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Abstract—Image co-saliency detection via fusion-based or
learning-based methods faces cross-cutting issues. Fusion-based
methods often combine saliency proposals using a majority voting
rule. Their performance hence highly depends on the quality
and coherence of individual proposals. Learning-based methods
typically require ground-truth annotations for training, which
are not available for co-saliency detection. In this work, we
present a two-stage approach to address these issues jointly.
At the first stage, an unsupervised deep learning model with
stacked autoencoder (SAE) is proposed to evaluate the quality
of saliency proposals. It employs latent representations for
image foregrounds, and auto-encodes foreground consistency and
foreground-background distinctiveness in a discriminative way.
The resultant model, SAE-enabled fusion (SAEF), can combine
multiple saliency proposals to yield a more reliable saliency map.
At the second stage, motivated by the fact that fusion often
leads to over-smoothed saliency maps, we develop self-trained
convolutional neural networks (STCNN) to alleviate this negative
effect. STCNN takes the saliency maps produced by SAEF as
inputs. It propagates information from regions of high confi-
dence to those of low confidence. During propagation, feature
representations are distilled, resulting in sharper and better
co-saliency maps. Our approach is comprehensively evaluated
on three benchmarks, including MSRC, iCoseg, and Cosal2015,
and performs favorably against the state-of-the-arts. In addition,
we demonstrate that our method can be applied to object co-
segmentation and object co-localization, achieving the state-of-
the-art performance in both applications.

Index Terms—Co-saliency detection, stacked autoencoder, re-
construction residual, adaptive fusion, optimization, self-paced
learning, CNNs.

I. INTRODUCTION

CO-SALIENT object detection simulates human visual
systems to search for visually attracting objects repet-

itively appearing across images. As an essential component of
visual content understanding, it has become an inherent part
in many applications, such as image co-segmentation [1]–[3],
image co-localization [4] and content-aware compression [5].
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Despite the significant progress on co-saliency detection [6]–
[22], the general conclusion is still that no single model is
sufficient for handling increasingly complex saliency detection
of broad object categories.

To overcome this issue, saliency detection via proposal
fusion has been a trend since it can combine the strengths of di-
verse saliency models while easing individual bias. Advanced
fusion methods, e.g. [2], [6], [9], [20], [22], often adaptively
rank the proposal quality before determining the weights for
fusion. However, these methods judge the proposals’ quality
by measuring the degree of consistency with the other propos-
als. In other words, they assume the foreground regions from
different saliency proposals have a high correlation; and thus
they consider a proposal more reliable if its corresponding
predictions agree with the group consensus. However, such an
assumption may not hold if the adopted saliency proposals are
not reliable or have substantial variations.

Another research trend is to employ deep convolutional
models to automatically learn the discriminative features for
salient object detection [17], [21], [23]–[29]. However, most
off-the-shelf models require large-scale manual supervision for
the ground truth and cannot address the task of co-saliency
detection due to its unsupervised nature. We believe the
concepts of fusion-based and deep-learning-based approaches
can well complement each other if we can design a unified
method such that their particular advantages can be transferred
to help each other.

We confront this challenge by proposing a two-stage ap-
proach for robust co-saliency detection. At the first stage,
we develop an unsupervised deep learning model, called
stacked autoencoder-enabled fusion (SAEF), to evaluate and
fuse multiple saliency proposals. The idea behind SAEF is
simple: A saliency proposal for an image is considered good
if its foreground can be well reconstructed by using object-
like regions of other images while its background cannot.
Specifically, SAEF learns a stacked autoencoder to reconstruct
the object-like regions of an image, and apply the learned
autoencoders across images to estimate not only foreground
consistency but also foreground-background distinctiveness. In
addition to image-level proposal evaluation, SAEF achieves
better fusion by further exploring the complementary, co-
saliency likelihood for region-level proposal evaluation. In
brief, SAEF resolves the limitations of fusion-based and deep-
learning-based methods. As an unsupervised model, it does not
require supervisory data for training. It evaluates the quality of
saliency proposals via discriminative reconstruction, and does
not suffer from the difficulties caused by substantial variations
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Fig. 1: Two examples of co-saliency detection. (a) Input images of the category car from the MSRC dataset (left) [30] and
the Cosal2015 dataset (right) [15]. (b) ∼ (d) Three saliency proposals generated by GP [31], MST [32], and SVFSal [27]
respectively. (e) Results generated by the map-wise proposal fusion method SACS [9]. (f) Results generated by the region-wise
proposal fusion method CSSCF [2]. (g) Results generated by the proposed SAEF. (h) Refined results by the proposed STCNN.

or unreliable proposals.
Saliency maps generated by fusing multiple proposals are

prone to be over-smoothed, and may inherit noise from propos-
als. At the second stage, we design self-trained convolutional
neural networks (STCNN) to address the two issues. STCNN
refines the saliency maps produced by SAEF. It propagates
information from high-confidence regions to low-confidence
ones in an iterative fashion while avoiding the refined saliency
maps from being inconsistent with the original ones. The
refined saliency maps look sharper with better preservation
of object boundaries and with noise removed.

Fig. 1 shows two examples of co-saliency detection. The
input images of the category car are displayed in Fig. 1(a).
Three saliency proposals by using GP [31], MST [32], and
SVFSal [33] are given in Fig. 1(b) ∼ (d), respectively.
The proposals by SVFSal are of higher quality but are not
consistent with the other two proposals. Fig. 1(e) and (f) show
the co-saliency maps detected by map-wise [9] and region-
wise [2] proposal fusion, respectively. The two fusion-based
methods work based on majority consensus, and fail to assign
a higher weight to the better proposal by SVFSal. Thus, their
results in Fig. 1(e) and (f) are not satisfactory, and are even
worse than the proposal by SVFSal. The proposed SAEF
performs discriminative reconstruction for proposal evaluation.
It derives a more plausible combination of the proposals,
yielding much better results in Fig. 1(g). The proposed STCNN
refines the saliency maps by using self-paced learning. As
illustrated in Fig. 1(h), the refined saliency maps homoge-
neously highlight the whole objects and the background noise
is greatly suppressed.

The main contribution of this work is two-fold. First, we
propose stacked autoencoder-enabled fusion (SAEF) to tackle
the limitations of fusion-based and learning-based co-saliency
detection. SAEF carries out discriminative reconstruction for
reliably measuring the quality of saliency proposals in an
unsupervised manner. Thus, it saves human efforts to select
higher quality saliency proposals to fuse and does not suffer
from the problems caused by proposals with substantial vari-
ations. Second, the proposed STCNNs refine saliency maps
by propagating information in a self-taught fashion, thereby
learning the way to detect co-salient objects. The proposed
method is evaluated on three representative and large-scale
benchmarks, including the MSRC, iCoseg, and Cosal2015

datasets. Our method performs favorably against the state-of-
the-arts in several tasks, including image co-saliency detec-
tion, as well as consequent object co-segmentation and co-
localization.

The rest of this paper is organized as follows. Section II
presents the literature review. We introduce the proposed SAEF
and STCNN in Sections III-A and III-B, respectively. Our co-
saliency detection method is evaluated in Section IV, and
is applied to object co-segmentation and co-localization in
Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

We review relevant topics to the development of our ap-
proach in this section, including saliency detection, co-saliency
detection, and self-paced learning.

