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Figure 1: Matting by Generation. We crack the trimap-free matting problem in a conditional generative way as opposed to the
previous regression-based fashion. With only an image as input, our method automatically extracts the foreground (e.g., person)
and generates high-quality boundary details benefiting from the rich generative prior, leading to photorealistic compositions.
Compared with the human annotation, our results provide crisper details and greater fidelity to the input image in this example.

ABSTRACT
This paper introduces an innovative approach for image matting
that redefines the traditional regression-based task as a generative
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modeling challenge. Our method harnesses the capabilities of latent
diffusion models, enriched with extensive pre-trained knowledge,
to regularize the matting process. We present novel architectural
innovations that empower our model to produce mattes with supe-
rior resolution and detail. The proposed method is versatile and can
perform both guidance-free and guidance-based image matting, ac-
commodating a variety of additional cues. Our comprehensive eval-
uation across three benchmark datasets demonstrates the superior
performance of our approach, both quantitatively and qualitatively.
The results not only reflect our method’s robust effectiveness but
also highlight its ability to generate visually compelling mattes that
approach photorealistic quality. The code for this paper is available
at https://github.com/lightChaserX/alphaLDM.
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1 INTRODUCTION
Image matting as a fundamental problem in computer vision has
been investigated for decades [Li et al. 2023d]. It enables many real
applications, such as visual effects synthesis [Li et al. 2022a], image
editing [Kawar et al. 2023], etc. Its goal is to predict the foreground
and the alpha matte from an input image. This is a highly ill-posed
inverse problem with only the input being known. The forward
model is the composition equation [Porter and Duff 1984] given by:

𝐶 = 𝛼𝐹 + (1 − 𝛼) 𝐵 , (1)

where 𝐶 is the input, 𝐹 is the foreground, 𝐵 is the background, and
𝛼 ∈ [0, 1] is the linear combination coefficient. The main challenge
lies in the ill-posedness, which is a mixed difficulty — to find where
the foreground is and what the opacity value is in the boundary.

Existing methods, regardless of traditional or learning-based,
leverage additional inputs to reduce the ill-posedness. For example,
one could mitigate unknown parameter 𝐵 by capturing another
background image [Lin et al. 2021; Sengupta et al. 2020], or could
add priors for 𝛼 through user annotated trimaps.1 Besides using
additional input provided by humans, methods [Li et al. 2023a; Yu
et al. 2021] employing rough masks from other algorithms, such as
Segment Anything (SAM) [Kirillov et al. 2023a], aim to alleviate the
training burden in segmentation and enhance focus on boundary
matte quality. However, these approaches are not entirely satisfac-
tory, primarily due to their reliance on the segmentation network’s
accuracy. Imprecise initial segmentation can significantly compro-
mise the quality of matting results, particularly at the boundaries.
This dependency raises concerns about the efficacy of solely relying
on rough segmentation masks for achieving high-quality matting.

Recent advancements in end-to-end matting methods [Ke et al.
2022; Li et al. 2021] have sought to address these limitations by
eliminating the need for these additional inputs, thereby reducing
the reliance on human-generated data. Nevertheless, developing
an effective end-to-end matting algorithm from scratch poses sig-
nificant challenges due to the task’s inherent complexity. These
methods typically employ strategies such as constraining the appli-
cation domain to portrait images [Li et al. 2021; Ma et al. 2023] and
imposing implicit segmentation prior [Ke et al. 2022]. While these
approaches reduce ambiguity between segmentation and matting

1Even with a known background image 𝐵, the problem is still ill-posed (3 unknowns
for foreground color, plus unknown alpha, for 3 equations across R, G, B channels.)

Training sample Annotation ViTAE-S Ours

Figure 2: Imperfect human annotation. The training data
are usually either blurry or lacking in some details. There-
fore, the regression-based model would overfit the imperfect
ground truth.

and encourage the model to capture boundary details more effec-
tively, achieving high-quality boundarymattes remains challenging,
as shown in Figure 1. The prevailing issue with existing matting
approaches lies in their handling of boundary regions, which are of-
ten challenging due to factors such as low visibility (contrast, image
quality) and imperfect human annotations2. These limitations can
result in unnatural compositions, highlighting the need for more
sophisticated solutions.

