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Abstract

This paper introduces a novel deep network for estimating
depth maps from a light field image. For utilizing the views
more effectively and reducing redundancy within views, we
propose a view selection module that generates an attention
map indicating the importance of each view and its poten-
tial for contributing to accurate depth estimation. By explo-
ring the symmetric property of light field views, we enforce
symmetry in the attention map and further improve accu-
racy. With the attention map, our architecture utilizes all
views more effectively and efficiently. Experiments show that
the proposed method achieves state-of-the-art performance in
terms of accuracy and ranks the first on a popular benchmark
for disparity estimation for light field images.

Introduction
Light field cameras collect and record light from different
directions in the scene. With the light field images captured
by light field cameras, users are empowered with the capabi-
lity to change the focal plane or viewpoint even after image
shooting. The modern hand-held light field camera is often
equipped with a micro-lens array which is placed one focal
length away from the image plane of the sensor. With this
structure, the measurements captured by the 2D sensor can
be converted into a multi-view image with different view-
points. The multi-view image offers several advantages over
a conventional image captured by a regular camera. First, we
can change the viewpoint to the scene and refocus on the ob-
ject we want to see clearly in the scene for creating the effect
of “Depth-of-Field. ” Second, light field cameras have faster
shooting speeds than conventional cameras because there is
less need to focus before taking a picture. Third, the use of
a larger aperture enables us to take better photographs un-
der low-light environments. Finally, light field cameras also
implicitly record the depth information which enables many
interesting applications.

Although light field cameras record depth information im-
plicitly, extracting depth information from light field ima-
ges could be challenging because the baseline between sub-
aperture images is very narrow, and the spatial and angular
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Figure 1: The light field image contains repetitive and re-
dundant information among views. For utilizing views more
effectively and efficiently for depth estimation, we design an
attention-based view selection module to help the disparity
estimation network determine how to weigh views’ contri-
butions according to the properties of the input scene. With
the attention map, the disparity CNN can predict the dispa-
rity map using the input views more adaptively. This figure
shows that different attention maps could be generated for
different scenes for better adapting to their characteristics.

resolutions within the image sensor are restricted by the har-
dware design. Several methods have been proposed to ad-
dress these challenges in extracting accurate depth informa-
tion from light field images. These methods often have to
make a balance between computation overhead and accu-
racy. Conventional methods such as stereo matching can
obtain depth maps of sufficient quality while suffering from
heavy computation costs. At the same time, due to the nar-
row baseline, the resultant depth map could contain noise
which causes problems in applications. Recently, several
deep neural networks have been proposed for striking a bet-
ter balance between accuracy and computation overhead.
However, they often use only a subset of images for redu-
cing computation and do not fully utilize the information
within the light field.



This paper proposes an attention-based view selection
network for estimating depth maps from light field images.
Our method makes a good trade-off between accuracy and
computation by exploring the following specific properties
of light field images.

• The repetitive structure of light field images. Because of
the design of light field cameras, there are correlations
among views. To utilize the correlations, several methods
use the epipolar geometry of light field images and only
use the views at the horizontal, vertical, crosshair or dia-
gonal directions for depth estimation. In our network, we
use all views but utilize them more effectively with the
help of the attention map.

• The redundancy among sub-aperture views. There is great
redundancy among views. Using all views leads to heavy
computation and does not necessarily lead to better accu-
racy. We propose an attention-based view selection mo-
dule which can determine the importance of each view
so that they can be utilized more effectively and effi-
ciently for depth estimation. Figure 1 shows that each
sub-aperture view provides different contribution and the
contribution pattern among views often depends on the
characteristics of the input scene.

The attention map not only reduces redundancy but also ef-
fectively indicates how important each view is in the follo-
wing disparity estimation step. Different views could have
different contributions as they have different spatial and an-
gular distances from the target view. Also, some views could
provide redundant information and their contribution needs
to be discounted. By adding the attention map, the estima-
tion module can focus on more important views, leading to
better accuracy. Experiments show that the proposed method
achieves the most accurate disparity estimation on a popular
benchmark to date.

Related Work
This section reviews disparity estimation methods of light
field images in two categories: conventional methods and
deep learning methods.

Conventional Methods
Some depth estimation methods of light field (LF) images
use the special structure called the epipolar plane images
(EPIs), which contain the spatial and angular information
of 2D slices of the light field images (Gortler et al. 1996;
Levoy and Hanrahan 1996). To the best of our knowledge,
the first paper which uses the EPIs for depth estimation is
for depth estimation in the structure from motion (SfM)
setting (Bolles, Baker, and Marimont 1987). The simila-
rity between LF and SfM is that they both have a dense
sequence of images. The EPIs contain lines with different
slopes, which are formed by the projections of the same
point from different viewpoints. By calculating the slope
of such a line in the EPIs, we can obtain the disparity of
the pixels in the images. (Wanner and Goldluecke 2012;
2014) compute the slopes in EPIs by using the structure ten-
sor and get a high-quality depth map from light field images.