A. Saliency detection

Saliency detection aims to model human visual attention
to identify distinct objects and segment them from an image.
Conventional methods, e.g. [31], [32], [34]–[44], distinguish
salient objects from backgrounds based on various low-level
features. For instance, considering regions near image bound-
aries as background, several strategies, such as, low-rank
matrix recovery theory [34], diffusion-based formulation [35],
[36], minimum barrier distance [39], Markov random walks
[37], or minimum spanning tree [32], etc., are utilized to
measure the difference between the target superpixels and the
background seeds for saliency prediction. To achieve better
performance in cases that one or more of the boundaries hap-
pen to be adjacent to the foreground object, Li et al. [37] fur-
ther integrate color contrast to remove the erroneous boundary
which tends to have distinctive color distribution. Despite the
efficiency, their unsupervised nature limits their performance
once the images contain cluttered background and diverse
object parts. To address this issue, supervised methods [23]–
[28], [41] by using machine learning methodologies has
been developed to accomplish salient object detection better.
However, these methods rely on supervisory data annotations,
which are costly and not available in general for saliency
detection.
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B. Co-saliency detection

Co-saliency detection is a weakly supervised extension to
saliency detection. It leverages not only intra-image appear-
ance evidence but also inter-image co-occurrence to locate
common salient objects appearing in multiple images. Dif-
ferent strategies have been proposed for this task. Bottom-
up methods utilize contrast hypothesis and different prior
knowledge by either handcrafted features [6]–[11], [13], [20]
or learned features [15], [16] to catch intra-image saliency
as well as inter-image consistency. To further improve the
performance, fusion-based methods merge several saliency
models to exclude individual prediction bias while retaining
the shared information. To this end, methods of this category
fuse the saliency proposals generated by different models via
fixed weight fusion [7], adaptive weight fusion [9], or region-
wise adaptive fusion [2], [6], [20], [22]. Fusion-based methods
typically work based on the assumption that plausible propos-
als are those sharing higher similarity with other proposals.
Their performance drops when the assumption does not hold:
the adopted saliency proposals have common prediction errors
or large variations. Deep-learning-based methods [14], [17],
[18], [29] are effective in distilling semantic object information
in complex scenes, and have greatly enhanced co-saliency de-
tection. However, these methods work in a supervised manner
and require either a pre-trained deep model or labeled training
data. Furthermore, the supervised setting also reduces their
generalizability of handling objects of unseen categories.

Our SAEF tackles the cross-cutting issues of fusion-based
and deep-learning-based methods. SAEF employs an unsu-
pervised deep model to estimate the quality of each saliency
proposal via auto-encoding both foreground consistency and
foreground-background separation. It can more accurately
identify the plausible proposals, and does not suffer from the
unfavorable effects caused by fusion using majority voting.
Besides, it does not rely on annotated training data and can
detect salient objects of unseen categories.

C. Self-paced Learning

Kumar et al. [45] proposed self-paced learning (SPL) to
imitate humans’ learning behavior, namely starting to learn
easier parts of a task and gradually considering more complex
parts. Specifically, SPL associates each data sample with a
weight. A self-spaced regularizer is attached to determine
each weight value. Through sequential optimization, gradually
increasing penalty on the regularizer includes more samples
from easy to complex in training in a self-paced way. SPL has
been widely used in various applications, such as matrix fac-
torization [46], multimedia search [47], object tracking [48],
image deblurring [49], action understanding [50], and co-
saliency detection [16].

The method by Zhang et al. [16] is the most relevant to ours
because it also adopts SPL for co-saliency detection. Different
from ours, the SPL formulation in [16] is built on support
vector machines (SVMs), and it treats feature extraction and
co-saliency detection as separate steps. In contrast, our pro-
posed SPL module STCNN is built on CNNs so that CNNs
can jointly learn the relevant features and refine co-saliency

detection in a self-paced fashion. The quality of the resultant
saliency maps is hence greatly improved.

III. PROPOSED METHOD

This section describes our approach, which is composed of
two components: stacked autoencoder-enabled fusion (SAEF)
and self-trained convolutional neural networks (STCNNs).
The former fuses saliency proposals and generates plausible
saliency maps with unsupervised deep learning. The latter
takes the saliency maps produced by SAEF as pseudo ground
truth, and implements self-paced learning for saliency map
refinement. Fig. 2 provides the flowchart of SAEF. The fol-
lowing two subsections detail SAEF and STCNN, respectively.

A. SAEF for Proposal Fusion

1) Problem Formulation: Given a set of N images I =
{In}Nn=1 covering salient objects of the same category, we
aim at detecting the salient objects in I. As a fusion-based
method, SAEF applies M existing saliency detection models,
including [31]–[33], [37], [39], [40] in this work, to I, and
gets M saliency proposals {Sn,m}Mm=1 for each image In. To
abstract unnecessary details and extract the intrinsic structures
at different scales, we hierarchically decompose each image
In into Kn segments and Tn superpixels. Specifically, we
derive initial coarse-level segments based on the algorithm
in [51], and then group pixels into fine-level superpixels that
can adhere to the boundary of the segments at the coarse
level. In our experiments, we set the number of superpixels
in each image to 200 and the number of pixels within each
segment to be greater than 200. It follows that set I contains
K =

∑
nKn segments and T =

∑
n Tn superpixels in

total. For proposal fusion, SAEF optimizes plausible weights
Y = [y1 · · · yi · · ·yT ] ∈ [0, 1]M×T , where vector yi =
[yi,1 yi,2 . . . yi,M ]> ∈ [0, 1]M corresponds to superpixel i, to
fuse the M saliency proposals in the domain of superpixels.
SAEF formulates the task of optimizing Y as an energy min-

imization problem over a graph G = (V = ∪ Vn, E = ∪ En),
which encodes the spatial relationships among superpixels.
Set Vn contains Tn nodes, one for each superpixel in image
In. Edge eij is added to En for linking nodes vi and vj if
superpixels i and j are spatially connected in image In. Edge
eij is associated with a weight aij = exp (−‖vi − vj‖2),
where vi and vj are the deep features of superpixels i and
j, respectively. How vi and vj are extracted will be given
later. Graph Laplacian L ∈ RT×T of G is then computed
based on the affinity matrix A = [aij ] ∈ RT×T .

Before designing the objective function for optimizing Y ,
we investigate the potential foreground areas of each image
In. To this end, B object proposals {fn,b}Bb=1 are generated
by applying the scheme in [52] to In, where B is set to
350 here. To further explore the object mask corresponding
to each proposal fn,b, we consider superpixel vi belongs to
fn,b if 1) it is fully covered by fn,b or 2) it is partially
covered by fn,b and the area ratio |vi ∩ fn,b|/|fn,b| is larger
than |fn,b|/|In|. The corresponding mask of fn,b is defined
to be composed of all the superpixels belonging to fn,b. The
feature representation of the mask is denoted by fn,b and is
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Fig. 2: Overview of SAEF. SAEF collects multiple saliency proposals, extracts superpixels, and constructs a graph structure
for the input images. It formulates co-saliency detection as an optimization problem with an objective function considering
both image- and region-level confidence. After completing the optimization, saliency maps are produced.

yielded by max-pooling the feature vectors of all superpixels it
covers. The procedure is repeated for each object proposal. The
collected foreground masks of image In are Fn = {fn,b}Bb=1,
which represent our initial estimation of the salient object in
In. Figure 2 provides a schematic illustration summarizing the
flowchart of SAEF. By transferring useful information from
object proposals containing the object segments as well as
the estimated co-salient object likelihood, our proposed fusion
method possesses more robustness in finding the optimal
fusion weights; thus consistent improvement can be achieved
when applying the proposed optimization model to existing
saliency approaches.

2) Objective Function: SAEF seeks the optimal weights
Y = [y1 · · · yT ] ∈ RM×T for superpixel-wise saliency pro-
posal fusion by minimizing the following objective function
defined over G = (V, E)

min
Y

∑
vi∈V

(U(yi) + λ1V (yi))

+ λ2

∑
eij∈E

B(yi,yj) + λ3 ‖Y ‖22 (1)

s.t. ‖yi‖1 = 1,yi ≥ 0, for 1 ≤ i ≤ T,

where 0 is an all-zero vector, λ1, λ2 and λ3 are three positive
constants. The unary term U(yi) is the primary element in
SAEF. It refers to the proposals’ reconstruction errors from
SAE (stacked autoencoder) and image-wisely determines the
quality of each proposal. The auxiliary unary term V (yi)
takes the co-salient object likelihood into account and can
superpixel-wisely refine the weights for fusion. Pairwise term
B(yi,yj) encourages the spatial smoothness of the derived
weights. Lastly, ||Y ‖22 is a regularization term. The terms
U(yi), V (yi), and B(yi,yj) are detailed as follows.

a) On Designing Unary Term U(yi): This term evaluates
the quality of each saliency proposal for the image covering

superpixel i based on a stacked autoencoder (SAE) [53]
representation, encoding both foreground consistency and
foreground-background distinctiveness, to determine a plau-
sible weight vector yi for fusion.

