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Abstract. Data augmentation is developed for increasing the amount
and diversity of training data to enhance model learning. Compared to
2D images, point clouds, with the 3D geometric nature as well as the high
collection and annotation costs, pose great challenges and potentials for
augmentation. This paper presents a 3D augmentation method that ex-
plores the structural variance across multiple point clouds, and generates
more diverse point clouds to enrich the training set. Specifically, we pro-
pose an attention module that decomposes a point cloud into several
disjoint point subsets, called divisions, in a way where each division has
a corresponding division in another point cloud. The augmented point
clouds are synthesized by swapping matched divisions. They exhibit high
diversity since both intra- and inter-cloud variations are explored, hence
useful for downstream tasks. The proposed method for augmentation
can act as a module and be integrated into a point-based network. The
resultant framework is end-to-end trainable. The experiments show that
it achieves state-of-the-art performance on the ModelNet40 and Model-
Net10 benchmarks. The code for this work is publicly available.1

1 Introduction

Recent advance in deep neural networks (DNN) has been made for 3D point
cloud analysis ranging from classification [15,16,27], segmentation [25,33] to de-
tection [14,17]. However, the issue of data hungry in DNN becomes even worse
for point clouds due to the high collection and annotation costs [28,29]. Ex-
isting point cloud datasets are typically limited in both object quantity and
category diversity. For example, ModelNet40 [26] (12K objects of 40 categories)
and ScanObjectNN [21] (15K objects of 15 categories), two benchmarks for point
cloud classification, are much smaller than image classification benchmarks, such
as the ImageNet [10] dataset (1.4M images of 1K categories). Limited training
data often make 3D point cloud networks suffer from overfitting and poor gen-
eralization to unseen data.

* The authors have equal contribution to this work
1 The source code is available at: https://github.com/ardianumam/PointMixSwap
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Fig. 1: Given (a) two source point clouds, the augmented samples are synthesized
by (b) PointMixup [3], (c) RSMix [11], and (d) our method. The augmented point
clouds by our method are diverse in the sense that the structural variance across
different point clouds is utilized for synthesis, which is achieved by swapping the
matched structural divisions. Colors show the identities of source points. Note
that points generated by PointMixup do not have corresponding points in the
source clouds, thereby drawn in another color.

Data augmentation aims to increase the size and diversity of training data
and can alleviate the unfavorable effects caused by the lack of annotated data.
Compared to 2D images, 3D point clouds with rich geometric shapes and defor-
mations offer great potentials for developing structural data augmentation tech-
niques, which have been relatively underutilized. As an effective data augmenta-
tion technique, mixup [32] has made significant progress on 2D image augmenta-
tion. It targets at expanding the data distribution based on the assumption that
a linearly interpolated data sample also leads to linearly interpolated label. How-
ever, the literature about point cloud mixup is rare. The permutation invariant
property of 3D point clouds results in no point-to-point correspondences across
clouds. It follows that linear interpolation commonly used in mixup method is
not applicable.

To address this issue, PointMixup [3] computes the shortest paths to match
points across clouds, and then applies linear interpolation to the coordinates of
matched points. Meanwhile, RSMix [11] mixes two point cloud samples by re-
placing a specific part of one sample with a shape-preserved part from another
sample. The synthesized point clouds by PointMixup suffer from the geometric
shape distortion problem, while RSMix generates discontinuous and less realistic
samples, especially in the areas with points from different clouds. We observe that
point clouds of the same class are usually composed of matchable components
across different clouds. A chair, for example, is composed of legs, a cushion, and
a back. These matched components in different clouds exhibit structural vari-
ability, which can be used to generate more diverse and realistic mixup samples,
an aspect which is not explored in PointMixup and RSMix.

To this end, we present Point MixSwap that considers intra-class mixup
and can synthesize diverse point clouds by swapping similar parts of source
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point clouds. Take the chair category in Figure 1 as an example. Despite the
rich variations in style and shape, most chairs can be decomposed into several
matched and semantically meaningful parts, such as chair leg, cushion, and back.
Synthesizing new point clouds by swapping the matched parts alleviates the issue
of geometric distortion while making these new clouds more diverse, as shown
in Figure 1.