(Zhang et al. 2016) propose a spinning parallelogram opera-
tor (SPO) for estimating the depth value from EPIs, and their
method is insensitive to occlusions, noise, and spatial alia-
sing, detrimental factors causing undesirable results of depth
estimation for the light field images. (Zhang et al. 2017) also
uses the EPIs and introduces the locally linear embedding
(LLE) for depth estimation, which enhances the quality of
depth map with faster computational time without the need
for global optimization.

Some approaches do not utilize EPIs. (Yu et al. 2013)
apply Constrained Delaunay Triangulation (CDT) and en-
code 3D line constraints by using the line-assisted graph-
cut (LAGC) algorithm for light field stereo matching. (Chen
et al. 2014) introduces a method to tackle occlusions in the
light field depth estimation by applying a bilateral consis-
tency metric (BCM) on the surface camera (SCam) intro-
duced by (Jingyi Yu, McMillan, and Gortler 2002). (Tao et
al. 2013) presents a method that combines both defocus and
correspondence depth cues from the light field images for
obtaining dense depth estimation.

Conventional methods share the inevitable problem on
the trade-off between accuracy and computational cost. Our
method utilizes a convolutional neural network (CNN) to
achieve both better accuracy and faster computational time.

Deep Learning Methods
In the past few years, deep learning techniques have been
used in many applications of light field images such as
view synthesis (Kalantari, Wang, and Ramamoorthi 2016),
image compression (Zhong et al. 2019), material recogni-
tion (Wang et al. 2016), super-resolution (Yoon et al. 2017),
synthesis of light field images from a single image (Sriniva-
san et al. 2017), and depth estimation (Shin et al. 2018).

For the problem of depth estimation, (Heber and Pock
2016) proposes a network to learn the end-to-end mapping
between 4D light field images and apply the high-order re-
gularization to refine the network. (Heber, Yu, and Pock
2017) build a U-shaped encoder and decoder to extract ge-
ometric information from light field images and produce a
high-quality result at a low computational cost. (Alperovich
et al. 2018) presents a fully convolutional autoencoder to en-
code light field images into low-dimensional representation
and decode it for the depth estimation and the separation of
diffuse and specular intrinsic components of the light field
images. (Shin et al. 2018) introduces a fully convolutional
neural network with fast and accurate performance in the
depth estimation and proposes a data augmentation method
to address the issue with the lack of training data.

For the trade-off between accuracy and computation,
these methods often only use a sub-set of views by conside-
ring some directions in the epipolar geometry of light field
images, such as the horizontal, vertical or diagonal directi-
ons. Thus, they do not fully utilize the information within
light field images. We address this issue by taking all the
sub-aperture views of light field images as input and de-
sign an attention-based view selection module to find out the
more important sub-aperture views for estimating the depth
information more efficiently and effectively.
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Figure 2: The architecture of the proposed method. Each sub-aperture view of the light field image passes four basic residual
blocks for the unary feature extraction. After obtaining the feature maps, we apply a spatial pyramid pooling (SPP) module to
extract the context information of the scene and obtain more effective feature maps. We then concatenate all the feature maps
of the sub-aperture views from the SPP module into a 5D cost volume. Before sending the cost volume for disparity regression,
we apply the attention-based view selection module to obtain an attention map which indicates the importance of each view.
Finally, the cost volume is combined with the attention map and then sent to the disparity regression module for calculating the
disparity map of the center view in the light field image.

Method
Figure 2 depicts the architecture of the proposed network.
The inputs are images of 81 views and the output is the
depth map for the center view. Each sub-aperture view of
the input light field image passes through four basic resi-
dual blocks (He et al. 2016). In the third and fourth residual
blocks, we add the dilation convolution so that the network
has a larger receptive field. The obtained feature map for
each view is then fed into a spatial pyramid pooling (SPP)
module (He et al. 2015) to extract the context information
of the scene. Inspired by (Kendall et al. 2017) and(Chang
and Chen 2018), we concatenate all the feature maps of the
sub-aperture views from the SPP module into a cost volume.
Before sending the cost volume into the disparity regression
module, we apply the attention-based sub-aperture view se-
lection module for learning the importance of each view. Fi-
nally, the cost volume combined with the attention map is
fed into the disparity regression module for estimating the
disparity map of the center view in the light field image.

Feature Extraction and the SPP Module
For estimating disparity, it is necessary to extract effective
features from images. For difficult regions such as textu-
reless regions or specular areas, it is challenging to have
effective features. The context information is important to
such regions so that their disparity values can still be estima-
ted reliably by utilizing information of nearby regions. The
SPP module in the proposed network can provide meaning-
ful features by utilizing hierarchical context information or
the relationship from nearby regions.

