window are on
a different 3D surface (point B in Figure 1(b)). Enlarging the filter
size does not solve the problems, since it often leads to oversmooth-
ing and artifacts due to having too many samples from different
3D surfaces (point C in Figure 1(c)). Methods that accelerate joint
bilateral filtering for large filter windows (e.g., [RSD∗12, BP16])
suffer from the same oversmoothing problem.

We propose a new filtering-based method called shared repre-
sentative filtering that is more accurate than the joint bilateral filter-
ing methods, while achieving real-time performance. Our key idea
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Figure 1: Joint bilateral filtering (JBF) [ED04, PSA∗04, KCLU07] is popular for real-time RGB-D depth completion, but it is ineffective
when the missing regions are large. (a) Modern RGB-D sensors often produce large regions of invalid depth values (yellow pixels). (b) JBF
with a relatively small filter window cannot fill in all the holes. All samples in the kernel could be invalid (point A), or incorrect (for point B,
all samples in the kernel are from the foreground while point B itself is in the background). (c) Enlarging the filter size suffers from artifacts
due to having too many samples from different 3D surfaces (point C) and is inefficient. Our method (f) can better adapt to hole shapes and
preserve depth discontinuities than previous methods, including a method targeting real-time applications: (d) multi-resolution joint bilateral
upsampling (M-JBU) [RSD∗12] and a method based on global optimization: (e) fast bilateral solver (FBS) [BP16].

is to use a filter kernel that adapts to the hole shape for each pixel, so
that we can collect a sufficient number of valid depth samples with-
out oversmoothing. We develop an efficient algorithm based on line
search to sample a small set of most similar depth pixels, which we
called the representatives. The sampling is amortized over pixels,
so that neighboring pixels collectively search for the representa-
tives, reducing the number of required line search steps. We then
weight the collected representatives by a joint bilateral weight for
computing the filtered depth. We further extend our method to work
in a coarse-to-fine fashion to improve the receptive fields and re-
duce texture copy artifacts.

Our method better preserves depth discontinuities than previous
methods (Fig. 1(d) - 1(f)). Our pipeline takes fewer than ten mil-
liseconds for HD resolution (1280×720) depth maps on a modern
consumer GPU. We achieve 0.92 to 6.02 dB gain of PSNR on a
challenging set of simulated RGB-D data, and an average improve-
ment of 1.18 dB on the Middlebury dataset [SHK∗14]. Our method
also generates more visually accurate results on real-world data.

2. Related Work

We review previous depth completion algorithms for RGB-D im-
ages by categories.

Filtering-based approaches. These methods estimate an invalid
pixel’s depth value by weighted averaging the depth values of its
nearby depth samples in a regular window. Joint bilateral filter-
ing based methods [PSA∗04, KCLU07] determine sample weights

based on color and spatial differences. They are suitable for real-
time processing for their high parallelism. However, joint bilateral
filtering becomes ineffective when the depth holes are large. The
required large kernel size not only considerably increases compu-
tational time, but also overblurs the depth discontinuities because
of including more samples from different 3D surfaces.

Several fast approximations of bilateral filters have been pro-
posed by filtering in a coarse-to-fine fashion [RSD∗12], filtering
in a higher-dimensional space where the filtering kernel is separa-
ble (e.g., [CPD07, AGDL09, GO12, BP16]), or making the filters
hardware-friendly [MAB∗17]. Some methods accelerate the filter-
ing with sparse sampling [BCCS12, QHW∗13, CYWW14]. He et
al. [HST13] proposed a fast alternative edge-preserving filter. How-
ever, when the missing regions are large, these methods face the
same dilemma as conventional filtering-based methods for being
difficult to determine the support of the samples.

Several variants have been proposed to improve joint bilat-
eral filtering for hole filling. Some methods reduce oversmooth-
ing by masking the kernels using edge information [CLL12,
LJW14, CCZ∗15]. Unfortunately, the per-pixel mask generation is
computationally too expensive for real-time applications. Iterative
methods gradually close the invalid regions from the boundaries
(e.g., [Tel04, GLZL13, HHC14, PP17]). These methods could bet-
ter preserve depth edges; however, they are less efficient because of
the lack of sufficient parallelism.