Recall that we collect B potential object masks for each
image In, extract and denote their features by Fn = {fn,b}Bb=1.
For In, we learn an SAE Hθn by minimizing the cross-entropy
between the inputs in Fn and the reconstructed outputs,
where θn is the learned parameter set. In this way, this SAE
can reconstruct the estimated foreground masks of In. The
procedure is repeated for every image. A total of N SAEs
{Hθn}Nn=1 are obtained.

Considering image In and its mth proposal Sn,m, In can
be partitioned into the foreground and the background sub-
images by Otsu’s thresholding, denoted as Ifn,m and Ibn,m. We
use the same way to represent the sub-image Ifn,m. Namely, the
feature representation xfn,m of Ifn,m is yielded by max-pooling
the feature vectors of the superpixels belonging to Ifn,m. The
feature representation xbn,m of Ibn,m is obtained similarly.

Assume that the mth proposal for image In is of high
quality. The reconstruction error by applying SAE Hθn′ to
the detected foreground of In, i.e. ‖xfn,m − Hθn′ (x

f
n,m)‖,

is expected to be low since images In and In′ have com-
mon foreground objects. In addition, the reconstruction error
‖xbn,m − Hθn′ (x

b
n,m)‖ is probably high when we feed SAE

Hθn′ with the estimated background of In. To jointly consider
inter-image foreground similarity and foreground-background
distinctiveness, we compute the ratio between the foreground
and background reconstruction errors

ĝn,m =

∑N
n′=1 ‖xbn,m −Hθn′ (x

b
n,m)‖2∑N

n′=1 ‖x
f
n,m −Hθn′ (x

f
n,m)‖2

. (2)

To take other proposals into account, the image-level score
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gn,m of the mth proposal for image In is calculated by

gn,m =
exp(ĝn,m)∑M

m′=1 exp(ĝn,m′)
. (3)

A penalty variable ri,m = (1 − gn,m) is introduced if
superpixel i belongs to image In. The first term in Eq. (1)
is defined by∑

vi∈V
U(yi) =

T∑
i=1

r>i yi = tr(R>Y ), (4)

where ri = [ri,1 · · · ri,M ]> and R = [r1 · · · rT ].
b) On Designing Unary Term V (yi): This term refines

the fusion weights yi on superpixel i locally. It is designed
based on the formula of co-salient object likelihood

Co-saliency = Saliency× Correspondence. (5)

Suppose superpixel i belongs to image In. For the saliency
part, we transfer the objectness score ψn,b suggested by [52]
from every object mask fn,b covering superpixel i to superpixel
i, i.e.

O(vi) =

B∑
b=1

ψn,bδ(vi ∈ fn,b), (6)

where δ is the indicator function.
We also explore the location information by using the

functional properties of coarse-level segments. Unlike fine-
level superpixels that have grid alike structure, coarse-level
segments adhere better to the image content variation; and are
usually long boundary connected in the background area while
having smaller fragmented regions on the object area. Since
segments near the image center, Ctrn, more likely belong
to the foreground while those overlapping with the set of
the image boundary pixels, Boun, tend to be covered by
background. Suppose that superpixel i is covered by the kth
segment uk. The location prior of superpixel i is defined as

L(vi) = N (‖cord(uk)− Ctrn‖2 | 0, σ2)

× exp
(−2|uk ∩Boun|

per(uk)

)
, (7)

where cord(uk) and per(uk) are the center and the perimeter
of segment uk, respectively. N is the normal distribution with
σ set to the geometric mean of the image width and height.

For O(vi) in Eq. (6) and L(vi) in Eq. (7), we linearly scale
each of them to [0, 1] by taking all superpixels in the same
image into account. Then, the saliency score of superpixel i
is yielded by averaging the corresponding scaled values.

For the correspondence part, we examine if there are strong
correspondences of superpixel i in other images. To this end,
we apply Otsu’s thresholding method to divide the superpixels
of each image In into foreground and background according to
their saliency parts estimated above. Recall that all superpixels
are represented by the deep features. A Gaussian mixture
model (GMM) θf with five components is fit to the foreground
superpixels of all images. Meanwhile, a five-component GMM
θb,n is fit to the background superpixels of In, for n =

1, 2, ..., N . The correspondence score of superpixel i is defined
as

C(vi) =
p(vi|θf )

p(vi|θf ) +
∑N
n=1 p(vi|θb,n)δ(vi ∈ In)

, (8)

where vi is the deep features of superpixel i, p(vi|θf ) and
p(vi|θb,n) are the probabilities estimated by GMMs θf and
θb,n, respectively.
C(vi) is also linearly scaled to [0, 1] and then multiplied by

the saliency score to compute Eq. (5) as the co-saliency prior
CS(vi) of superpixel i. Let si,m be the mean saliency value of
the mth saliency proposal on superpixel i. We prefer a saliency
proposal consistent with the co-saliency prior. Let φn be the
Otsu’s threshold over the co-saliency prior of all superpixels
in In. The score of saliency proposal m on superpixel i is
defined as

li,m =
exp(−‖δ(CS(vi) ≥ φn)− si,m‖2)∑M

m′=1 exp(−‖δ(CS(vi) ≥ φn)− si,m′‖2)
. (9)

With li = [li,1 · · · li,M ]>, the second term in Eq. (1) is set
to ∑

vi∈V
V (yi) =

T∑
i=1

(1− li)
>yi. (10)

c) On Designing Pairwise Term B(yi,yj): This pairwise
term is added to encourage the spatial smoothness of Y on G:∑
eij∈E

B(yi,yj) =
∑
eij∈E

aij‖yi − yj‖22 = tr(Y LY >), (11)

where aij is the weight of eij and L is the graph Laplacian
of G.

3) Optimization and Implementation Details: With the
terms U(yi) in Eq. (10), V (yi) in Eq. (4), and B(yi,yj)
in Eq. (11), the constrained optimization problem in Eq. (1)
can be solved by quadratic programming (QP). We optimize
it with the CVX solver [54], and get the weights for fusion
Y ∗. The saliency maps {Ŝn}Nn=1 for images {In}Nn=1 are then
produced.

In our implementation of the stacked autoencoders (SAE),
we adopt the 5-layer network architecture used in [53], but
reduce the numbers of neurons in the five layers to 64, 32, 16,
8, and 4 respectively due to the limited training data. For each
image, its features are generated by applying ResNet50 [55]
to it. Specifically, we up-sample and concatenate the feature
maps in layers conv1 relu, res2c relu, res3d relu, res4f relu, and
res5c relu to yield the 3904-d hypercolumn representation. The
feature vector of each superpixel is calculated by max-pooling
over the region it covers.

B. STCNN for Saliency Map Refinement

We introduce self-trained CNNs (STCNN) for saliency map
refinement in this section.
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1) Problem Formulation: The saliency maps produced by
SAEF are prone to being over-smoothed and may contain
inherited noise from proposals. STCNN addresses these issues
by introducing self-paced learning. It propagates information
from high-confidence regions to low-confidence ones, and
progressively refines the saliency maps.
STCNN is a CNN-based model with two network streams,

fg and fl. Both take an image as input and predict its saliency
map. While fg approximates the saliency maps that SAEF
produces as the pseudo ground truth, fl carries out self-paced
learning for iterative saliency map refinement. The objective
for training STCNN is

`(wg,wl; I) = `g(wg; I) + `l(wl; I), (12)

where loss functions `g and `l guide the training of fg and
fl respectively, and will be detailed later. Sets wg and wl

cover the learnable parameters of fg and fl, respectively. After
optimizing Eq. (12), the refined saliency map Sn of image In
is produced via Sn = fg(In;wg)× fl(In;wl) = Sgn × Sln.

a) On Designing Loss `g: This term aims to detect the
common salient objects by approximating the saliency maps
{Ŝn}, treated as the pseudo ground truth, generated by SAEF,
and `g is defined as

`g(wg; I) =

N∑
n=1

∑
p∈In

Qn(p)|Sgn(p)− Ŝn(p)|2, (13)

where p is the index of the pixels in In and Sgn = fg(In;wg)
is the saliency map generated by fg . Sgn(p) and Ŝn(p) are
the saliency values of Sgn and Ŝn at pixel p, respectively.
Qn(p) indicates the importance of pixel p. We partition the
pixels in Ŝn into two categories, salient and non-salient,
by using the mean value of Ŝn as the threshold. Qn(p) is
introduced to address the potential size unbalance between
the two categories. Let ρ be the ratio between salient pixels
and all pixels. Qn(p) is set to 1− ρ if pixel p is categorized
as salient, and ρ otherwise. In this way, the pixels in the two
categories contribute equally in Eq. (13).