As explored by (He et al. 2015; Zhao et al. 2017; Chang
and Chen 2018), the goal of the SPP module is to extract fe-

atures from different scales and sub-regions and provide the
hierarchical context information about the region. As shown
in Figure 2, we design our SPP module as follows. First,
we apply four average pooling operations at different scales
to compress the features. The sizes of the average pooling
blocks are 2 × 2, 4 × 4, 8 × 8, and 16 × 16. After pooling,
a 1 × 1 convolution layer is used for reducing the feature
dimension for each scale. We then use the bilinear interpola-
tion to upsample these low-dimensional feature maps to the
same size. Finally, we concatenate the feature maps of all
levels as the output feature map of the SPP module.

Cost Volume Construction
After passing the feature map of each sub-aperture view
through the SPP module, we obtain the feature map for each
view. The characteristic of CNNs makes it difficult to di-
rectly estimate the displacement by concatenating feature
maps due to the finite receptive field. If the displacement
is larger than the receptive field, it is impossible for CNNs
to predict the correct disparity. For well utilizing these fe-
ature maps, we adopt the approach called cost volume in-
troduced by (Zbontar and LeCun 2016; Kendall et al. 2017;
Chang and Chen 2018). Given the feature maps from the
SPP module, we manually shift the input images along the
u or v direction with different disparity levels, so that the la-
ter part of the network can directly see pixel information at
different spatial positions by using a relatively small recep-
tive field. In our setting, we have 9 disparity levels ranging
from -4 to 4. After shifting the feature maps, we concate-
nate these feature maps into a 5D cost volume whose size
is equal to Batch size × #Disparity × Height × Width ×
Feature dimension.



Attention-based View Selection Module
Different from the stereo matching problem (Zbontar and
LeCun 2016; Kendall et al. 2017; Chang and Chen 2018),
there are many more views in the light field image. As menti-
oned previously, sub-aperture views often provide abundant
but potentially redundant information for the estimation of
disparity. Because the structure of the light field image is
highly symmetric, we would like to have a module that can
utilize this property and indicate the importance of indivi-
dual views. Inspired by SENet (Hu, Shen, and Sun 2018), we
propose the attention-based view selection module to find
meaningful views with more importance as they have a hig-
her potential to contribute to the accurate estimation of the
disparity map in the center view.

The attention map is essentially a 9 × 9 map whose en-
tries indicate the importance of corresponding views. By ex-
ploring the structure of the light field images, we have tried
three types of attention maps as shown in Figure 3. The first
type is the free attention map in which each view has its own
importance value. There are 81 weights to learn in this type.
The second type is the symmetric attention map, in which we
enforce the map is symmetric along the u and v axes. Thus,
we only have to estimate the map at a quarter with 25 lear-
nable weights. The full map can be constructed by mirroring
along the u axis and then v axis. The third type is radial in
which we assume the map is symmetric along the u, v and
two diagonal axes. This way, we only need to estimate 1/8 of
entries (15 weights) and then construct the full attention map
by mirroring along the diagonal, v and u axes. By imposing
constraints on the structure of the attention map, we reduce
the number of learnable weights and effectively perform re-
gularization via domain knowledge of light field cameras. It
helps with the training of the view selection network. Given
the cost volume as input, the view-selection module genera-
tes the attention map by a global pooling layer, followed by
two fully connected layers and ended with a sigmoid layer.
We then multiply the features from the cost volume with the
corresponding attention scores using the element-wise pro-
duct to form the attended features. Thus, the attention map
works as a scaler for each view.

3D CNN and Disparity Regression
For disparity regression on the attended cost volume, we em-
ploy a 3D CNN architecture. Following (Chang and Chen
2018; Kendall et al. 2017), our architecture consists of eight
3×3×3 convolutional layers, with two residual blocks from
the third to the sixth 3D convolutional layers.

After passing through these 3D convolutional layers, we
obtain the output cost volume from the final 3D convo-
lutional layers and convert it from 5D to 4D, Batch size
× #Disparity × Height × Width, in order to apply the
disparity regression. Inspired by (Chang and Chen 2018;
Kendall et al. 2017), we apply soft argmin for better and
more robust performance for the stereo matching problem. It
is a differentiable version of the winner-takes-all algorithm.
The traditional winner-takes-all algorithm takes the argmin
operation along the disparity dimension on the cost volume.
However, this operation is not differentiable and cannot be
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Figure 3: Different types of attention maps. Without impo-
sing any constraint on the attention map, the free type has
81 learnable weights. By imposing symmetric constraints,
the symmetric type has 25 learnable weights while the ra-
dial type has only 15, further regularizing the training of the
view selection network. The gray cells indicate that their im-
portance values can be automatically inferred by mirroring
the learned weights from other views.

optimized through backpropagation. By taking a weighted
sum, we can approximate the argmin operator. We modify
this equation to fit with our problem and to estimate the con-
tinuous disparity maps. To calculate the normalized proba-
bility of each disparity d, we need to take the negative of
each value in the predicted cost cd from the cost volume
(for the disparity values with higher costs, they will have lo-
wer probability) and normalize these values by the softmax
operation σ(·). After we obtain the normalized probability
of each disparity value, we can calculate the final predicted
disparity d̂ by the weighted sum of each disparity d with its
normalized probability as the weight:

d̂ =

Dmax∑
d=−Dmax

d× σ(−cd), (1)

where cd is the cost for the disparity value d.