Optimization-based methods. Several methods explicitly
optimize objective functions by specifying smoothness pri-
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ors [HCKLH13, PKT∗14, SHZ∗16, XZC17]. These methods
achieve excellent results. However, high computation overhead ac-
companied by optimization makes them less suitable for real-time
processing. Compared to these methods, our approach is more
GPU-friendly and better tailored for real-time applications.

Recently some SLAM-based approaches [VKB∗18, HK18] also
propagate sparse depth data from monocular images in an edge-
aware manner by minimizing cost functions. These methods addi-
tionally use temporal information for retrieving depth information
and achieving temporal smoothness.

Diffusion-based methods. Anisotropic diffusion is a popular tool
for image and depth inpainting [BSCB00,MFL∗12,AAB17]. These
methods formulate inpainting as solving partial differential equa-
tions, and can incorporate edge information by controlling the dif-
fusion. However, their iterative nature makes them less efficient.

Deep learning methods. Zhang and Funkhouser [ZF18] and
Huang et al. [HWLH19] trained deep neural networks for depth
completion. These methods are capable of filling extremely large
holes in the depth map. However, they take hundreds of millisec-
onds to seconds to process a low-resolution depth image. Sev-
eral data-driven methods focused on completing sparse LiDAR
data [JdCW∗18, MCK19, XZS∗19, CYLU19, QCZ∗19]. These
methods typically take about 70 to 100 milliseconds to process a
1216 × 352 LiDAR image [USS∗17]. Furthermore, data-driven
methods require collecting massive training data, and acquiring ac-
curate reference depth maps for arbitrary images is not trivial.

3. Shared Representative Filtering

Our method builds on filtering-based approaches. Given an incom-
plete depth map D and a complete color image C, for an invalid
pixel i in the depth map, we want to estimate its depth using nearby
valid pixels:

Di =
∑ j∈Ni

wi jD j

∑ j∈Ni
wi j

, (1)

where Ni is some neighborhood around pixel i, D j is the depth of
the pixel j, and wi j is the weight which depends on the similarity
between pixels i and j by considering the spatial and color infor-
mation. The pixel j needs to have a valid depth value for correctly
gathering depth information.

Previous filtering-based methods typically use a square window
for Ni (e.g., [KCLU07, RSD∗12]). The square window is both in-
efficient and inaccurate when the invalid regions are large. Instead,
our method chooses a neighborhood that adapts to the shapes of
the invalid regions. The adaptation allows us to avoid including too
many samples from different 3D surfaces while being efficient.

Figure 2 illustrates the difference between our method and con-
ventional filtering-based approaches. Given a pixel i, we collect a
set of valid and reliable depth samples to form the neighborhood
Ni. Our method works by finding a set of representative pixels j
for each pixel, such that each j has a valid depth value and is most
similar to i in terms of spatial and color distance (Section 3.1). We
then combine the representatives in the neighborhood by taking
a weighted average (Section 3.2). Finally, to further speed up the

(a) regular filtering (b) our filtering

Figure 2: Our method adapts to the geometry of the invalid re-
gions. Yellow pixels are pixels with invalid depths, while white and
gray pixels represent pixels from two different 3D surfaces. (a)
Conventional filtering-based methods require a large filter window
to include sufficient samples for estimating the missing depth value.
However, most samples within the filter are either invalid (49/81)
or located on a different 3D surface (22/81). (b) Our method finds
each neighboring pixel a valid and reliable representative depth,
adapting the filter to the shape of the hole. Due to higher-quality
samples, we could efficiently predict the depth values of invalid pix-
els with a small local filter.

(a) per-pixel searching (b) joint searching

Figure 3: We sample lines to search for the representative pixels.
(a) At each pixel with an invalid depth value (marked yellow), we
uniformly sample a few directions for searching the best represen-
tative based on a similarity measurement. In this case, the neighbor
labeled with a light blue asterisk is selected. (b) We stratify the sam-
pling directions of adjacent pixels to search for different directions.

method and increase the receptive field size, we propose a multi-
resolution extension to our algorithm (Section 4).