In this paper, we propose a simple yet effective technique of mat-
ting by generation. We transform the traditional regression problem
into a conditional generative modeling problem, leveraging a dif-
fusion model enriched with pre-trained knowledge about image
semantics and matte details. There are several key advantages to
this approach. Firstly, the generative model is adept at handling the
uncertainties inherent in data, enabling it to learn the matte distri-
bution more effectively than regression models. It also allows us to
mitigate the negative impact of imperfect labels, such as ground-
truth (GT) mattes generated by either humans or machines. These
GTmattes, often derived from low-level image features, tend to con-
tain imperfections, as exemplified in Figure 1. Utilizing such flawed
mattes to train a regression-based model can lead to overfitting and
suboptimal outcomes, as demonstrated in Figure 2. In contrast, our
generative prior empowers our method to identify semantically
correct boundaries and even generate results surpassing the GT
mattes’ quality. Secondly, our pre-trained diffusion model, with its
vast database of billions of images, captures a more comprehensive
image distribution. This broader understanding aids in regularizing
the training process, offering more detailed and low-level property
insights. Thus, the generative capabilities of our model shine in sce-
narios where image visibility is limited. Finally, our method offers
versatility, accommodating both guidance-free and guidance-based
matting. In most instances, it can perform accurate matting without
additional hints. Nevertheless, in cases where the foreground is
ambiguous, users can provide supplementary guidance to extract
the desired matte.

List of Contributions. Our research makes the following three
significant contributions:

• We convert the regression problem into a generative model-
ing problem, utilizing generative diffusion prior to regularize
training effectively.

2Although there are solutions for capturing ground-truth alpha matte [Smirnov et al.
2023], they often involve hardware requirements and are hard to scale up.
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• We develop a model capable of processing high-resolution
inputs efficiently and effectively.

• Our model is versatile and capable of handling scenarios
with a variety of hints, including trimaps, masks, texts, and
no hints at all.

2 RELATEDWORK
Guidance-based Matting. Given only a single image, matting

is an ill-posed inverse problem. Therefore, some matting meth-
ods require additional guidance, such as trimaps [Chuang et al.
2001], scribles [Levin et al. 2008], and clicks [Wei et al. 2021]. Meth-
ods of this category are typically referred to as guidance-based or
trimap-based methods. Conventional trimap-based matting meth-
ods can be roughly divided into two categories: sampling-based
methods [Chuang et al. 2001; Feng et al. 2016; Gastal and Oliveira
2010; He et al. 2011; Shahrian et al. 2013; Wang and Cohen 2007;
Yang et al. 2018] and propagation-based methods [Aksoy et al. 2017;
Chen et al. 2013; Grady et al. 2005; Levin et al. 2008; Sun et al. 2004;
Wang and Cohen 2007]. Sampling-based methods usually resolve
matting on a pixel-by-pixel basis by collecting color samples and
forming a probabilistic distribution for each pixel’s neighborhood.
In contrast, propagation-based methods aim to obtain the matte for
the entire image at once by establishing pixel affinities and solving
an equation. Complex scenes often pose a challenge to these meth-
ods. In recent years, deep learning has been introduced to solve
the matting problem and gained success [Cho et al. 2019; Liu et al.
2021; Lu et al. 2019a,b; Sun et al. 2021; Xu et al. 2017]. For example,
Mask-guided matting [Yu et al. 2021] takes a general coarse mask
as guidance, and proposes a Progressive Refinement Network mod-
ule to achieve robust guidance. Matting Anything [Li et al. 2023a]
leverages the recent Segment Anything Model (SAM), and further
proposes a model that can estimate the alpha matte of any target
instance with prompt-based user guidance in an image.

Guidance-free Matting. Given the considerable expense associ-
ated with acquiring additional guidance, efforts have been made to
conduct matting without them, especially for specific foreground
scenarios like portraits. These approaches are commonly referred
to as guidance-free or trimap-free methods. Example methods of
this type include SHM [Chen et al. 2018], SHMC [Liu et al. 2020],
HATT [Qiao et al. 2020] and GFM [Li et al. 2022b]. MODNet [Ke
et al. 2022] performs portrait matting by optimizing a series of sub-
objectives simultaneously via explicit constraints. DugMatting [Wu
et al. 2023] explores the explicitly decomposed uncertainties to effi-
ciently and effectively improve matting. P3M-Net [Ma et al. 2023]
specifically models the interactions between encoders and decoders
to perform privacy-preserving portrait matting better.