Specifically, our goal is to divide a point cloud, a set of points, into a few
disjoint and meaningful subsets, called divisions in this work, in a way where
each division has the corresponding division in another point cloud of the same
class. To this end, we introduce an encoder-decoder module. The encoder is
applied to each cloud with its points as tokens, and captures both short- and
long-range dependency. Inspired by [1], the decoder takes as input both division
queries and the point-specific outputs of the encoder. Suppose the predefined
number of divisions is R. There will be R division queries, one for each division.
Via proper designs, the R division queries in the decoder can divide each point
cloud into R divisions, with each covering similar points that are attended by
the same division query. In addition, divisions which are from different point
clouds but are associated with the same query are considered matched. In this
way, not only intra-cloud division decomposition but also inter-cloud division
variance are utilized for mixup.

This work makes the following contributions. First, we introduce an effective
technique that explores structural variance for point clouds of the same class
for synthesizing diverse point clouds by swapping matched divisions. Second,
a novel encoder-decoder architecture is introduced to decompose a point cloud
into semantically meaningful divisions with cross-cloud correspondences. Third,
the synthesized point clouds lead to significant improvement for classification,
reaching the state-of-the-art performance, and shape retrieval.

2 Related Work

Data augmentation on 2D and 3D data. Various methods have been
proposed for data augmentation on 2D images, ranging from conventional ap-
proaches, such as random crop and color jittering [10,18,20] to advanced ones,
such as AutoAugment [5,6] and generative adversarial networks (GAN) based
methods [19,35,36]. In contrast, literature on 3D point cloud augmentation is
relatively scarce [4,9,12]. Li et al .[12] propose the augmentor network to derive
a rotation matrix and a point-wise translation to transform the point clouds in
the batch. Choi et al . [4] come up with part-aware data augmentation for point
cloud object detection. Given 3D object bounding boxes, they set the number
of divisions and apply separate operations, such as random drop and random
jittering. As their divisions are predefined, such an approach cannot ensure a
consistent division meaning and its correspondence across point clouds within a
class, which is a key factor in motivating our MixSwap.

Data augmentation via mixup. Existing methods [8,24,30,31,32] make sig-
nificant progress on mixup for generating 2D images. For example, Kim et al . [8]
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consider saliency maps in the process of mixup, ensuring augmented data with
sufficient information. Yun et al . [31] perform random cut in an image and
replace the cut region with a patch from another image. Nonetheless, these
methods are designed for 2D images and are inapplicable to data in geometric
domains, including point clouds.

PointMixup [3] generalizes the idea of mixup to 3D data by seeking the op-
timal interpolant defined by the shortest path interpolation. Nonetheless, the
interpolants, being locally generated virtual samples, suffer from the structural
or shape distortion. Although this issue has been partly addressed in RSMix [11],
where a subset of a point cloud is replaced by a subset of another cloud, the resul-
tant augmented clouds preserve geometric structure within individual subsets,
but with less realistic global appearance, as shown in Figure 1(c), especially in
the boundary of different subsets. In addition, none of these two methods have
explored the structural variance within the point clouds of the same class. On the
other hand, our method focuses on synthesizing point clouds by developing an
encoder-decoder module, which carries out intra-cloud division decomposition
and leverages inter-cloud division variance to enrich mixup samples.

Point cloud structure division. Parsing point clouds into semantic parts re-
veals crucial information for point cloud analysis. Chen et al . [2] encode the shape
structure intrinsically for 3D points in an unsupervised manner. Zhu et al . [34]
develop an adaptive learning module for shape co-segmentation using the group
consistency loss and an additional shape part dataset. However, these methods
usually derive one model only for each category. In contrast, our method can de-
compose a pair of point clouds of the same class into geometrically consistent and
matched divisions. Furthermore, our method does not require part-wise annota-
tions and, more importantly, is applicable to point clouds of an arbitrary class by
using a single model. In light of the differences between shape co-segmentation
and our technique, our aim is to create consistent divisions within samples in
order to improve augmentation. As such, perfect decomposition is not a require-
ment for the proposed method.