3.1. Searching for representatives

To find a representative for each pixel with invalid depth without
exhaustively searching a large neighborhood, we sparsely sample
the nearby valid pixels. Figure 3 demonstrates our approach for
searching valid samples around an invalid pixel. Starting at a pixel
i, we uniformly sample K directions. Along each direction, we walk
along the line to gather valid depth samples. Importantly, we do not
stop at the first valid depth sample we meet. Instead, we continue
the search for an extra number of steps. The extra steps, which we
call the non-local samples, allow us to take samples that are oc-
cluded by a valid but dissimilar pixel into account (Figure 4(a) il-
lustrates the idea, and Figure 5 compares our reconstruction with
and without the non-local samples). After all valid depth samples
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(a) w/o non-local samples (b) w/ non-local samples

Figure 4: Non-local sampling. (a) If we stop walking along the
line after reaching the first valid sample, the method can not cor-
rectly handle the case where foreground objects (gray) surround
a background hole (yellow). In this case, all valid samples found
along sampling directions belong to foreground objects. We show
the ground truth at the bottom left side for reference. (b) By con-
tinuing along with the sampling directions for an extra number of
steps, our method can locate a better representative (labeled with
a light blue asterisk).

inputs w/o non-local w/ non-local reference

Figure 5: We show an example of the ablation study for the non-
local sampling described in Figure 4. With the non-local sampling
scheme, our method can better estimate the depth values, evident
as shown in the holes of the buddha.

along the sampling directions are collected, we select a representa-
tive among them based on their similarities to pixel i.

We measure the similarity of representatives using the following
cost Ei j , defined with spatial and color differences as in joint bilat-
eral filtering [PSA∗04, KCLU07] and non-local means [BCM05]:

Ei j = αs ‖i− j‖2 +αc
∥∥Ci−C j

∥∥2
+αp

∥∥Pi−Pj
∥∥2

, (2)

where ‖i− j‖2 is the spatial distance between pixels i and j; Ci
and C j are the color vectors at pixel i and j; Pi and Pj are vectors
consisting of all color pixels in a 3×3 patch centered at pixel i and
j; and αs, αc, and αp are weights to balance these three terms. We
select the sample with the smallest cost as the representative.

One of our core ideas that reduce the number of required sam-
pling directions for each pixel is to stratify the search direction to
take account for different sets of samples per pixel (Figure 3(b)).
At each pixel, we choose a different initial sampling direction so
that the adjacent pixels could discover different representatives. We
then combine the representatives during the weighted average (Sec-
tion 3.2). In our implementation, we use a hash function and set the
initial angle to (3∗ (y%3)+ x%9)∗ (360/K)/9 degree, where % is
a modulo operation. Other hash functions can be used.

Figure 6 shows the relationship between the number of sampling
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Figure 6: We show the relationship between the number of sam-
pling directions and the accuracy of the recovered depth map, mea-
sured by the mean absolute error (in meter). Using more sampling
directions could give more accurate results, at the cost of higher
computational cost. We typically use 8− 24 sampling directions
per pixel.

directions and the accuracy of the recovered depth map for four
synthetic scenes. As shown in the figure, the mean absolute error
decreases as the number of sampling directions grows consistently.
It also quickly converges within a few samples (about 8−24 sam-
pling directions per pixel, depending on the scene complexity).

3.2. Reconstructing depth

The depth value Di of an invalid pixel i is estimated by weighted
averaging the depth values of the representatives in its local neigh-
borhood. The weighting scheme is similar to the cost Ei j for deter-
mining the representative:

Di =
∑ j∈Ω ws(i, j)wc(i,R j)wp(i,R j)DR j

∑ j∈Ω ws(i, j)wc(i,R j)wp(i,R j)
, (3)

where Ω denotes the small neighborhood around i defined by a lo-
cal regular window. R j is the representative of pixel j in Ω (for a
pixel with valid depth, the representative is itself; otherwise, the
representative is found by using the procedure described earlier),
and DR j is its depth value. The weighting functions ws, wc and wp
measure the spatial, color and structural distances between the tar-
get point and the filter sample. We define the weighting functions
as Gaussian falloffs as in conventional joint bilateral filtering:

ws(i, j) = exp(−‖i− j‖2 /2σ
2
s ),

wc(i, j) = exp(−
∥∥Ci−C j

∥∥2
/2σ

2
c),

wp(i, j) = exp(−
∥∥Pi−Pj

∥∥2
/2σ

2
p).