Diffusion Models. Our approach builds upon the diffusion model
[Ho et al. 2020; Song et al. 2021], a generative model that has gar-
nered significant attention owing to its exceptional generative ca-
pabilities [Rombach et al. 2022]. Diffusion models have also demon-
strated remarkable results in text-based image editing tasks, in-
cluding InstructPix2Pix [Brooks et al. 2023], Imagic [Kawar et al.
2023], and SINE [Zhang et al. 2023]. In addition, it has been success-
fully used for various tasks [Fei et al. 2023; Xia et al. 2023] such as

super-resolution [Yue et al. 2023], inpainting [Tang et al. 2023], seg-
mentation [Burgert et al. 2023; Xu et al. 2023b]. Our work represents
a pioneering effort in applying diffusion models to image matting.
Compared with the recent concurrent unpublished diffusion-based
methods for image matting [Hu et al. 2023; Xu et al. 2023a], the
main difference with our work is the setting. Those methods are
trimap-based, while our method facilitates both trimap-free and
guidance-based matting. In addition, they are based on the pixel
diffusion model, whereas we employ the latent diffusion model
(LDM) [Rombach et al. 2022]. The LDM pre-trained on billions of
images offers powerful prior. Furthermore, the latent mechanism
helps mitigate the impact of potentially imperfect training data, as
shown in Figure 1 and Figure 2.

3 METHOD
We solve the matting problem in a conditional generation manner
by training a diffusion model to jointly model the distribution of
alpha matte 𝑝 (𝜶 ) and draw an alpha matte 𝜶 from the distribution
conditioned on the input image x. Thanks to its generative abil-
ity and pre-trained rich image knowledge, our model can find the
foreground and generate alpha matte with fine boundary details
without guidance (Section 3.2). Our tailored high-resolution infer-
ence enables the process of arbitrary-resolution images (Section 3.3).
Besides guidance-free matting, we can seamlessly integrate addi-
tional guidance to our trained model, such as a trimap, coarse mask,
scribbles, and texts, to alleviate ambiguity in matting (Section 3.4).

3.1 Generative Formulation
We model the distribution of alpha matte 𝑝 (𝜶 ) with a pre-trained
latent diffusion model [Rombach et al. 2022]. Given an alpha matte
𝜶 ∼ 𝑝 (𝜶 ), we encode it with the pre-trained encoder E to get its
latent representation z(𝜶 ) = E(𝜶 ). We then apply the diffusion
process to the latent representation. Let z0 := z(𝜶 ) , the forward
process gradually adds a small amount of Gaussian noises to the
latent of alpha matte z0 in 𝑇 steps. Therefore, a discrete Markov
chain {z0, z1, . . . , z𝑇 } is constructed such that

z𝑡 =
√︁

1 − 𝛽𝑡 z
(𝜶 )
𝑡−1 +

√︁
𝛽𝑡𝝐𝑡−1 =

√
𝜎𝑡 z0 +

√
1 − 𝜎𝑡𝝐 , (2)

where the step 𝑡 ∈ {1, . . .𝑇 }, 𝝐𝑡 , 𝝐 ∼ N(0, I) are Gaussian noises
and 𝜎𝑡 :=

∏𝑡
𝑠=1 𝛽𝑠 . The variance schedule {𝛽1, . . . , 𝛽𝑇 } enables

multiple scales of Gaussian noises added to z0.
To model the distribution of z(𝜶 ) , the backward process trains a

score-based model 𝜖𝜃 to predict the noise introduced to the noisy
sample z𝑡 at step 𝑡 . The objective of training is to minimize

E𝜖∼N(0,1),𝑡,z0

[
∥𝜖𝑡 − 𝜖𝜃 (z𝑡 , 𝑡)∥2

2
]
. (3)

Training the model on a set of alphamattes {𝜶 𝑖 }𝑁𝑖=1 ∼ 𝑝 (𝜶 ) enables
modeling their distribution 𝑝 (𝜶 ). After training, we can perform
ancestral sampling [Song et al. 2020] to generate a sample z0 from
a normally distributed variable z𝑇 ∈ N (0, 1). Subsequently, by
passing z0 through the decoder D, we obtain a matte �̂� ∼ 𝑝 (𝜶 ).