3 Proposed Method

3.1 Overview

We are given a training set of point clouds of C categories, D = {(Pn,yn)}.
Without loss of generality, we assume that the number of points in each cloud is
M , i.e., Pn = {pm

n }Mm=1, where point p
m
n ∈ R3 is represented by its 3D coordinate

and yn ∈ {0, 1}C is a C-dimensional binary vector indicating the category of
Pn. The downstream task in this work is to train a function that is capable of
mapping a point cloud to its class label, i.e., point cloud classification.

This work proposes a data augmentation that utilizes structural variance
posed within point clouds of the same class to synthesize training data by de-
composing each point cloud into structural divisions and enriching the source
dataset via cross-cloud combinations of these structural divisions. The proposed
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Fig. 2: Overview of the proposed network architecture. Point MixSwap
leverages the attention mechanism to identify structural divisions for point
clouds of the same category via an encoder-decoder module. This module is inte-
grated into a point cloud framework. It receives the per-point features compiled
by a feature extraction backbone. It generates augmented point clouds, which
serve as the input to the downstream classifier network (DCN). The whole net-
work can be end-to-end trained via the objective function of DCN.

method is depicted in Figure 2, which considers intra-class mixup. In mini-batch
optimization, each batch consists of N point clouds of an arbitrary class, i.e.,
{Pn}Nn=1. After applying a feature extractor f , the features {Xf

n}Nn=1 are ob-
tained, where Xf

n = {xm,f
n }Mm=1, with xm,f

n ∈ RE represents the per-point fea-
ture vector of embedding size E.

An encoder-decoder architecture is introduced to discover the divisions that
are geometrical parts shared across point clouds. The per-point features of point
cloud P , i.e., Xf , are fed into the encoder to produce its self-attention features
Xa. Let R denote the predefined number of divisions that R division queries,
T ∈ RR×E , are created. The decoder takes as input both division queries T
and the output of the encoder for the point cloud Xa, before the division-point
attention features Xb is generated for the downstream classification task. In the
process, the R division queries jointly decompose point cloud Pn into R disjoint
subsets. After division swapping, the augmented point clouds are generated to
facilitate the downstream classifier network.

Figure 2 shows an example with R = 2, where coloring is used to illustrate the
mapping between divisions and points. The details about the encoder-decoder
module and division swapping are provided in the following.

3.2 Encoder-decoder architecture

The encoder-decoder architecture, i.e., transformer [23], can offer an effective
way to capture the correlation across samples. The encoder is composed of sev-
eral self-attention layers to capture long-range dependency and improve the fea-
tures given the extractor f . As for the decoder, we are inspired by DETR [1],
where the learned positional embedding can be utilized as anchor boxes for ob-
ject detection, and extend the idea to 3D point clouds to capture the similar
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geometrical parts shared across point clouds. Specifically, we create R division
queries initialized using the Xavier method [7], where R is the number of divi-
sions for decomposition. The decoder takes the self-attention features Xa from
encoder and division queries as input, and produces the division-point atten-
tion features Xb. After optimization, these R division queries represent the R
divisions shared across point clouds.

In the original decoder layer [23], the number of output feature vectors is the
same as the number of the queries. Since we pass the division queries T ∈ RR×E

as tokens into the decoder, the generated feature vectors are query-specific, in-
stead of point-specific, which is ineffectual for classification. Hence, we introduce
a designed decoder, which is composed of two coupled cross-attention layers, as
illustrated in Figure 3. In the first layer, the division queries T serve as the
queries while the point-specific features Xa act as the key-value pairs. Their
roles are switched in the second layer and jointly produce point-specific features
Xb, where Xb ∈ RM×E .

Following by the common practice in [23], the intermediate attention features
Xo in Figure 3 are computed as follows

Attention(Q,K, V ) = softmax(
QKT

√
E

)V = SV = Xo, (1)

where Q = TQw, K = XaKw, and V = XaVw, while Qw, Kw, and Vw are three
matrices for linear projection. The softmax operation is applied along the last
dimension. The generated features Xo softly attend to all points and are then
passed into the second attention layer.