The loss function in Eq. (13) is optimized by considering all
images {In}Nn=1 simultaneously. Compared with SAEF, fg can
better learn the visual properties shared among salient objects
while excluding the individual backgrounds, to achieve better
performance.

b) On Designing Loss `l: The term `l in Eq. (12) lever-
ages self-paced learning (SPL) to iteratively identify and learn
from high-confidence regions, and propagate the information
to better predict low-confidence regions in saliency maps. It
is defined as

`l(wl,{Mn,Vn}Nn=1; I) =
N∑
n=1

∑
p∈In

Vn(p)|Sln(p)−Mn(p)|2 − γVn(p), (14)

s.t. Vn(p) ∈ [0, 1],Mn(p) ∈ {0, 1},∀n, p,

where Sln = fl(In;wl) and the constant γ controls the
learning pace. For image In, the auxiliary variable Mn denotes
the estimated co-saliency mask. Each pixel p is associated with

a latent weight variable Vn(p) weighting the corresponding
loss. The first term in Eq. (14) measures the consistency
between the predicted saliency maps and the estimated masks
while the second term favors selecting easy over complex
samples (pixels here). Namely, a sample with less loss is
considered easy, so it is learned with a higher priority and
vice versa. In sum, minimizing `l in Eq. (14) decreases the
weighted training loss together with the negative `1-norm
regularizer.

Eq. (14) consists of three sets of optimization variables,
wl, {Mn}Nn=1, and {Vn}Nn=1. Because directly optimizing
Eq. (14) is difficult, we instead adopt an alternating iterative
strategy to optimize wl, {Mn}Nn=1, and {Vn}Nn=1. At each
iteration, one of the three variables is optimized while keep-
ing the others fixed in an alternating fashion. The iterative
procedure is repeated until convergence.
On optimizing wl: We fix {Mn,Vn}Nn=1. The optimization
problem in Eq. (14) is reduced to

`l(wl, {Mn,Vn}Nn=1; I) =
N∑
n=1

∑
p∈In

Vn(p)|Sln(p)−Mn(p)|2. (15)

Stochastic gradient descent (SGD) is adopted to optimize the
parameters wl of CNNs fl.
On optimizing wl: By fixing wl and {Vn}Nn=1, the optimiza-
tion problem in Eq. (14) becomes

`l(wl, {Mn,Vn}Nn=1; I) =
N∑
n=1

∑
p∈In

Vn(p)|Sln(p)−Mn(p)|2, (16)

s.t. Mn(p) ∈ {0, 1},∀n, p.

It is obvious that the optimal Mn(p) takes value 0 if
Sln(p) ≤ 0.5, and 1 otherwise.
On optimizing {Vn}Nn=1: When fixing wl and {Mn}Nn=1, as
shown in [45], the global optimum {Vn}Nn=1 can be obtained
via

Vn(p) =

{
1, if |Sln(p)−Mn(p)|2 < γ,

0, otherwise.
(17)

2) Optimization and Implementation Details: Consider the
optimization of STCNN in Eq. (12). We first optimize Eq. (13)
with backward propagation to obtain optimum w∗g for fg , and
then optimum w∗l for fl is obtained by optimizing Eq. (14)
iteratively. Prior to running alternating optimization, we ini-
tialize {Mn,Vn} with saliency maps {Ŝn} SAEF produces
as follows

Vn(p) =


1, if Ŝn(p) > µn + σn,

1, if Ŝn(p) < µn − σn

4 ,

0, otherwise,
(18)

Mn(p) =


1, if Ŝn(p) > µn + σn,

0, if Ŝn(p) < µn − σn

4 ,

×, otherwise,
(19)

where × denotes don’t-care. µn and σn are the mean and
standard deviation of the saliency values in Ŝn.
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Fig. 3: The performance of various methods in PR curves on different datasets. The numbers in parentheses denote AP.

Algorithm 1 Optimization Procedure

Input: A collection of images, {In}Nn=1; Saliency proposals,
{Sj,m}m=M,n=n

m,n=1 , Max epochs, T ;
/* SAEF begins */
Generate fusion weights {Y ∗n,m} via optimizing Eq. (1);
Compile saliency maps {Ŝn} via weights {Y ∗n,m};
/* SAEF ends */
/* STCNN begins */
Learn stream w∗g via optimizing Eq. (13);
Initialize {Vn} and {Mn};
for i← 1, 2, . . . , T do

Update stream w∗l by solving Eq. (15);
Update {Sln = fl(In;w∗l )};
Update {Mn} via binarizing {Sln} with a threshold 0.5;
Update {Vn} via Eq. (17);

end for
Generate {Sgn = fg(In;w∗g)} with the learned stream w∗g ;
Generate {Sln = fl(In;w∗l )} with the learned stream w∗l ;
Produce saliency maps {Sn = Sgn × Sln} for images {In};
/* STCNN ends */
Post-precess {Sn} via DenseCRFs;

Output: Co-saliency maps, {Sn}

Pixel p with Vn(p) = 1 represents that it can be confidently
assigned to either the salient regions (Mn(p) = 1) or the back-
ground (Mn(p) = 0). It is taken into account at the current
epoch. Others with Vn(p) = 0 are ambiguous, so they are
currently ignored. ADAM [56] is chosen as the optimization
solver for its rapid convergence. In practice, for each image In
at each epoch, the mask Mn and the latent varialbes Vn are
updated only when wl is stable enough, namely the squared
error between the predicted saliency map and the estimated
mask less than 0.12 in our cases. The maximum number of
epochs is set to 60. The gradient derivation with respect to the
optimization variables is straightforward, so it is omitted here.
With w∗g and w∗l , the refined saliency map Sn by STCNN is
then calculated by Sn = Sgn×Sln = fg(In;w∗g)× fl(In;w∗l ).

Please note that the trivial solution: Sl(p) = 0,M(p) =
0, V (p) = 1, is indeed the global optimum to the loss in
Eq. (14). But the adopted alternating optimization can avoid
the trivial solution: Sln(p) = 0,Mn(p) = 0 and Vn(p) =
1,∀n, p. We first solve it by learning STCNN via minimizing

the joint objective in Eq. (12), which is a combination of the
two loss functions in Eq. (13) and Eq. (14). In this way, the
trivial solution is no longer the optimal one. Nevertheless,
we found that given a proper initialization (described in Eqs.
(18) and (19)) before minimizing Eq. (14), each of three sub-
optimization problems in Eq. (15) ∼ Eq. (17) searches for the
optimum solution with other variables fixed, and does not fall
into the trivial solution. For easier optimization, we do not
optimize the joint objective in Eq. (12), but optimize Eq. (13)
and Eq. (14) sequentially. Finally, we implement STCNN using
MatConvNet [57]. The same network architecture, i.e. VGG-
16 [58] setting of FCN [59], is adopted for both network
streams, fg and fl. We replace the activation function softmax
in the last layer with the sigmoid function. The learning rate is
fixed as 10−5. The weight decay, momentum, and batch size
are set to 0.0005, 0.9, 5, respectively.