3.2 Conditional Generation with a Single Input
Image

The matting task aims to produce the alpha matte corresponding to
a given input image x, rather than generating a random alpha matte.
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Figure 3: Method. (a) The low-resolution inference path can be used alone if we do not need very high-quality mattes or have
a limited computational budget. The input is the low-resolution latent feature z(x↓) of the down-sampled image x ↓ and the
sampled noise 𝝐𝑡 . If there is spatial guidance 𝑐S present, we will combine it with the sampled noise as the noisy sample. If a
text prompt 𝑐T is provided, we will deliver it to the U-Net. The output of this path is the denoised latent feature ẑ0. This path
requires a few steps 𝑇 ′ ∼ 10. (c) We run this step multiple times with different random seeds to get 𝐿 predictions in the pixel
space. With them, we estimate the uncertainty map U, and the set of candidate regions B = {𝑏𝑖 }𝐵1 . (b) The high-resolution path.
We first add the up-sampled latent feature to the sampled noise. Then, we split the high-resolution latent input and noise into
overlapped patches according to B. These patches are respectively fed into the diffusion denoising network. Finally, we merge
all denoised patches to get a collage. We perform “split” and “collage” during every denoising step 𝑡 ∈ {1, . . . ,𝑇 }. We will use a
specific text prompt: “enhance details” if there is a text prompt used in the LR path.

As a result, we condition the generation process on the input image
x. Specifically, we concatenate the latent z(x) := E(x) of the input
image x with the noisy sample z𝑡 and then feed the concatenated
tensor to the model. To teach the model to generate alpha matte
𝜶 conditioned on the input image x, we train it with paired data
{(x𝑖 ,𝜶 𝑖 )}𝑁𝑖=1 ∈ 𝑝data by minimizing:

L = E𝜖∼N(0,1),𝑡,z0,z(x)
[
∥𝜖𝑡 − 𝜖𝜃 (z𝑡 , z(x) , 𝑡)∥2

2
]
. (4)

We initialize model 𝜖𝜃 with pre-trained weights from Stable
Diffusion (SD) [Rombach et al. 2022]. The weights learned on billion-
level natural images [Schuhmann et al. 2022] possess extensive
knowledge of image semantics and details. To adapt the denoising
score-based model 𝜖𝜃 for alpha matte generation, we extend its
architecture by duplicating its input layers. The weights of these
newly added layers are initialized to 0. Following this modification,
we proceed to fine-tune the denoising score-based model. Upon
completing the training process, we can draw a sample �̂� from
𝑝 (𝜶 ) conditioned on the input image xwith the ancestral sampling
and decoding.

3.3 HR Inference with LR Guidance
The current image resolution is typically high, often exceeding
2K. Applying the diffusion model to such high-resolution (HR)

inputs requires computational resources that are not readily avail-
able. Inference with low-resolution (LR) images is sub-optimal for
generating mattes with detailed boundaries. To address this is-
sue, we propose an HR inference method leveraging patch-based
inference. However, applying patch-based inference, like MultiDif-
fusion [Bar-Tal et al. 2023], to high-resolution matting presents two
major challenges: the lack of context and redundant computations.
To overcome the issue of limited context, we use a predicted low-
resolution matte to guide the process. For reducing computational
load, we take advantage of the sparsity inherent in alpha mattes.

Patch Sampling. The diffusion model produces stochastic alpha
mattes under different random seeds. However, stochastic results
generally occur at the boundary regions, where the matte quality
is inadequate, while other regions are deterministic and their matte
quality is good enough. We pay attention to these boundary re-
gions, which represent small portions of the input. Other regions
can be directly determined through up-sampling the matte from
LR inference. Taking advantage of the sparsity of fractional alpha
values in the matte, we can reduce computations while maintain-
ing good quality. First, we downsample the HR image and pass it
through the diffusion model, yielding a low-resolution matte pre-
diction �̂� 𝑖 . We perform the low-resolution inference 𝐿 times using
varying random seeds, resulting in 𝐿 low-resolution predictions
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A = {�̂� 1, �̂� 2, . . . , �̂�𝐿}. Their standard deviation is calculated to ap-
proximate the uncertainty map U =

√︁
E(A − E(A)). We identify

regions on the uncertaintymapU with high information entropy as
candidate patches B = {𝑏𝑖 }𝐵𝑖=1 that require refinement. As depicted
in Figure 3, high uncertainty is often observed around complex
regions, such as hair boundaries. Thus, based on this uncertainty
map, we select candidate regions for further processing.