In Eq. 1, the point-division attention matrix S ∈ RR×M , which we call it
the division map, is obtained and will be utilized for point cloud decomposition.
In contrast to the first cross-attention layer, we use self-attention features Xa

as queries and Xo from the first layer as key-value pairs. Through the similar
cross-attention operation used in the first layer, we obtain the features Xb, which
encode the correlation between the division queries T and the per-point features
Xa, with residual learning adopted in the two coupled cross-attention layers.

The division-point attention features Xb can be fed into the downstream
classifier network (DCN) for training. The whole network is end-to-end trainable
in accordance with the task of classification. In this way, these division queries
and the division map S are learned to minimize the cross-entropy loss,

Lcls = −
N∑

n=1

C∑
c=1

yn,clog(ŷn,c), (2)

where yn is one-hot encoded label vector of point cloud Pn, ŷn is predicted
probability distribution, and C is the number of classes in the training set.

The structural division can be inferred from division map S in Eq. 1. Specif-
ically, the m-th point is assigned to division d(m) if

d(m) = argmax
r

(S(r,m)). (3)



Point MixSwap: Attentional Point Cloud Mixing. 7

Fig. 3: Architecture of the coupled de-
coder layers in Point MixSwap. Symbols
⊗, ⊕, and ⊘ denote matrix multiplica-
tion, element-wise sum, and matrix trans-
position, respectively. The pink boxes (FF)
represent multilayer perceptron.

Fig. 4: Division mixswap is de-
picted to synthesize R new mixup
point clouds with complete, non-
repeating divisions from R source
point clouds. An example of R = 4
is given in the figure.

In this way, the division map S can be considered as the division segmentation
map and is used to retrieve the R structural divisions for each point cloud.
Furthermore, since the division queries are shared for all samples, every r-th
division query attends similar subsets of points across point clouds. As a result,
a division in a point cloud has its corresponding division in each of other point
clouds.

3.3 Division mixswap

New mixup point clouds are synthesized by swapping matched divisions, and
each of them contains non-repeating divisions. Specifically, to synthesize R new
point clouds {P ′

r}Rr=1, we randomly pick R source point clouds in a batch,
{Pr}Rr=1. Figure 4 illustrates how our mixswap synthesizes R new point clouds
from R source point clouds with R = 4. The first mixing index array IP ′1 is
defined as a random permutation vector of integer numbers ranging from 1 to R,
and the following mixing index arrays are specified as one time cyclic rotation
of their previous one. Using these mixing index arrays, new mixup point clouds
are then synthesized, where the r-th element in the mixing index array gives
the source of the r-th division. Since the divison S may decompose point clouds
into division of diverse sizes, therefore, we further sample each of the synthesized
point clouds into a fixed number of points.

P
′
= ΓM

(
concat({Sr ⊙ PI(r)}Rr=1)

)
. (4)

where Sr denotes a binary mask used to select all points of the r-th division,
ΓM denotes a sampling operation which returns M points, and ⊙ represents
element-wise multiplication. Mixup point clouds acquired via Eq. 4 keep the
orderless property, thus consistent with point cloud data.

Mixup operation can be carried out in both the input level, i.e., performed
among point cloud samples Pn, and in the feature level, i.e., performed among
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point features Xb. The former requires aligned training sets whose point clouds
have the same pose in order to achieve its optimal improvement gain. Meanwhile,
considering point features are computed from the original point clouds, the latter
is more robust to unaligned training sets, which can be performed by replacing
P with Xb in Eq. 4. In the following, we discuss the cases where our method is
applied to point clouds with unaligned poses.

3.4 Alignment mechanism

As shown in Figure 2, our method adopts an existing point cloud feature extrac-
tor. Most extractors such as [15,25] are designed to work with unaligned point
clouds and can implicitly address pose variations with some specified mechanism,
such as T-Net in PointNet [15]. As a result, the resultant features are somewhat
robust to variations. To further improve the performance on unaligned cases, we
present a mechanism, called principal axis alignment (PAA), to pre-process the
given point clouds. We compute the largest principal axes of each point cloud.
In a batch of point clouds, one is randomly chosen as the reference, while the
rest are aligned to the reference according to the principal axes.