3) Post-processing using DenseCRFs: Spatial coherence
and object boundary preservation of the saliency maps gen-
erated by STCNN can be further enhanced. Following the
previous work [25], [26], DenseCRFs [60] is adopted to post-
process each saliency map. In our cases, the unary and the
pairwise terms in DenseCRFs are set to Sn and bilateral
filtering, respectively. Please refer to Li and Yu’s paper [25],
[26] for the definitions of the two terms in detail. After
post-processing, the inferred posterior probabilities of being
salient yield the final saliency map. In this work, the public
DenseCRFs code implemented by Li and Yu [25] is used.
To conclude our method, the whole optimization process
including SAEF and STCNN is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the datasets and evaluation
metrics. Then, we compare our method with state-of-the-art
methods, and investigate contributions of individual compo-
nents by conducting ablation studies.

A. Datasets

We evaluated the proposed approach on three public bench-
mark datasets: iCoseg [61], MSRC [30], and Cosal2015 [15].
iCoseg consists of 38 groups of total 643 images. The images
of iCoseg contain single or multiple similar objects in various
poses and sizes with complex backgrounds. MSRC contains 7
groups of total 240 images. Compared to iCoseg, co-salient
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Method Year Setting MSRC iCoseg Cosal2015
AP Fβ Sα AP Fβ Sα AP Fβ Sα

LEGS [23] CVPR2015 SI+S 0.8479 0.7701 0.6997 0.7924 0.7473 0.7529 0.7339 0.6926 0.7068
DHS [24] CVPR2016 SI+S 0.8907 0.8186 0.7815 0.8791 0.8216 0.8428 0.7940 0.7366 0.7843
DCL [25] CVPR2016 SI+S 0.9065 0.8259 0.7742 0.9003 0.8444 0.8606 0.7814 0.7388 0.7596
DSS [26] CVPR2017 SI+S 0.8700 0.8313 0.7435 0.8802 0.8386 0.8483 0.7745 0.7510 0.7582
UCF [27] ICCV2017 SI+S 0.9217 0.8114 0.8175 0.9292 0.8261 0.8754 0.8080 0.7197 0.7797

Amulet [28] ICCV2017 SI+S 0.9219 0.8159 0.8162 0.9395 0.8381 0.8937 0.8201 0.7387 0.7863
MSC-NET [29] MM2017 SI+S 0.9035 0.8419 0.7673 0.8845 0.8378 0.8518 0.8328 0.7683 0.7994
DIM [14] TNNLS2016 CS+S - - - 0.8773 0.7918 0.7583 - - -
UMLBF [18] TCSVT2017 CS+S 0.9160 0.8410 - - - - 0.8210 0.7120 -
RRWR [37] CVPR2015 SI+US 0.8127 0.7534 0.6653 0.7986 0.7784 0.7022 0.6647 0.6636 0.6628
GP [31] ICCV2015 SI+US 0.8200 0.7422 0.6844 0.7821 0.7495 0.7198 0.6851 0.6580 0.6721
MB+ [39] ICCV2015 SI+US 0.8367 0.7817 0.7200 0.7868 0.7706 0.7272 0.6715 0.6693 0.6732
MST [32] CVPR2016 SI+US 0.8057 0.7491 0.6460 0.8019 0.7659 0.7292 0.7099 0.6672 0.6681
MILP [40] TIP2017 SI+US 0.8334 0.7776 0.6871 0.8182 0.7883 0.7514 0.6802 0.6737 0.6757
SVFSal [33] ICCV2017 SI+US 0.8669 0.7934 0.7688 0.8376 0.8056 0.8271 0.7467 0.7123 0.7607
CBCS [8] TIP2013 CS+US 0.7034 0.5910 0.4801 0.7972 0.7408 0.6580 0.5872 0.5583 0.5444
SACS [9] TIP2014 CS+US 0.8799 0.8027 0.7341 0.8572 0.8048 0.7783 0.7359 0.7089 0.7170
CSHS [11] SPL2014 CS+US 0.7834 0.7118 0.6661 0.8454 0.7549 0.7502 0.6205 0.6186 0.5918
ESMG [13] SPL2015 CS+US 0.6659 0.6245 0.5804 0.8347 0.7766 0.7677 0.5145 0.5120 0.5454
CSSCF [2] TMM2016 CS+US 0.8833 0.8136 0.7626 0.8596 0.7929 0.7686 0.7417 0.6997 0.6950
CoDW [15] IJCV2016 CS+US 0.8435 0.7724 0.7129 0.8766 0.7985 0.7500 0.7440 0.7048 0.6482
SP-MIL [16] TPAMI2017 CS+US 0.8974 0.8029 0.7687 0.8749 0.8143 0.7715 - - -
MVSRC [19] TIP2017 CS+US 0.8530 0.7840 - 0.8680 0.8100 - - - -

SAEF / CS+US 0.8850 0.8110 0.7758 0.8561 0.7967 0.7808 0.7401 0.7052 0.7269
Ours / CS+US 0.9310 0.8397 0.8062 0.9024 0.8452 0.8216 0.8457 0.7814 0.7703

TABLE I: Quantitative comparison with 20 methods on three benchmark datasets. “SI” and “CS” denote the single-image
saliency and co-saliency methods, respectively. “S” and “US” indicate the supervised and unsupervised methods, respectively.
Among the “US” methods, the top three results are marked in red, green and blue, in the order. Our fusion method SAEF
mostly outperforms the other two fusion methods SACS and CSSCF. With self-training CNNs, our final result leads all the
competing unsupervised methods in most cases and has comparable performance with the supervised approaches.

objects in MSRC exhibit less pose or viewing angle variation;
however, it contains different colors and shapes. Thus, the
MSRC appears to be almost equally difficult as the iCoseg
dataset. Lastly, Cosal2015 is a more recent and the most
challenging dataset among three so far. It has 50 groups and
a total of 2015 images containing significant poses and sizes,
appearance variations and even more complex backgrounds.

B. Evaluation Metrics

To evaluate the performance of co-saliency detection, we
adopt two commonly used metrics: average precision (AP) and
F-measure (Fβ), as well as a newly proposed metric: structure
measure (Sα) [62]. AP is the area under the Precision-
Recall (PR) curve by comparing the ground truth with the
binary masks produced by varying the saliency map threshold
continuously in the range of [0, 1]. Meanwhile, with a self-
adaptive threshold T = µ + σ, where µ and σ denote the
mean and standard deviation of the saliency map respec-
tively, Fβ-measure is computed by the harmonic mean of
the precision and recall values: Fβ = (1+β2)×precision×recall

β2×precision+recall ,
with the imposed weight β2 = 0.3 to emphasize more on
recall as suggested in [15], [16], [35], [63]. In addition to
the aforementioned pixel-based metrics, a region-based image
quality measure, structure measure (Sα) [62], is adopted to
evaluate the spatial structure similarity of saliency maps based

on both region-aware structural similarity Sr and object-aware
structural similarity So, defined as Sα = α∗Sr+(1−α)∗So,
where α = 0.5 following [62]. Specifically, to evaluate the
region-aware structural similarity measure, the full saliency
map is first divided into K non-overlapping blocks. Then
the region similarity of each block ssim(k) is computed by
comparing with the ground truth based on the product of three
components: luminance comparison, contrast comparison, and
structure comparison. For each component,the similarity mea-
sure is defined similarly as Pearson correlation [62]. With
ssim(k), a different weight wk is assigned to each block
based on the foreground region each block covers, and it is
formulated as: Sr =

∑K
k=1 wk × ssim(k). Meanwhile, the

object-aware structural similarity is designed with respect to
two characteristics: sharp foreground-background contrast and
uniform saliency distribution by measuring the mean pixel
values of the final saliency map in foreground (x̄FG) &
background (x̄BG) regions and the corresponding standard de-
viation values of foreground (σxFG

) & background (σxBG
) re-

gions (defined by the ground truth), respectively. Specifically,
So = (OFG+OBG)/2, OFG = 2x̄FG

(x̄FG)2+1+2λ×σxFG
, and OBG

is similarly computed. This metric is proposed to alleviate
the flaw of widely used pixel-based measures, for example,
AP, AUC, Fβ , or even the recently introduced generalized F-
measure Fwβ [64], as it is observed that any foreground map
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Fig. 4: Visual comparison with state-of-the-art methods. (a) Images from four image groups of the Cosal2015 dataset for
co-saliency detection. (b)∼(h) Saliency maps generated by different approaches, including (b) GP [31], (c) MILP [40], (d)
SVFSal [33], (e) CoDW [15], (f) CSSCF [2], (g) SAEF, and (h) Ours.
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Fig. 5: Ablation studies on the Cosal2015 dataset in terms of
(a) the PR curves and AP (in parentheses), (b) Fβ and Sα.

that more preserves the entire object structure can help the
machine to learn a more complete object information.