Patch-Based Inference. We perform inference on the selected
patches B. The noise latent for each patch is not independently
sampled. This strategy ensures consistent prediction for differ-
ent patches, especially for overlapped areas. We sample a noise
z𝑇 ∈ N (0, 1) with the same size as the input image. Then, we
crop patches {z1

𝑇
, z2
𝑇
, . . . , z𝐾

𝑇
} from the sampled noise z𝑇 , where

z𝑘
𝑇
= 𝐹 (z𝑇 |𝑏𝑖 ) and 𝐹 denotes the cropping operator. The image con-

dition used to condition themodel is cropped from the input image’s
latent similarly. We feed the noise and image latent of the patch to
the diffusion model. During the ancestral sampling, each step 𝑡 will
produce latent samples {z1

𝑡 , z
2
𝑡 , . . . , z

𝐾
𝑡 } for patches {𝑏1, 𝑏2, . . . , 𝑏𝐾 }.

Before passing them to the next step 𝑡 − 1, we merge them by

z̄𝑡 =
𝐾∑︁
𝑘=1

𝐹−1 (z𝑘𝑡 |𝑏𝑘 ), (5)

where 𝐹−1 is the uncropping operator which puts the latent patch
z𝑘𝑡 back to the patch location 𝑏𝑘 where it was cropped from the
input image. Then, we get the latent patches for the next step from
z̄𝑡 . After the ancestral sampling, we will obtain the denoised latent
z̄0. It is finally merged with the up-sampled LRmatte on latent space
to get the final alpha matte. The coarse-to-fine strategy is similar to
previous high-resolutionmattingmethods [Lin et al. 2021]; however,
the main difference is the proposed guidance mechanism for the
diffusion model.

Guidance Mechanism. Performing the model on cropped patches
often produces flawed results because themodel cannot perceive the
context information of the whole image and could bemisled by local
patches. To address this issue, we propose to use the predicted LR
matte as guidance. Although the matte predicted from LR input has
imperfect boundary details, it has sufficiently accurate predictions
for other regions. Thus, instead of starting from pure noise 𝝐 ∈
N (0, 1), we start the backward process from

z𝑇 =
√︁
(1 − 𝜎𝑇 )/𝜎𝑇 𝝐 + ẑ↑0 , (6)

where ẑ↑0 denotes the upsampled latent corresponding to one of
the predicted LR mattes {𝜶 𝑙 }𝐿1 This strategy is simple but effec-
tive. During training, z𝑇 is a summation of the ground truth alpha
matte latent z0 and Gaussian noise 𝝐 . z0 contains low-frequency
(foreground and background) and high-frequency (boundary) infor-
mation while 𝜖𝑇 is high-frequency. The noise will flood the high-
frequency information in z0. In other words, z𝑇 is approximately the
combination of the low frequency of z0 and the high frequency of 𝝐 .
The model learns to extract low-frequency data from noisy samples.
During inference, the given ẑ↑0 also contains both low-frequency
(foreground and background) and high-frequency (boundary) infor-
mation. The high frequency, which could be inaccurate, is flooded,
and the model can extract the correct low frequency. This strategy

can also facilitate the incorporation of users’ guidance in the next
section.

3.4 Additional Guidance
Matting without any guidance could lead to ambiguity. For example,
when there are multiple people in an image, it could be difficult
to determine which one to extract. Additional guidance, such as
a human-annotated trimap, a coarse mask derived from semantic
segmentation, scribbles, clicks, and a text prompt, would be helpful
in this case. Our method can incorporate additional guidance if
present.

Text Guidance. Adding text guidance is relatively easy since we
use the text-to-image generative diffusion model. We annotate the
text description of training images with BLIP2 [Li et al. 2023b].
Each annotation describes the target foreground in the training
image. Given the CLIP feature 𝑐T of the text prompt T , we use the
cross-attention mechanism to inject the control into the denoising
model. We train the denoising model with the annotated prompt
by minimizing

L = E𝜖∼N(0,1),𝑡,z0,z(x) ,𝑐T

[
∥𝜖𝑡 − 𝜖𝜃 (z𝑡 , z(x) , 𝑐T , 𝑡)∥2

2
]
. (7)

During training, for small patches, we use a specific prompt “en-
hance details” instead of avoiding confusing the model.

Spatial Guidance. Spatial guidance like a trimap, coarse mask [Yu
et al. 2021], and scribbles are more popular than text prompts for
image matting. Inspired by the guidance mechanism described in
Section 3.3, we use a similar method for injecting spatial guidanceS.
We extract this guidance’s latent representation 𝑐S and a mask indi-
cating unknown regions𝑚unknown. For coarse mask,𝑚unknown = I
and for scribble𝑚unknown represents regions without scribbles. At
inference, we perform ancestral sampling from

z𝑇 =
√︁
(1 − 𝜎𝑇 )/𝜎𝑇 𝝐 + (1 −𝑚unknown) 𝑐S . (8)

We can apply various kinds of guidance3 directly at the inference
time without training with them.