3.5 Implementation details

We train the network with 500 epochs, where the first warm-up 20 epochs are run
without executing Point MixSwap, to stabilize the learning of division queries.
For DGCNN [25], the SGD solver is adopted with a momentum of 0.9 and a
learning rate of 0.001 scheduled using the cosine annealing strategy [13]. For
PointNet [15], the Adam optimizer is employed with an initial learning rate of
0.001 and is gradually reduced with a decay rate of 0.5 every 20 epochs. Unless
further specified, we set the number of divisions to three, R = 3, and use feature-
level augmentation in the experiments.

Limitations. The proposed Point MixSwap works for point clouds of the same
category. It is not applicable to point clouds of different categories.

4 Experimental Results

4.1 Datasets

We evaluate the proposed Point MixSwap on the ModelNet40 (M40) [26], Mod-
elNet10 (M10) [26], and ScanObjectNN (SON) [22] datasets, which are widely
used for point cloud recognition. The OBJ ONLY version is adopted for SON.
M40 and M10 are synthetic datasets, while SON is a real-world dataset. Fol-
lowing previous works [15,16,25], we uniformly sample 1,024 points on the mesh
faces according to the face areas and then normalize them into a unit sphere. We
discard the normals of these samples and only use their 3D point coordinates.

We evaluate the proposed method on the reduced datasets, to investigate the
effectiveness of our method when less training data are available. The dataset
size is reduced to 20% and 50% with stratified sampling.
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Table 1: Accuracy scores of the proposed Point MixSwap on 20%, 50%, and
100% of the ModelNet40 (M40) and ModelNet10 (M10) datasets.

Method
Rate 20% Rate 50% Rate 100%

M40 M10 M40 M10 M40 M10

PointNet 82.1 89.4 85.9 92.7 88.6 93.2
PointNet + Ours 86.3 (4.2↑) 91.3 (1.9↑) 88.7 (2.8↑) 93.6 (0.9↑) 90.2 (1.6↑) 93.9 (0.7↑)

DGCNN 87.5 93.2 91.5 94.3 92.7 94.8
DGCNN + Ours 91.3 (3.8↑) 94.6 (1.4↑) 92.8 (1.3↑) 94.9 (0.6↑) 93.5 (0.8↑) 96.0 (1.2↑)

Table 2: Accuracy scores of the proposed Point MixSwap on 20%, 50%, and
100% of the rotated ModelNet40 (RM40) and ScanObjectNN (SON) datasets.

Method
Rate 20% Rate 50% Rate 100%

RM40 SON RM40 SON RM40 SON

PointNet 82.0 62.5 85.5 71.3 88.5 76.2
PointNet + Ours 85.2 (3.2↑) 66.1 (3.6↑) 87.7 (2.2↑) 74.0 (2.7↑) 89.5 (1.0↑) 78.8 (2.6↑)
PointNet + Ours + PAA 86.2 (4.2↑) 67.0 (4.5↑) 87.9 (2.4↑) 74.3 (3.0↑) 89.7 (1.2↑) 78.9 (2.7↑)

DGCNN 87.0 73.7 90.3 81.6 91.5 86.2
DGCNN + Ours 89.3 (2.3↑) 76.3 (2.6↑) 91.1 (0.8↑) 84.1 (2.5↑) 92.3 (0.8↑) 88.6 (2.4↑)
DGCNN + Ours + PAA 90.1 (3.1↑) 76.8 (3.1↑) 91.3 (1.0↑) 84.8 (3.2↑) 92.3 (0.8↑) 89.0 (2.8↑)

4.2 Shape classification

To evaluate our method, we consider PointNet [15] and DGCNN [25] as the
backbones for feature extraction, and report the performance of the models
trained with (ours) and without (baseline) the proposed Point MixSwap. We
first evaluate the proposed method on M40 and M10, where most of the samples
are well aligned. As demonstrated in Table 1, Point MixSwap consistently boosts
the accuracy regardless of the backbone networks and training data sizes. With
only 50% of the training set, it achieves slightly better performance than the
baseline model trained on the full dataset, in all backbones and datasets. While
at the reduction rate of 20%, the accuracy is also comparable to the baseline
with 50% of training data. The results reveal the effectiveness of Point MixSwap
to work with different point cloud classification network architectures. More
experiments on different backbones can be found in the supplementary material.