(4)

We use the spatial distance between i and j instead of the one be-
tween i and R j, since the representatives are non-local by nature,
and the distance between i and R j has been considered during the
representative search. We usually set the variances of color and
patch σ

2
c , σ

2
p to the inverse of the similarity weights αc, αp, while

tuning the spatial variance σ
2
s differently, since for the representa-

tive searching we want to search for the samples far away.

Gastal and Oliveira adopted a similar idea of stratified line search
for image matting [GO10]. Compared to their work, our method
possesses several features that are specifically designed for depth
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Figure 7: We illustrate the flow of our multi-resolution joint representative filtering. Given input color and depth images, our method first
builds n-level image pyramids for the color and depth images: 0 is the finest level, and n− 1 is the coarsest one. Then we apply our shared
representative filtering (SRF) from coarse to fine. After filling the holes at a coarse level, we upsample the low-resolution result to a finer
level. We remove unreliable depth values with large gradients at object boundaries during the depth invalidation stages. The depth values of
those unreliable pixels are then estimated using the proposed SRF method. The process continues until we reach the finest level.

(a) color input (b) depth input (c) M-JBU

(d) SRF (e) M-SRF (f) reference

Figure 8: (a) and (b) show a case of missing regions with similar
foreground and background color. Our multi-resolution approach
(e) can reduce the texture copy artifacts compared to the single res-
olution one (d). It is worth noting that although M-JBU [RSD∗12]
also runs in a multi-resolution manner, it still suffers from texture
copy artifacts due to the insufficient background data inside the fil-
ter window, as shown in (c).

completion. First, unlike their search process which stops at the first
valid sample, our method continues the search with extra non-local
samples. This way, we can successfully recover the depth values
of a background hole surrounded by foreground objects. Second,
as introduced in the next section, our multi-resolution approach
can significantly reduce texture copy artifacts that are common in
color-guided depth inpainting. Finally, our bilateral-filtering-based
approach is especially suitable for processing depth maps because
they are usually smooth except for object boundaries.

4. Multi-Resolution Shared Representative Filtering

For high-resolution inputs, the cost of searching a per-pixel rep-
resentative increases because each direction requires more steps
to find the first valid depth sample. To reduce the searching
cost, we employ a multi-resolution scheme with a push/pull ap-
proach [GGSC96], inspired by previous studies [RSD∗12].

Figure 7 illustrates the flowchart of our multi-resolution algo-
rithm. We build an n-level image pyramid where the coarser level
has half of the spatial resolution to its successive finer level. We
generate the low-resolution images by rendering the input color
and depth images into smaller render targets. We first use our
shared representative filtering introduced in Section 3 for filling the
holes in the coarsest-level depth map, based on the guidance of the
coarsest-level color image. After we finish processing the coars-
est level, for each remaining level l, we upsample the result from
its previous coarser level (l + 1) to the resolution at level l. The
upsampling process could produce inaccurate depth values at ob-
ject boundaries. Therefore, we apply a depth invalidation operation
after upsampling for removing the unreliable pixels. We compute
depth gradients with a 3× 3 Sobel approximation and remove the
depth pixels whose gradients are larger than a threshold (0.15 in our
implementation). Next, we fill the holes in the l-level depth map by
our shared representative filtering based on the l-level color image.
The process continues until we reach the finest-level.

Our multi-resolution approach not only improves the efficiency,
but also produces better results than the single-resolution version in
most cases. Filling the holes in a coarse-to-fine manner allows us
to generate smoother results and greatly reduce texture copy arti-
facts. Figure 8 shows such an example. However, we observed that
more levels do not always lead to better results. When the spatial
resolution is too small, the image features in color images could get
lost or blurred, making them unable to provide accurate guidance
for depth completion. The number of levels is determined accord-
ing to the image resolution and content. For the test cases in this
paper, our experiments show that using 3 or 4 levels offers a good
compromise between efficiency and quality.