4 EXPERIMENTS
4.1 Protocol

Dataset. We conduct experiments on real-world datasets rather
than synthetic ones. We train our model on the training set of
P3M-10K [Li et al. 2021], a dataset containing 9,421 high-resolution
real-world face-blurred portrait images and human-annotated alpha
mattes that are not perfectly accurate. We evaluate the performance
on three benchmarks: P3M-P dataset containing 500 face blurred
images. Each image has a corresponding trimap and alpha matte.
They are validation sets from P3M-10K that share a similar distribu-
tion of alpha matte with the training set. PPM-100 [Ke et al. 2022]
is a dataset with 100 high-resolution images with corresponding
fine annotations. RVP [Yu et al. 2021] consists of 636 portraits with
alpha mattes and coarse segmentation masks.

3The domain of the guide image should match that of the alpha matte.
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Table 1: Quantitative results of trimap-free portrait matting.
We compare our method with trimap-free portrait matting
methods. †For the trimap-based method DiffMat, we provide
a mask with all pixels labeled unknown. ∗We removed am-
biguous samples from the dataset, 5 out of 100 from PPM
and 20 out of 500 from P3M-P, which will be elaborated on
in the supplementary.

PPM∗ P3M-P∗

MSE ↓ MAD ↓ SAD ↓ Conn ↓ MSE ↓ MAD ↓ SAD ↓ Conn ↓

DiffMat† [Xu et al. 2023a] 522.1 594.9 5681.3 5623.9 510.2 582.7 999.1 989.0
MODNet [Ke et al. 2022] 4.5 10.1 96.0 81.1 11.3 17.4 29.9 26.6
P3M [Li et al. 2021] 5.8 9.6 93.3 96.1 2.7 5.1 8.8 8.3
ViTAE-S [Ma et al. 2023] 3.4 6.5 62.6 59.3 1.8 4.3 7.4 7.2
Ours 2.5 6.3 56.9 54.0 1.6 4.1 7.1 6.8

Table 2: Quantitative results of guidance-based portrait mat-
ting. We compare our method with guidance-based portrait
matting methods. The guidance is a mask in the top por-
tion of the table, while in the bottom portion, it is a trimap.
†P3M-P does not provide the segmentation mask; therefore,
we use coarse masks extracted from trimaps𝑚 as guidance
(𝑚[𝑚 >= 0.5] = 1). Although our scores are worse than some
methods since the label is imperfect, our visual results are
better. Note that P3M has the same distribution as the train-
ing set; therefore, it could not reflect overfitting the imperfect
labels.

RVP P3M-P†

MSE ↓ MAD ↓ SAD ↓ Conn ↓ MSE ↓ MAD ↓ SAD ↓ Conn ↓

MAM [Li et al. 2023a] 20.7 36.3 48.5 44.6 7.9 13.4 23.1 20.5
MG-Mat [Yu et al. 2021] 9.4 20.7 29.2 25.5 5.7 12.8 22.0 18.4
DiffMat [Xu et al. 2023a] 16.6 32.5 44.4 41.2 45.0 49.5 84.4 84.5
Ours - mask 11.6 19.6 26.7 26.1 1.6 4.2 7.2 6.2

IndexNet [Lu et al. 2019b] – – – – 1.2 4.2 7.0 6.0
MatteFormer [Park et al. 2022] – – – – 1.4 4.1 7.1 6.5
DiffMat [Xu et al. 2023a] – – – – 1.0 3.6 6.2 5.2
Ours - trimap – – – – 1.6 4.0 6.9 6.0

Compared methods. We compare our approach against several
state-of-the-art matting methods. Guidance-free: MODNet [Ke
et al. 2022], P3M [Li et al. 2021], ViTAE-S [Ma et al. 2023]. These
methods, except for MODNet4, are trained on P3M-10K. Trimap-
based: IndexNet [Lu et al. 2019b], MatteFormer [Park et al. 2022],
and DiffMat [Xu et al. 2023a], which is a concurrent method using
diffusion models for trimap-based matting.Mask GuidedMatting:
MAM [Li et al. 2023a], which incorporates SAM [Kirillov et al.
2023b] as its backbone, and MG-Mat [Yu et al. 2021].