C. Comparison with the State-of-the-Arts

To have a thorough comparison with state-of-the-art meth-
ods, we divide them into four groups, i.e. the unsupervised
saliency [31]–[33], [37], [39], [40] and co-saliency [2], [8],
[9], [11], [13], [15], [16], [19] detection methods as well
as supervised saliency [23]–[29] and co-saliency [14], [18]
detection methods. The overall performance statistics are sum-
marized in TABLE I and Fig. 3. Please note that all compared
supervised single-image saliency detection methods are CNN-
based. We reproduced the experimental results using the pub-
licly available source code with default parameters provided
by the authors. For methods without releasing source code,
we either evaluated on their released results (SP-MIL [16],
CoDW [15] and DIM [14]), or directly reported the numbers
in their papers (UMLBF [18] and MVSRC [19]). Note that the
results of CBCS [8], SACS [9], CSHS [11] and ESMG [13] may
not be exactly the same as those reported in [19]. Regarding

the resolutions of input images, we modify the released code
of CBCS [8], SACS [9], CSHS [11] and ESMG [13] for a
consistent comparison. In our setting, the image resolutions
in MSRC, iCoseg, and Cosal2015 are resized to 320 × 320,
512×512, and 512×512, respectively. For a fair comparison,
we use the same resolutions for all competing methods, and re-
size the results to the original resolutions for evaluation. When
evaluating SACS [9], we use the same saliency proposals as
ours, instead of those originally used in SACS [9].

The precision-recall (PR) curves by our method and seven
competing co-saliency detection methods on three different
datasets are shown in Figure 3. The overall quantitative result
is reported in TABLE I. With the same unsupervised setting,
our method leads both the single-image saliency detection and
co-saliency detection methods by a large margin. Moreover, by
leveraging unsupervised deep learning and self-paced learn-
ing, our method even surpasses many supervised CNN-based
single-image saliency methods that exploit object annotations.
Last but not least, compared with the supervised co-saliency
method DIM [14] that employs stack denoising autoencoder
(SDAE) and UMLBF [18] that similarly applies adaptive feature
learning for co-saliency detection, our method outperforms
them without requiring expensive object annotations.

To gain insights into the quantitative results, in addition
to the results in Figure 1, Figure 4 shows example saliency
maps on four groups from the most challenging co-saliency
detection dataset: Cosal2015. Single-image saliency detec-
tion methods generally cannot give satisfactory results. For
instance, methods GP and MILP relying on specific hand-
crafted cues inevitably produce many false positives in the
first image of the Penguin class and miss the majority of
penguin’s body in the second image. Furthermore, without
jointly exploiting the common objects in multiple images,
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Fig. 6: Visual illustration of ablation studies. (a) Images from four groups for co-saliency detection. (b)∼(h) Co-saliency maps
generated by different combinations of components, including (b) U , (c) U +V , (d) U +V +B, (e) U +V +B+Reg (SAEF),
(f) SAEF+CNN, (g) SAEF+CNN+SPL, (h) SAEF+CNN+SPL+DenseCRFs (Ours), respectively.

Method MSRC iCoseg Cosal2015
AP Fβ Sα AP Fβ Sα AP Fβ Sα

CSSCF [2] w/o DCRF 0.8833 0.8136 0.7626 0.8596 0.7929 0.7686 0.7417 0.6997 0.6950
CoDW [15] w/o DCRF 0.8435 0.7724 0.7129 0.8766 0.7985 0.7500 0.7440 0.7048 0.6482
SAEF w/o DCRF 0.8850 0.8110 0.7758 0.8561 0.7967 0.7808 0.7401 0.7052 0.7269
Ours w/o DCRF 0.9272 0.8493 0.7896 0.8695 0.7994 0.7808 0.8092 0.7402 0.7324
CSSCF [2] w/ DCRF 0.8990 0.8104 0.7811 0.8751 0.8186 0.7990 0.7500 0.7048 0.7170
CoDW [15] w/ DCRF 0.8734 0.7819 0.7560 0.9005 0.8260 0.7906 0.7710 0.7224 0.6871
SAEF w/ DCRF 0.8986 0.8137 0.7917 0.8693 0.8200 0.7953 0.7545 0.7171 0.7373
Ours w/ DCRF 0.9310 0.8397 0.8062 0.9024 0.8452 0.8216 0.8457 0.7814 0.7703

TABLE II: Performance comparison of ours and two best competing methods before and after using DenseCRFs (DCRF) for
post-processing on three datasets. The top two results are marked in red and green, respectively.

Method Worst Proposal Duplication Noisy Proposals
AP Fβ Sα AP Fβ Sα

SACS [9] 0.8659 (-0.0140) 0.7759 (-0.0268) 0.7030 (-0.0311) 0.8485 (-0.0314) 0.7875 (-0.0202) 0.7007 (0.0334)
CSSCF [2] 0.8666 (-0.0167) 0.7899 (-0.0237) 0.7381 (-0.0245) 0.8561 (-0.0272) 0.7978 (-0.0158) 0.6832 (0.0794)
SAEF 0.8800 (-0.0050) 0.8001 (-0.0109) 0.7611 (-0.0147) 0.8689 (-0.0161) 0.8074 (-0.0036) 0.7729 (0.0029)

TABLE III: Performance and the drop in parentheses of three fusion-based methods under the unfavorable effects of worst
proposal duplication and noisy proposals. The top two results are marked in red and green, respectively.

single-image saliency detection methods cannot exclude the
visually salient objects that do not repetitively appear in
other images. For instance, although the CNN-based single-
image saliency detection method SVFSal can better delineate
object boundaries, it often includes unrelated regions. As an
example, the bird on the left-hand side of the third penguin
image is wrongly taken as part of the co-salient object. Next,
results of CoDW show that significant intra- and inter-object
variations can sometimes mislead co-saliency detection and
lead to results even worse than the single-image saliency
detection methods. Though more relevant images bring more
prosperous and shared information to explore in co-saliency
detection, the problem is also more challenging as it needs to
cope with potential variations across images. The fusion-based

approach CSSCF deals with large inter-object variations by
fusing the saliency proposals from the methods GP, MILP and
SVFSal. It boosts the performance and surpasses the method
CoDW. However, as mentioned above, it relies on the group
consensus and can not discriminatively put more weight to the
best saliency proposal. Our proposed SAEF generates better
results than CSSCF by overcoming the inherent group biasing
issue. Finally, our two-stage approach elegantly integrates a
self-trained CNN guided by SAEF and gives sharper and more
homogeneous saliency detection results by successfully filter-
ing out the background noise and recovering the omissions.
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Method MSRC iCoseg Cosal2015
AP Fβ Sα AP Fβ Sα AP Fβ Sα

RRWR [37]+STCNN 0.8804 0.8164 0.7660 0.8264 0.7508 0.7518 0.7689 0.6968 0.6879
GP [31]+STCNN 0.8642 0.8113 0.7474 0.7884 0.7119 0.7303 0.7502 0.6734 0.6614
MB+ [39]+STCNN 0.8693 0.8138 0.7581 0.8052 0.7347 0.7522 0.7630 0.6889 0.6795
MST [32]+STCNN 0.8735 0.8161 0.7285 0.8172 0.7405 0.7475 0.7746 0.7018 0.6868
MILP [40]+STCNN 0.8864 0.8316 0.7685 0.8251 0.7394 0.7536 0.7659 0.6934 0.6916
SVFSal [33]+STCNN 0.9057 0.8345 0.7897 0.8437 0.7628 0.7980 0.8012 0.7295 0.7471
SAEF+STCNN 0.9272 0.8493 0.7896 0.8695 0.7994 0.7808 0.8092 0.7402 0.7324

TABLE IV: Quantitative comparison on three benchmark datasets by applying STCNN to the saliency proposals produced by
six existing methods and SAEF. The top three results are marked in red, green, and blue, respectively. Note that these results
are not post-processed with DenseCRFs.
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Fig. 7: Learning curves of our method during optimizing Eq. (14) on three datasets. Three blue dotted lines with the plus,
circle, and asterisk signs represent the values of AP, Fβ , and Sα at each epoch, respectively. The magenta solid line shows
the loss function value of Eq. (14) at each epoch.