5. Results and Discussions

We implemented our proposed algorithm on top of the GPU shaders
in the Unity game engine. All results were generated on a machine
with an Intel Core i5-7400K at 3.0 GHz, 16-GB of RAM, and an
NVIDIA GeForce GTX 2080 Ti graphics card.
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5.1. Test cases

We assess the performance and accuracy of our method, using both
real-world and synthetic RGB-D data, including:

Simulated RGB-D data. We create 3D scenes and render them
with a pair of virtual color and depth cameras in Unity. We simu-
late the depth holes using heuristics based on distance or material
properties. Pixels farther away from the camera or with more shiny
material have a higher probability of becoming invalid. We render
referenced depth maps for numerical validation. The supplemen-
tary material describes the generation process. All images have a
resolution of 1280×720.

Middlebury 2014 dataset. We adapt the high-resolution (around
3000×2000) real-world RGB-D data reference from Scharstein et
al. [SHK∗14]. These images contain a very small number of invalid
depth pixels and therefore are suitable for numerical error evalua-
tion. We simulate the depth holes using 2D Perlin noise [Per85].
For each depth map, we generate two masks based on Perlin noise
and report the average error of the two.

Real-world data. We capture several pairs of color and depth im-
ages with an Intel RealSense D435 RGB-D camera to evaluate our
method on data with real invalid depth regions. We observe that the
captured depth maps contain noise. Therefore we preprocess them
using a small bilateral filter [TM98] on pixels with valid depth val-
ues before the depth completion. We also remove the depth val-
ues of pixels with large gradients because the depth data along
object boundaries are inaccurate. All images have a resolution of
1280×720.

Our test cases contain large holes caused by occlusions, specular
reflection, and extensive depth ranges. Some of them have similar
colors of the foreground and background objects and can confuse
joint bilateral filters. Some test cases contain complex occlusion
patterns or thin geometry.

5.2. Comparisons

We compare with the standard single-pass joint bilateral fil-
tering/upsampling (JBF) [ED04, PSA∗04, KCLU07], the multi-
resolution version (M-JBU) [RSD∗12], the fast bilateral solver
(FBS) [BP16] and the single-pass and multi-resolution versions of
our shared representative filtering method (SRF and M-SRF) under
different time constraints. For JBF, we implemented Kopf et al.’s
method [KCLU07]. For M-JBU, Richardt et al.’s method [RSD∗12]
consists of both depth inpainting and filtering algorithms. We only
implemented their multi-resolution geometry fill-in algorithm since
we focus on depth completion. We implement all the above meth-
ods in Unity’s GPU shaders, except for the fast bilateral solver. For
FBS, we tried the Python implementations provided by the authors
and the C++ implementation in OpenCV, both running on CPUs.
The author’s version produces better results while the OpenCV
code is 2×-4× faster. We used the author’s version in this paper.

Parameters. To meet a given time budget, for JBF and M-JBU, we
tune the filter window radius (2× the spatial standard deviation).
For our SRF and M-SRF, we tune the number of sampling lines K.

For joint-bilateral filtering (JBF and M-JBU) and our shared rep-
resentative filtering (SRF and M-SRF), we choose the color stan-

dard deviation that produces the lowest L1 and L2 errors for the
simulated RGB-D cases and the Middlebury cases, and the value
that produces the most visually pleasing results for the real-world
data per-scene. In our test cases, we choose the best color standard
deviation in the range of [0.01,0.20]. For multi-resolution methods
(M-JBU and M-SRF), we additionally optimize the number of im-
age pyramid levels. We choose to use the level that produces the
lowest error in the range of [2,4] for each scene. We provide the
exact parameters used by all methods in the supplement.

We use the same setting for the rest parameters of our SRF and
M-SRF. We set the spatial standard deviation for the representative
searching to 0.12 times the image width of the coarsest level. We
only employ non-local sampling at the coarsest level. The distance
between adjacent non-local samples along a sampling line is set to
0.05 times the image width of the coarsest level. The patch stan-
dard deviation is fixed to 0.1. For performance consideration, we
do not involve the patch difference term at the finest level. The spa-
tial standard deviation for the depth reconstruction is fixed to 1.5,
resulting in a 7×7 window.