Metrics. Evaluation metrics include the Sum of Absolute Differ-
ences (SAD), Mean Squared Error (MSE), Mean Absolute Difference
(MAD), and Connectivity (Conn.) [Rhemann et al. 2009]. We apply
all metrics on whole images. We scale the MAD and MSE values by
a factor of 103.
4We utilize the publicly available checkpoints released by MODNet. It was trained
on proprietary datasets. We attempted to align MODNet’s training data with ours.
However, this reproduction resulted in unsatisfactory outcomes.

4.2 Trimap-free Matting
Table 1 presents the quantitative results for trimap-free setting. Our
method achieves the best scores in all metrics. It consistently deliv-
ers good results on three benchmarks, showcasing its robustness
and versatility across diverse scenarios. Our approach outperforms
established methods like MODNet, P3M, ViTAE-S, and MAM, par-
ticularly regarding accuracy and boundary detail handling. This is
evident in the lower SAD, MSE, MAD, and improved Connectivity
scores compared to the competing methods. These results high-
light the effectiveness of our generative modeling approach and the
use of pre-trained diffusion models in addressing the complexities
of trimap-free matting, especially in challenging cases involving
intricate details and varying image qualities.

Figure 4 presents the qualitative comparisons. The input shows a
complex scene with a person that includes intricate details like hair
and shoelaces, which are challenging for matting algorithms. As
highlighted by the insets, MODNet and P3M outputs lack fine detail,
particularly in the hair and feet regions. In contrast, the results
from ViTAE-S, while quantitatively close to our method, visually
lack the nuanced details that our approach captures. Our result
is more similar to the ground truth, including a clear and precise
boundary matte, which faithfully reproduces the fine details of the
subject, such as individual hair strands and the shoe’s silhouette.
This is evident even in cases where quantitative scores are similar,
showcasing the added benefit our approach brings in creating high-
fidelity human boundary mattes.

Figure 9 showcases the visual results on the RVP dataset, focusing
on a challenging scenario involving complex hair details against
a sunset backdrop. The input image presents significant matting
difficulty due to the intricate hair strands silhouetted against the
varying tones of the sky. MODNet and P3M results display notable
artifacts and fail to capture the finer hair details, as evidenced in
the zoomed insets. ViTAE-S, although quantitatively competitive,
visually lacks fidelity in reproducing the hair’s fine structure, as
the comparison with the ground truth reveals a less accurate matte.
Our method, on the other hand, shows a remarkable capture of
detail, closely mirroring the ground truth. The insets highlight our
approach’s capability to preserve the delicate strands of hair and
the subtle nuances in the silhouette, which are critical for a realistic
matting outcome. Despite their close quantitative scores, this visual
comparison underscores the qualitative edge of our method over
ViTAE-S, illustrating our approach’s advanced ability to generate
detailed human boundary mattes that are distinct and more aligned
with the actual scene.

4.3 Guidance-based Matting
When the foreground is ambiguous, it is inherently challenging for
trimap-free matting. In contrast, our method can also use guidance
such as text prompt and coarse mask to reduce ambiguity (Figure 5).

Table 2 shows the quantitative comparisons for the guidance-
based setting. Although the trimap-based method—DiffMat [Xu
et al. 2023a]—performs better than our method in the trimap-based
setting, it relies on the high quality of the trimaps. They would
fail when using coarse guidance, such as masks from semantic seg-
mentation. The mask-based method MAM [Li et al. 2023a] refines
the mask generated from SAM [Kirillov et al. 2023a]. Benefiting
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Input MODNet [Ke et al. 2022] P3M [Li et al. 2021]

ViTAE-S [Ma et al. 2023] Ours Human annotation

Figure 4: Visual results of trimap-free matting on PPM-100 [Ke et al. 2022]. Our method achieves more accurate matting results,
especially around thin and detailed structures, compared to prior work. We extracted the foreground using the technique
proposed by Germer et al. [Germer et al. 2021] and composited it onto a new background sampled from a public background
database [Lin et al. 2021].

“foreground person. . . ”

Input w/o guidance Guidance w/ guidance

Figure 5: Use of guidance. With various guidance, we can
reduce ambiguity.

from SAM, it can predict alpha mattes for “any” foreground objects.
However, its matting performance is sub-optimal.

Figure 11 shows the qualitative comparison under the trimap-
based setting. The scores of DiffMat [Xu et al. 2023a] are better, but
we notice their visual results are worse than ours. At the same time,
the imperfection of the ground-truth mattes is also observed. We
suppose the worse results of DiffMat compared to us are because

Table 3: Ablation study. We implement four variants of our
method and conduct the ablation study on PPM-100: (1) Our
model without using the pre-trained SD weights; (2) Training
with the same prompt for all cropped patches from an image;
(3) Our model trained with resized full image rather than
patches with different scales; (4) Adding pixel losses to our
training phase.