To further demonstrate the generality of the proposed method to unaligned
and real-world datasets, we evaluate the proposed method on the rotated Model-
Net40 (RM40), where random rotation is applied to each point cloud of the train-
ing and testing sets, and the unaligned dataset, SON. The proposed method is
evaluated with and without using the proposed principal axis alignment (PAA).
Table 2 summarizes the results. In all settings, the proposed method without
alignment produces notable improvement compared to the baseline although
the source samples are unaligned. This is because the adopted backbones are
developed to address pose variations. Also, each derived division query attends
to point tokens described by per-point local features, and tolerates a certain de-
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Fig. 5: Mixup samples generated using Point
Mixup before and after applying alignment.

Fig. 6: Mixswap samples with
different numbers of divisions.

gree of unalignment. With the alignment mechanism PAA, the proposed method
yields further and consistent improvement in all settings. Visualization of some
mixup samples before and after applying alignment is given in Figure 5.

4.3 Competing methods and comparisons

We compare the proposed method with the state-of-the-art point cloud aug-
mentation methods on the reduced and full training datasets. The competing
methods include PointMixup [3], PointAugment [12], RSMix [11] and Point-
WOLF [9]. For the accuracy scores already reported in the original papers, we
take the numbers directly from the papers. For those that are not given in the
papers, particularly for those by PointAugment and RSMix on the reduced train-
ing sets, we run their official released codes for obtaining the accuracy scores. In
addition, we note that PointAugment’s performance is unstable on ModelNet10;
Thus, we run the official codes several times and report the average accuracy
scores instead of the ones from the paper.

Table 3(a) reports the accuracy scores of all compared methods on both M40
and M10, with 20% of the dataset and the full dataset. The proposed Point
MixSwap outperforms the state-of-the-art methods in all settings. In addition,
our method shows a good performance gain when the training data is insufficient,
20% of the dataset in this case. It shows that the proposed method is effective
for data augmentation.

4.4 Ablation study and analysis

We perform ablation studies to evaluate the impacts of the proposed components
and present performance analysis. Here, the experiments are conducted on 20%
of the training sets.

Contributions of components. To evaluate the effectiveness of the proposed
method, we first report the performance of the baseline by training without using
any data augmentations. Here, DGCNN is adopted as the baseline. Then we
evaluate the contribution of the conventional data augmentation (CDA) and the
proposed Point MixSwap. The adopted CDA comprises random scaling, random
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Table 3: (a) Comparisons with existing methods on 20% and 100% of M40 and
M10. (b) Accuracy scores of Point MixSwap with different numbers of divisions
and in different mixup levels on 20% of three datasets.

Method
Rate 20% Rate 100%
M40 M10 M40 M10

DGCNN 87.5 93.2 92.6 94.8

DGCNN + PointMixup [3] 89.0 93.8 93.1 95.1

DGCNN + PointAugment [12] 88.6 92.8 93.4 95.2

DGCNN + RSMix [11] 90.1 93.7 93.5 95.9

DGCNN + PointWOLF [9] 89.3 93.5 93.2 95.1

DGCNN + Ours 91.3 94.6 93.5 96.0

(a)

Divisions Level M40 M10 SON

2
Input 91.0 94.6 75.9

Feature 91.1 94.7 76.2

3
Input 91.2 94.5 76.1

Feature 91.3 94.6 76.3

4
Input 91.0 94.4 75.7

Feature 91.2 94.6 76.1

5
Input 91.0 94.3 75.5

Feature 91.2 94.6 76.0

(b)

Table 4: Accuracy scores by using the baselines, different variants of our method,
and three trivial division methods.