For FBS, we find the results of depth completion are very sen-
sitive to the filter parameters. For simulated RGB-D cases and the
Middlebury cases, we employ the Bayesian optimization [Nog ] for
exploring the combination of parameters which optimizes L1 and
L2 errors. For real-world data, we tune the parameters by hands
for the most visually pleasing results. We set the extent of spatial
support to [3,32]; the extent of luminance and chroma supports are
chosen in the range of [2.55,38.25]; the smoothness multiplier is
selected from [1,256], and the maximum iteration of the conjugate
gradient solver to 25. We obtain the best parameters by running
200 iterations of Bayesian optimization. The original fast bilateral
solver paper [BP16] describes a post-processing step using another
edge-aware filter [GO11]. We do not include the post-processing as
it requires additional processing cost and parameter tuning.

5.2.1. Comparisons of simulated RGB-D data

As we target real-time applications, the depth completion must fin-
ish within a short given time. We allocate fixed time budgets for
filtering-based methods: 15 milliseconds for the single-pass ones
(JBF and SRF), and 7.5 milliseconds for the multi-resolution ones
(M-JBU and M-SRF). We do not allocate fixed time budgets for
FBS since it is difficult to control its execution time. In our exper-
iments, FBS takes about 0.3 - 0.5 seconds to construct the bilat-
eral grid and solve the optimization, using the unoptimized Python
code. The results of the three methods are shown in Figure 9.

For the simulated RGB-D data (Figure 9), we evaluate the results
numerically by calculating their mean absolute error (L1 error) and
Peak Signal-to-Noise Ratio (PSNR) to the reference images. Our
method significantly outperforms other methods, both visually and
numerically. JBF fails to complete all the missing regions within
the 15-millisecond time budget. Both JBF and M-JBU oversmooth
the object boundaries (see insets), because they include too many
foreground samples for a background pixel, or vice versa. Unfor-
tunately, these depth discontinuities are precisely the places where
occlusion and misalignment can happen. Similarly, FBS overblurs
depth discontinuities and produces significant errors in regions of
complex occlusion, as shown in the insets of Buddha and Outdoor.
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Figure 9: Equal-time comparisons for four synthetic RGB-D scenes: Table, Buddha, LivingRoom, and Outdoor. For each scene, the first
column shows the input depth map (top) and the color image (bottom). In the depth maps, yellow pixels represent missing depth values. The
second column shows results of single-pass joint bilateral upsampling [KCLU07] (JBF) and our method (SRF), while the third column shows
multi-resolution versions (M-JBU [RSD∗12] and M-SRF). We allocate 15 ms for the single-pass methods and 7.5 ms for the multi-resolution
ones. The Python version fast bilateral solver (FBS) [BP16] takes about 0.3 to 0.5 second, running on CPU. Its results are still listed for
quality comparison. The peak signal-to-noise ratio (PSNR) is denoted for each depth map. In the given time budget, JBF fails to complete
all missing regions (therefore, we do not measure its error), while M-JBU and FBS oversmooth depth boundaries. Our method demonstrates
significant improvements both numerically and visually, and shows 0.92 to 6.02 dB of PSNR gain over previous methods.
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Figure 10: Ablation study on the relationship between color stan-
dard deviation and accuracy. We label the error plots of M-JBU
and M-SRF with triangles and squares, respectively. The error plots
for the same scene are shown with the similar color. Our method
(M-SRF) consistently produces smaller errors than M-JBU, regard-
less of the chosen color standard deviation for each scene.

Our method significantly improves the quality at the boundaries,
thanks to the representatives searching. The multi-resolution recon-
struction further improves efficiency and produces better results.
For regions with intricate occlusion patterns such as the inset of
Buddha, our non-local samples help to find better representatives.

Trade-offs between execution time, filter size, and accuracy. We
further analyze the trade-offs between the time budgets and accu-
racy using the simulated RGB-D data. Figure 11 shows the graphs
for MAE. Single-pass JBF can not fill all holes within 30 millisec-
onds, so we do not include it in the figure. For conventional filters
(JBF and M-JBU), the only way to increase samples is to enlarge
the filter size. The error, however, does not necessarily decrease
with the increased filter size. This is because a larger filter could
also include samples located on other surfaces and introduce bias.
For our methods, the error reduces as the number of lines increases
in the beginning, and is robust to a larger number of samples, thanks
to the representative searching. For all test cases, our methods pro-
duce much lower errors comparing to others.