MSE MAD

Ours 2.5 6.3
- (1) w/o denoising prior 63.6 71.1
- (2) w/o specific patch prompt 38.6 46.8
- (3) w/o multi-scale data 8.6 15.1
+ (4) pixel loss 58.0 65.1

they are based on the pixel diffusion model, which overfits the
training labels.

5 ANALYSES AND DISCUSSIONS
Ablation studies. Table 3 demonstrates the importance of the pre-

trained generative prior, the prompting and the multi-scale training
strategy (will be elaborated on in the supplementary), and operating
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Figure 6: Randomness test. We use 5 different random seeds
to test the model on selected images. With the increase of
diffusion steps, the mean and std. of SAD error decrease.

Input LR w/o guidance w/ guidance

Figure 7: HR inference with LR guidance.

in latent space. Stable Diffusion (SD) with vast pre-trained knowl-
edge significantly induces semantic information. Table 3 indicates,
without this, training the diffusion model is prone to lose semantic
information, e.g. resulting in an incomplete person. Besides se-
mantic information, this generative prior enables us to hallucinate
details, e.g., hair boundary. Without it, we could converge to the
existing methods. Besides, operating within the latent space adeptly
preserves essential details, crucial for producing high-quality mat-
tes with emphasis on boundary regions. This is an advantage of
our method over concurrent works built on pixel-based diffusion
models. Figure 7 shows the effectiveness of HR inference with LR
guidance.

Effect of randomness. Figure 6 depicts that with the increases of
steps, the randomness decreases. Besides, we notice that infer with
larger patches will also reduce the randomness.

Soft matte. Our model can produce soft mattes for out-of-focus
blur, as shown in Figure 10, even though the training dataset does
not contain annotations for such blur.

Limitations. Firstly, while our method reduces inference time for
HR images compared to naive approaches, it is important to clarify
that the inherent limitations of the diffusion model make it less ef-
ficient than prior regression-based methods. Processing a 512×512
images with 50 steps requires about 5s on a NVIDIA V100 GPU card.
However, it is worth noting that some ongoing research efforts are
focused on enhancing sampling efficiency, which could help miti-
gate this limitation [Li et al. 2023c; Song et al. 2023]. Secondly, our
model trained on portrait datasets shows potential for adaptation
to other domains, such as animal matting (see Figure 12), but is
unsuitable for matting scenarios with markedly different charac-
teristics, such as subjects like fire. Thirdly, our method is designed
for image matting and cannot guarantee temporal consistency for
videos (see Figure 8). Enhancing temporal coherence remains a
subject for future research.

Figure 8: Video inference. By individually processing down-
sampled frames, our method produces temporal inconsis-
tency in videos. While employing high-resolution frames
mitigates this issue, it still suffers from problems similar to
regression-based methods.

6 CONCLUSIONS
Our approach presents a straightforward yet highly efficient tech-
nique for matting. It can perform both trimap-free and guidance-
based image matting tasks. By reframing the problem as a gen-
erative task and leveraging diffusion models enriched with pre-
trained knowledge for regularization, we have devised innovative
designs that empower our model to produce high-resolution and
high-quality results. Our experimental results on three benchmark
datasets not only demonstrate the efficacy of our method in quanti-
tative terms but also showcase its exceptional visual performance,
making it a promising solution for the field of matting.
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Figure 9: Visual results of guidance-free matting on RVP [Yu et al. 2021] dataset.

Input ViTAE-S [Ma et al. 2023] Ours Human annotation

Figure 10: Matting with out-of-focus blur. Compared to the hard label in the out-of-focus regions of the human annotations,
we generate soft mattes.



Matting by Generation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

DiffMat [Xu et al. 2023a] Ours Human annotation
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Figure 11: Results of trimap-based matting. Our visual results look better, but our evaluation score is worse than DiffMat,
mainly because of the imperfect human annotation.

Input MAM [Li et al. 2023a] ViTAE-S [Ma et al. 2023] Ours Human annotation

Figure 12: Matting beyond portraits. Based on SAM, MAM can generate a semantically correct alpha matte for the giraffe image
but sacrifice some detail. ViTAE-S, on the other hand, fails to produce a semantically correct result and loses details. Our result
closely matches the human annotation.
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