D. Ablation Studies

1) Energy term contribution: Fig. 5 reports ablation studies
with different metrics to investigate contributions from indi-
vidual energy terms of SAEF and from each component in the
proposed STCNN network i.e. CNN (fg), self-paced learning
(SPL, fl), and DenseCRFs (D). From AP and Fβ scores,
it is clear that the results improve progressively by adding
individual energy terms, U , V , and B, into the objective
function in Eq. (1). In addition, we compare the results
of SAEF with and without hierarchical segmentation. The
hierarchical segmentation is only adopted in the unary term
V . For evaluating SAEF without hierarchical segmentation, we
set λ1 in Eq. (1) to 0. From the results of U + V +B +Reg
(with hierarchical segmentation) to U + B + Reg (with-
out hierarchical segmentation), the performance measured in
structure measure and average precision drops because the
hierarchical segmentation helps preserve the object structure.
STCNN further boosts the detection results by combining
CNN’s object recognition capability with SPL dealing with the
limited quantity of pseudo ground truth under the unsupervised
learning setting. By integrating the merit of DenseCRFs, our
method achieves superior results. The progressive improve-
ment is not as evident for the metric Sα that measures the
local structure similarity of the detected objects to the ground
truth. The major reason is that some background regions badly
predicted by SAEF will lead to the fuzzier maps generated by
CNNs, which makes Sα lower.

Fig. 6 shows the co-saliency maps that visually illustrate
the ablation study. Initially, by using only the image-wise
confidence computed from the stacked autoencoder, the results
(Fig. 6(b)) tend to bias toward a saliency map that indicates
only apparent objects. By adding the region-wise confidence

computed from the co-salient object likelihood, many missed
regions are recovered (Fig. 6(c)). Furthermore, by adding
the pairwise term that promotes smoothness, the resultant
saliency maps are smoothed out (Fig. 6(d)). Lastly, after
adding the regularization term, we obtain the best fusion result
(Fig. 6(e)). However, as mentioned above, the drawback of
fusion is that the outcome is limited by the adopted saliency
proposals. Fortunately, after further integration with CNNs by
propagating information from regions with high confidence, as
shown in Fig. 6(f), the fusion results are gradually improved
by emphasizing the common salient regions, but still left some
blur background regions in some images. Fig. 6(g) shows that
self-paced learning improves the results by reducing irrelevant
backgrounds. Finally, DenseCRFs help yield sharper and more
complete co-saliency maps as shown in Fig. 6(h).

2) Effectiveness of SAEF: The proposed SAEF suffers less
from the difficulties caused by substantial image variations or
unreliable proposals as indicated in TABLE III. The proposed
SAEF and two fusion-based methods SACS [9] and CSSCF [2]
fuse six proposals in the paper. We evaluate and compare the
three methods in the experiment where the effects of unreli-
able proposals and substantial variations are exacerbated by
duplicating the relatively lower-quality proposal MST 4 times
and adding Gaussian noise with zero mean and variance 0.1 to
the 5 lower-quality proposals, respectively. The results, as well
as the performance drops of the three methods on the MSRC
dataset, are given in TABLE III. It is clear that the proposed
SAEF is more robust to the two unfavorable effects and has
significantly smaller performance drops than SACS [9] and
CSSCF [2] (about 1/2 ∼ 1/20 in most cases).

3) Performance without DenseCRFs: Using DenseCRFs
for post-processing improves the cosaliency detection per-
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Stage Operation Time (second)

SAEF

Unary term U construction

Object proposal generation 4.4790
Proposal feature extraction (GPU) 1.0709
Autoencoder optimization (GPU) 9.6839
Image-level score generation via Eq. (2) and Eq. (3) 1.2605

Unary term V construction

Coarse-level segments generation 0.0875
Coarse-level segment feature extraction (GPU) 1.9843
Objectness score generation via Eq. (6) and Eq. (7) 1.6287
Correspondence score generation via Eq. (8) 10.5294
Region-level score generation via Eq. (9) 0.3404

Pairwise term B construction
Fine-level superpixel generation 3.8045
Fine-level superpixel feature extraction (GPU) 2.0848
Graph Laplacian L generation via Eq. (11) 1.0986

Optimization of Eq. (1) with CVX 7.4604

STCNN Optimization of Eq. (13) 18.6368
Optimization of Eq. (14) 18.8270

Post-processing DenseCRFs 0.3847

TABLE V: Average execution time of each component of our method on an image.

Method CBCS SACS CSHS ESMG CSSCF Ours
Time (s) 4.25 2.31 33.08 2.47 5.53 81.10

TABLE VI: Average execution time on an image.

formance of our method. We show the ablation studies and
comparison with two state-of-the-art methods [2], [15] in
TABLE II. It can be observed that our methods, SAEF and
Ours (SAEF+STCNN), without using DenseCRFs still outper-
forms [2], [15] on the three datasets. By applying DenseCRFs
to all methods, our methods also have the superior results.

4) Saliency proposals with STCNN: The proposed STCNN
can also be applied to saliency proposals yielded by not only
SAEF but also other methods, and further enhance the results.
To demonstrate the effectiveness of SAEF, we compare the
results generated by applying STCNN to the saliency proposals
produced by SAEF and existing methods. TABLE IV reports
the comparison results. It can be observed that compared with
these proposals by the existing methods, SAEF can produce
high-quality co-saliency maps, which serve as the input to
STCNN to achieve better performance.

5) Convergence analysis: In Fig. 7, we plot the objective
function values of Eq. (14) and the corresponding performance
indices of our method at each epoch on the three datasets.
Although the alternating iterative strategy is adopted to op-
timize the variables in Eq. (14), we can observe that the
proposed method can converge rapidly and the performance is
gradually improved along the optimization process. Since the
performance and the objective function values do not change
significantly after the 60th epoch, we set the maximal number
of epochs to 60 in our experiments. In this way, the execution
time to optimize Eq. (14) is about 18.8270 seconds per image.

6) Running time analysis: In TABLE V, we list the average
execution time of each component of our method on an image.
The execution time is measured on a workstation with one
3.7GHz 8-core CPU, 64GB memory, and a GTX Titan X GPU.
The code is implemented in a mix of CUDA, MATLAB, and
C without any code optimization. From TABLE V, we can
observe that the most time-consuming part is the optimization
of STCNN. However, from the optimization curves shown
in Fig. 7, the computation cost can be further reduced via
using less epochs, e.g. 20, because the performance doesn’t

significantly improve after the 20th epoch. In addition, we
compare the execution time of our proposed method and other
methods with released code, and show the comparison results
in TABLE VI. Although our method is not as efficient as the
competing methods, it can achieve much better performance
as reported in TABLE I.

V. APPLICATIONS

In this section, we apply the proposed approach to two ap-
plications, object co-segmentation and object co-localization.
As suggested in [4], we convert our co-saliency maps to the
results of object co-segmentation and object co-localization
via the GrabCut algorithm and a thresholding method, respec-
tively. In the following, we present two applications on the
iCoseg and Cosal2015 datasets.

A. Object co-segmentation

Because values in the co-saliency maps are real-valued,
following the previous work for object co-segmentation [2],
[65], the GrabCut algorithm is used to generate the binary
co-segmentation masks, where the unary terms are initialized
with our estimated co-saliency maps. Given the estimated
co-saliency maps, we use the GrabCut toolbox implemented
in [65] to produce the results.