We also vary the number of levels in the experiments. Our single-
pass method is significantly faster than the single-pass JBF. It fills
all holes within ∼ 10 milliseconds and produces much lower error
than JBF and M-JBU. For both JBF and our method, using a multi-
resolution approach dramatically reduces the execution time for the
same receptive field size. However, M-JBU suffers from additional
error because samples from different 3D surfaces are included for
filtering in coarser levels. Our M-SRF preserves the advantage of
the single-pass one, but significantly improves performance.

Relationship between color standard deviation and accuracy.
Previous experiments optimize color standard deviation (σc) for
each scene. Figure 10 studies how the MAE changes with σc for
M-JBU and M-SRF. We fixed all other parameters except for σc.
As shown in the figure, the best σc is scene dependent. Scenes with
complex layout and occlusion (Table and Outdoor) favor smaller σc
for better preserving depth discontinuities, while scenes with sim-
ple geometry (LivingRoom) favor relatively larger σc for producing

MAE ↓ PSNR ↑
M-JBU [RSD∗12] 0.0429 32.14

FBS [BP16] 0.0404 33.95
M-SRF (our) 0.0323 35.13

Table 1: Quantitative evaluation on Middlebury data [SHK∗14].
We allocate 20 milliseconds for M-JBU and M-SRF. The unopti-
mized FBS takes about 1.2 to 2.0 seconds. Compared to M-JBU
and FBS, our method reduces error by 0.753× and 0.800×, and
achieves 2.99 dB and 1.18 dB gains of PSNR.

smoother images. Our method consistently produces smaller errors
than M-JBU regardless of the chosen parameters for each scene,
meaning it is less sensitive to the color standard deviation.

5.2.2. Comparisons of Middlebury 2014 data

Table 1 shows the comparisons of average MAE and PSNR
over 23 cases in Middlebury data. Because of high resolutions
(around 3000 × 2000) of the images in the Middlebury 2014
dataset [SHK∗14], we allocate 20 milliseconds for M-JBU and our
M-SRF. FBS takes about 1.2 - 2.0 seconds for constructing the bi-
lateral grids and solving the optimization. The average MAE of our
method is 0.753× and 0.800× smaller than M-JBU and FBS, re-
spectively. In terms of PSNR, the average gains over M-JBU and
FBS are 2.99 dB and 1.18 dB, respectively. Figure 12 shows the vi-
sual results for the Adirondack and Umbrella scenes. In both cases,
the foreground objects (book and umbrella) have a similar color to
the background wall. As shown in the figures, our method can bet-
ter preserve the depth discontinuities between the foreground and
the background objects than previous methods. For comparisons of
other scenes, please refer to the supplementary materials.

5.2.3. Comparisons of real-world data

The depth completion results of real-world data captured by
Intel RealSense D435 are shown in Figure 1 and Figure 13. We can
only compare the results visually for real data because we do not
have ground-truth depth maps. For Puppies (Figure 1) and Work,
our method outperforms previous methods concerning boundaries
preservation. The improvement is particularly evident at image
boundaries where fewer samples are within the local window (see
the insets). In Man, previous methods fail to recover the back-
ground depth between the man’s head and hand. Our non-local
samples can retrieve the correct background representatives. Of-
fice is a challenging case because the lighting on the wall causes
significant brightness variations, and the depth values at the wall
boundaries are inaccurate. JBF, M-JBU, FBS, and our SRF all in-
correctly propagate the door’s depth values to the wall. Our M-SRF
correctly reconstructs most depth values.

5.3. Limitations

While our method significantly improves over joint bilateral filter-
ing, it inherits some of its limitations. Our method can still over-
smooth depth maps when color and patch similarity does not lead
to depth similarity (e.g., in Table), or inaccurate depth estimation
at the boundaries (e.g., in Man). Significant local depth variation
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Figure 11: Comparisons of the L1 error on the synthetic data under different filter sizes and number of samples. Our method consistently
achieves the lowest error, regardless of the time budgets and the number of levels. Using larger kernels in M-JBU does not necessarily
result in smaller errors due to the extra samples’ bias. In contrast, the errors of our method reduce with more lines robustly because of the
representative searching. We do not include single-pass JBF since it could not fill all holes within the 30-millisecond time budget.
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Figure 12: Comparisons of the Adirondack and Umbrella scenes in Middlebury 2014 data set [SHK∗14]. We allocate 20 milliseconds
for M-JBU and M-SRF. The unoptimized FBS takes about 1.2 to 2.0 seconds. Our method can better preserve the depth discontinuities and
achieve lower MAE and higher PSNR than M-JBU and FBS.

caused by thin or high-curvature geometry is also challenging for
our algorithm, as shown in Outdoor. Finally, our depth invalidation
process based on pixel gradients could fail at times. Depth values of
missing regions could be incorrectly predicted based on inaccurate
depth samples that are not invalidated.