CDA
Point MixSwap Trivial division Accuracy

Enc-dec Input-level Feature-level Hor. Ver. Random M40 M10 SON

87.5 93.2 73.0

✓ 88.7 (1.2 ↑) 93.5 (0.3) 73.7 (0.7)

✓ ✓ 88.8 (1.3 ↑) 93.6 (0.4 ↑) 73.6 (0.6 ↑)

✓ ✓ 89.5 (2.0 ↑) 94.0 (0.8 ↑) 74.7 (1.7 ↑)

✓ ✓ 89.7 (2.2 ↑) 94.2 (1.0 ↑) 75.0 (2.0 ↑)

✓ ✓ ✓ 89.5 (2.0 ↑) 94.1 (0.9 ↑) 74.9 (1.9 ↑)

✓ ✓ ✓ 91.1 (3.6 ↑) 94.5 (1.3 ↑) 76.1 (3.1 ↑)

✓ ✓ ✓ 91.3 (3.8 ↑) 94.6 (1.4 ↑) 76.3 (3.3 ↑)

✓ ✓ ✓ ✓ 91.2 (3.7 ↑) 94.5 (1.3 ↑) 76.1 (3.1 ↑)

✓ ✓ 89.2 (1.7 ↑) 93.7 (0.5 ↑) 73.9 (0.9 ↑)

✓ ✓ 89.0 (1.5 ↑) 93.6 (0.4 ↑) 73.8 (0.8 ↑)

✓ ✓ 88.9 (1.4 ↑) 93.4 (0.2 ↑) 73.8 (0.8 ↑)

translation and random drop, following [11]. Moreover, we perform the mixup
operation at the input level, the feature level, or both, to see the performance
with different component combinations. In addition, to check if the accuracy
improvement comes from Point MixSwap rather than trivial data decomposition
and reconstruction, three simple division approaches are investigated. In the first
two approaches, we uniformly divide a point cloud horizontally and vertically,
respectively. The third approach uses random division.

Table 4 reports the results of the ablation studies. First, we compare the
performance of data augmentation by using CDA, input-level and feature-level
Point MixSwap. Both input-level and feature-level Point MixSwap achieve no-
tably higher accuracy than CDA. To further investigate the source of the perfor-
mance gain, we combine Point MixSwap with CDA, but neither input-level nor
feature-level mixup is enabled. In this case, the difference from the CDA-only
configuration lies in the attention mechanism enabled by the encoder-decoder
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blocks (Enc-dec) to process the features. Table 4 shows that, on M40, the Point
MixSwap+CDA configuration (88.8) yields slightly better performance than the
CDA configuration (88.7). Similar trend is also encountered on the M10 and
SON datasets. It indicates that the major source of performance gain is not
the attention mechanism, but the effective divisions derived by the proposed
encoder-decoder block for mixup augmentation.

Second, we investigate the impacts of performing mixup at the input level and
the feature level. In Table 4, the feature-level mixup achieves relatively higher
accuracy than the input-level mixup, i.e., 89.7 versus 89.5 on M40, 94.2 ver-
sus 94.0 on M10, and 75.0 versus 74.7 on SON. Combining both of them yields
slightly lower accuracy than using the feature-level mixup alone. Third, we com-
bine Point MixSwap with CDA. The result demonstrates that Point MixSwap
can be complementary to other augmentation methods, and can work together
with other types of data augmentation for further performance enhancement.
Specifically, the combination of feature-level Point MixSwap and CDA achieves
significant performance gains compared to the baseline.

Finally, we consider the performance by using the three trivial division ap-
proaches. In Table 4, notably inferior improvements are obtained by using the
three division approaches compared to the proposed Point MixSwap. The results
indicate that accuracy improvements are not due to trivial data decomposition
and reconstruction for augmentation, but rather to the effective divisions derived
by using the proposed method.

Analysis on the number of divisions. We analyze the impact of division
numbers on Point MixSwap. Table 3(b) reports the results by setting the divi-
sion number to 2, 3, 4, and 5, respectively. For each number, we measure the
accuracy with mixup at the input level and feature level. It can be observed that
feature-level mixup yields better performance for all division numbers. This is
reasonably well grounded because point features are computed in the original
samples, i.e., before mixup is performed. Meanwhile, for the input-level mixup,
the performance could degrade with a higher division number. Figure 6 visualizes
some mixswap results with different numbers of divisions.