1) Evaluation metrics: We adopt two standard measures,
precision (P) and Jaccard index (J ), to evaluate the per-
formance of object co-segmentation. Precision measures the
percentage of correctly segmented pixels including both object
and background pixels. Jaccard index is the ratio of the
intersection area of the detected objects and the ground truth to
their union area. The background pixels are taken into account
in precision, so the images with larger background areas tend
to have a better performance in precision. Therefore, precision
may not faithfully reflect the quality of object co-segmentation
results. Compared with precision, Jaccard index is considered
more reliable to measure the quality of results. It provides
more appropriate evaluation as it only focuses on objects.

2) Results: In TABLE VII, we compare our co-
segmentation results with those generated by the state-of-the-
art co-segmentation methods including CSC [65], MFC [66],
GMS [67], GSP [68], MRW [69], SGCCCS [70], CSCS [71],
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Method Year iCoseg Cosal2015
P J P J

CSC [65] ICCV2013 88.3 0.66 82.3 0.37
MFC [66] CVIU2015 72.0 0.40 67.2 0.33
GMS [67] ICIP2014 89.2 0.64 83.5 0.54
GSP [68] ICIP2015 89.5 0.65 83.6 0.54
MRW [69] CVPR2015 91.2 0.70 72.8 0.45

SGCCCS [70] CVPR2015 90.8 0.70 - -
CSCS [71] CVPR2017 85.9 0.58 83.1 0.53
QGFCE [4] TMM2018 91.8 0.72 - -
CBCS [8] TIP2013 86.7 0.57 81.7 0.42
SACS [9] TIP2014 90.8 0.70 87.0 0.60
CSHS [11] SPL2014 89.4 0.65 79.4 0.51
ESMG [13] SPL2015 88.0 0.65 76.6 0.41
CSSCF [2] TMM2016 91.9 0.72 85.1 0.56
DIM [14] TNNLS2016 90.6 0.69 - -
CoDW [15] IJCV2016 89.5 0.68 83.6 0.58
SP-MIL [16] TPAMI2017 87.9 0.67 - -

Ours / 93.1 0.75 90.5 0.68

TABLE VII: Performance of object co-segmentation on two
datasets. The numbers in red, green, and blue indicate the best,
the second best and the third best results, respectively.

and QGFCE [4] on the iCoseg and Cosal2015 datasets.
In addition to the methods for object co-segmentation, we
also compare the state-of-the-art co-saliency results that are
binarized via GraphCut, including CBCS [8], SACS [9],
CSHS [11], ESMG [13], CSSCF [2], DIM [14], CoDW [15],
and SP-MIL [16].

TABLE VII shows that the proposed approach achieves the
state-of-the-art performance compared to the competing meth-
ods. This table also shows that good co-saliency maps can ben-
efit co-segmentation. Compared to the co-segmentation meth-
ods, such as MFC [66], MRW [69], SGCCCS [70], CSCS [71],
our method does not use any complex optimization process
but only the simple GrabCut algorithm, and can achieve
better performance. Compared with the co-saliency methods,
our method achieves better performance owing to the better
estimated co-saliency maps. Fig. 8 and Fig. 9 show some co-
segmentation results on the iCoseg and Cosal2015 datasets,
respectively. Our method can generate promising object seg-
mentation results under different types of intra-class variations,
such as colors, shapes, poses, and background clutters on both
datasets.

B. Object co-localization

Following the method in [4], we first binarize the saliency
maps into the binary masks using a threshold T = µ+0.3×σ,
where µ and σ denote the mean and standard deviation of the
saliency map, respectively. Then, for each image, we extract
a single bounding box by fitting that box around the largest
connected component in the binary mask.

1) Evaluation metrics: Following the previous image co-
localization work [4], [72]–[74], the metric, correct localiza-
tion (CorLoc), is taken for evaluating object co-localization.
CorLoc is defined as the percentage of images correctly
localized according to the PASCAL criterion: Bp

⋂
Bgt

Bp
⋃
Bgt

> 0.5,
where Bp and Bgt are the predicted box and the ground-truth
box, respectively.

2) Results: We compare the proposed method with several
existing methods on the iCoseg and Cosal2015 datasets, and

Fig. 8: Co-segmentation results generated by our approach on
the iCoseg dataset. In the six examples (rows), the common
object categories are elephant, cheetah, gymnastics, Statue of
Liberty, kendo, and brown bear, respectively.

Fig. 9: Co-segmentation results generated by our approach
on the Cosal2015 dataset. In the six examples (rows), the
common object categories are babycrib, boat, butterfly, chook,
goldenfish, and pig, respectively.

report their performance in TABLE VIII. The competing
methods include the state-of-the-art object co-localization al-
gorithms: CLRW [72], UODL [73], DDT [74], DFF [75], and
QGFCE [4]. In addition to the above methods, we also com-
pare state-of-the-art co-saliency-based results whose bounding
boxes are generated with the same scheme as what we adopt.
These co-saliency methods include CBCS [8], SACS [9],
CSHS [11], ESMG [13], CSSCF [2], DIM [14], CoDW [15],
and SP-MIL [16].

From TABLE VIII, our method achieves the best per-
formance among these competing methods on the iCoseg
and Cosal2015 datasets. The results confirm that high-quality
co-saliency maps are also helpful for object co-localization.
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Method Year iCoseg Cosal2015
CLRW [72] CVPR2014 46.9 48.3
UODL [73] CVPR2015 37.0 32.4
DDT [74] IJCAI2017 30.4 31.6
DFF [75] ECCV2018 40.8 52.3
QGFCE [4] TMM2018 68.5 55.5
CBCS [8] TIP2013 57.9 44.6
SACS [9] TIP2014 76.1 64.1
CSHS [11] SPL2014 66.6 55.0
ESMG [13] SPL2015 67.1 46.2
DIM [14] TNNLS2016 71.2 -
CoDW [15] IJCV2016 72.7 63.1
SP-MIL [16] TPAMI2017 70.6 -

Ours / 82.8 74.0

TABLE VIII: Performance of object co-localization on the two
datasets. The numbers in red, green, and blue indicate the best,
the second best, and the third best results, respectively.

Fig. 10: Co-localization results generated by our approach on
the iCoseg dataset. In the six examples (rows), the common
object categories are Alaskan brown bear, Ferrari, goose,
panda, helicopter, and hot balloon, respectively. In each image,
the blue and red bounding boxes represent the ground truth and
the estimated results, respectively.

Compared to the algorithms that require complex optimization
processes in CLRW [72] or UODL [73], our method can
use a simple thresholding scheme to generate the promising
boxes with the aid of the better estimated co-saliency results.
Fig. 10 and Fig. 11 give some examples of our results on
the iCoseg and Cosal2015 datasets, respectively. Like co-
segmentation, object co-localization based on our method is
well fulfilled with promising bounding boxes under different
types of variations.

VI. CONCLUSIONS

We have presented an unsupervised framework for co-
saliency detection. Our fusion-learning based model is com-
posed of two stages. First, we propose SAEF to carry out the
saliency proposal fusion via jointly exploring the image-level
confidence based on the reconstruction error of SAE and the
region-level confidence from co-salient object likelihood. Af-
terwards, our proposed STCNN can gradually learn co-salient

Fig. 11: Co-localization results generated by our approach
on the Cosal2015 dataset. In the six examples (rows), the
common object categories are bird, camel, cat, cow, frog,
and ladybird, respectively. In each image, the blue and red
bounding boxes represent the ground truth and the estimated
results, respectively.

objects in a self-taught fashion. The benefits of integrating
both the fusion-based and deep-learning-based methods are
evident as it produces the co-saliency maps of high quality via
making the most of multiple locally complementary saliency
proposals. Moreover, unlike existing fusion methods relying
on the low-rank assumption of salient foreground regions, we
propose a novel idea that takes advantage of the unsupervised
SAE into our unified optimization process and generates even
better results. In addition to co-saliency detection, our method
is applied to two applications—object co-segmentation and
object co-localization, in which our method performs favorably
against the state-of-the-art methods.
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