6. Conclusion and Future Work

We propose shared representative filtering, a real-time depth com-
pletion algorithm for filling large missing regions in RGB-D data.

We observe that conventional joint bilateral filtering is not effec-
tive in dealing with large holes of depth maps with the regular filter
kernels. Our representative searching adapts the filter kernels to the
geometry of missing regions efficiently by locating reliable sam-
ples. Our multi-resolution filter further improves both accuracy and
efficiency. Experiments show that our algorithm can accurately pre-
dict pixels’ depth values in large missing regions while achieving
real-time frame rate on HD resolution images.

In the future, we would like to extend our method to the tem-
poral domain for RGB-D videos. We believe that exploiting tem-
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Figure 13: Equal-time comparisons of real data captured by Intel RealSense D435. Same as Figure 9, we allocate 15 milliseconds for the
single-pass methods and 7.5 milliseconds for the multi-resolution ones. We also list the results of single-pass joint bilateral upsampling with
large enough kernels for filling all holes and the ones of fast bilateral filter (FBS) for quality comparisons. Our method reconstructs depth
maps significantly better than other methods by avoiding to oversmooth the depth boundaries.

poral coherence could not only reduce per-frame cost, but also im-
prove temporal consistency. We also plan to leverage the success
of recent research on scene understanding, such as image segmen-
tation [BKC17] or depth edge detection [HK18], to better preserve
the depth boundaries.
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KRATHWOHL G., NEŠIĆ N., WANG X., WESTLING P.: High-resolution
stereo datasets with subpixel-accurate ground truth. In German confer-
ence on pattern recognition (2014), pp. 31–42. 2, 6, 8, 9

[SHZ∗16] SONG X., HUANG H., ZHONG F., MA X., QIN X.: Edge-
guided depth map enhancement. In Proceedings of the International
Conference on Pattern Recognition (2016), pp. 2758–2763. 1, 3

[Tel04] TELEA A.: An image inpainting technique based on the fast
marching method. J. Graph. Tools 9, 1 (2004), 23–34. 2

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and
color images. In International Conference on Computer Vision (1998),
pp. 839–846. 6

[USS∗17] UHRIG J., SCHNEIDER N., SCHNEIDER L., FRANKE U.,
BROX T., GEIGER A.: Sparsity invariant CNNs. In International Con-
ference on 3D Vision (2017), pp. 11–20. 3

[VKB∗18] VALENTIN J., KOWDLE A., BARRON J. T., WADHWA
N., DZITSIUK M., SCHOENBERG M. J., VERMA V., CSASZAR A.,
TURNER E. L., DRYANOVSKI I., AFONSO J., PASCOAL J., TSOTSOS
K. N. J., LEUNG M. A., SCHMIDT M., GULERYUZ O. G., KHAMIS
S., TANKOVICH V., FANELLO S., IZADI S., RHEMANN C.: Depth from
motion for smartphone AR. ACM Trans. Graph. 37, 6 (2018). 3

[XZC17] XUE H., ZHANG S., CAI D.: Depth image inpainting: Improv-
ing low rank matrix completion with low gradient regularization. IEEE
Trans. Image Process. 26, 9 (2017), 4311–4320. 3

[XZS∗19] XU Y., ZHU X., SHI J., ZHANG G., BAO H., LI H.: Depth
completion from sparse LiDAR data with depth-normal constraints. In
International Conference on Computer Vision (2019), pp. 2811–2820. 3

[ZF18] ZHANG Y., FUNKHOUSER T.: Deep depth completion of a sin-
gle RGB-D image. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018), pp. 175–185. 1, 3

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