4.5 Qualitative results of mixup samples

Figure 7 shows the synthesized examples via the proposed Point MixSwap. We
set the number of division queries to 2 and 3, to generate new samples shown in
Figure 7(a) and Figure 7(b), respectively. For each setting, the second column
depicts the generated mixswap samples from the source sample pair/triplet given
in the first column. Note that for the guitar and bed categories, different poses
of source samples are provided, and the generated mixup samples after applying
alignment mechanism are shown, in which the first source sample is set as the
reference. The generated mixup samples before alignment mechanism is applied,
can be found in the supplementary material.

In Figure 7(a), Point MixSwap successfully identifies chair leg and back as
the two major structural divisions in the chair category, and poses a consistent
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Fig. 7: Mixup examples generated by Point MixSwap. (a) Four examples with
two divisions. For a pair of source point clouds on the left, we show the generated
mixup samples. (b) Four examples with three divisions. For an input triplet on
the left, the three generated mixup samples are displayed. Points are colored
according to their divisions.

correspondence across samples, where points of the same division are colored
with the same color. For the plant, guitar and bed categories, the two major
structural divisions are also consistently identified across samples. Hence, the
generated mixup samples accomplished via Point MixSwap show not only diverse
geometric shapes but also structure-preserved characteristics.

When the number of divisions is set to 3, the chair is segmented by its leg,
cushion and back, as the three structural divisions. As for the plant, guitar
and bed categories, they have meaningful divisions as shown in the figure. A
higher division number enables the mixup process to possibly generate more di-
verse samples in the sense that each new sample can be synthesized with more
structural divisions from more different samples in the input set. We further dis-
cuss the case where the given division number exceeds the number of structural
divisions posed by certain categories. Take the plant category as an example. Ac-
cording to the geometrical structure, each sample naturally poses two structural
divisions, the pot and plant. Given three division queries, two of these tokens
attend to similar structural divisions, the plant part in this case, as depicted
in Figure 7(b) with green and brown colors. Nonetheless, our method can still
generate diverse and structure-preserved mixup samples by utilizing the divi-
sion cross-correspondence. More visualization examples of other categories can
be found in the supplementary material.
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Table 5: Shape retrieval performance in mAP (%) of different data augmentation
methods on the M40 dataset.

Backbone CDA PointAugment Ours

PointNet 70.5 75.8 (5.3 ↑) 78.4 (7.9 ↑)

DGCNN 85.3 89.0 (3.7 ↑) 90.6 (5.3 ↑)

4.6 Shape retrieval

To demonstrate the advantage of the proposed method to another downstream
task, following PointAugment [12], we also examine the proposed method for
shape retrieval which retrieves the most similar shape based on cosine similarity
of the global features. We regard every sample in the testing set as a query shape,
and the retrieval performance in mean average precision (mAP) is reported on
the M40 dataset, as shown in Table 5. The proposed method produces significant
improvement margin compared to CDA in both PointNet and DGCNN, while a
notable margin is also observed compared to PointAugment.

5 Conclusion

This paper proposes Point MixSwap, a novel data augmentation technique for
3D point clouds. It is developed to exploit structural variations among point
clouds of the same class to synthesize diverse and structure-preserved augmented
samples. Point MixSwap introduces an intuitive idea of data augmentation by
decomposing a point cloud into several disjoint divisions. Each division has a con-
sistently corresponding division in other point clouds. Thus, augmented mixup
data can be synthesized by swapping one or more matched divisions among
the source point clouds. As a mixup augmentation technique, Point MixSwap is
guided by an attention mechanism, and to the best of our knowledge, it is the
first augmentation technique that utilizes an attention mechanism to explore
matchable divisions across source data. Point MixSwap is end-to-end trainable
and can be employed by any point-based networks. Comprehensive experiments
demonstrate the effectiveness of Point MixSwap on boosting the model accuracy,
especially when only limited data are available.
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