Experiments
In this section, we first introduce the datasets we used for
training and evaluation. We then describe the implementa-
tion details. Finally, both quantitative and qualitative results
are reported and compared with the state-of-the-art methods,
along with the ablation study, discussions and limitations.

Datasets
We use two datasets in our experiments, the 4D Light Field
Dataset (Honauer et al. 2016) and a dataset released by (Al-
perovich et al. 2018).
4D Light Field Dataset (Honauer et al. 2016). This dataset
is often used as the benchmark for evaluating disparity esti-
mation methods for light field images. It contains 28 light
field scenes that are partitioned into four sub-sets: “Strati-
fied”, “Test”, “Training” and “Additional”. The light field
images are rendered by the Blender renderer. The scenes
in this dataset are composed of different materials, lighting
conditions, and fine structures with complex occlusions. The
resolution of the images is 512×512 and the number of sub-
aperture views is 9 × 9. Since the scenes are synthetic, the



Stratified
Backgammon Dots Pyramids Stripes

0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE
Epinet-fcn 3.580 6.289 20.89 3.629 3.183 12.73 41.05 1.635 0.192 0.913 11.87 0.008 2.462 3.115 15.67 0.950
Epinet-fcn-m 3.501 5.563 19.43 3.705 2.490 9.117 35.61 1.475 0.159 0.874 11.42 0.007 2.457 2.711 11.77 0.932
Epinet-fcn9x9 3.287 4.482 15.39 3.909 4.030 18.70 44.64 1.980 0.147 0.604 8.913 0.007 2.413 2.876 14.75 0.915
PS RF 7.142 13.93 74.65 6.892 7.975 17.54 78.80 8.338 0.107 6.235 83.23 0.043 2.964 5.790 41.64 1.382
EPN+OS+GC 3.328 10.56 55.97 3.699 39.24 82.74 84.90 22.36 0.242 3.169 28.55 0.018 18.54 19.59 28.16 8.731
SPO 3.781 8.639 49.94 4.587 16.27 35.06 58.07 5.238 0.861 6.263 79.20 0.043 14.97 15.46 21.87 6.955
Ours 3.126 3.985 11.58 3.648 1.432 3.012 15.05 1.425 0.195 0.488 2.063 0.004 2.933 5.417 18.21 0.892

Training
Boxes Cotton Dino Sideboard

0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE
Epinet-fcn 12.84 19.76 49.04 6.240 0.508 2.310 28.06 0.191 1.286 3.452 22.40 0.167 4.801 12.08 41.88 0.827
Epinet-fcn-m 12.34 18.11 46.09 5.968 0.447 2.076 25.72 0.197 1.207 3.105 19.39 0.157 4.462 10.86 36.49 0.798
Epinet-fcn9x9 12.25 18.66 45.73 6.036 0.464 2.217 25.27 0.223 1.263 3.221 23.44 0.151 4.783 11.82 40.49 0.806
PS RF 18.94 35.23 76.39 9.043 2.425 14.98 70.40 1.161 4.379 16.44 75.96 0.751 11.75 36.28 79.97 1.945
EPN+OS+GC 15.30 29.01 67.35 9.314 2.060 9.767 54.84 1.406 2.877 12.79 58.79 0.565 7.997 23.87 66.34 1.744
SPO 15.89 29.52 73.23 9.107 2.594 13.71 69.05 1.313 2.184 16.36 69.87 0.310 9.297 28.81 73.36 1.024
Ours 11.04 18.97 37.04 3.996 0.271 0.697 3.644 0.209 0.848 2.339 12.22 0.093 2.869 7.243 20.73 0.530

Test
Bedroom Bicycle Herbs Origami

0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE 0.07 0.03 0.01 MSE
Epinet-fcn 2.403 6.921 33.99 0.213 9.896 18.05 46.37 4.682 12.10 28.95 62.67 9.700 5.918 14.37 45.93 1.466
Epinet-fcn-m 2.299 6.345 31.82 0.204 9.614 16.83 42.83 4.603 10.96 25.85 59.93 9.491 5.807 13.00 42.21 1.478
Epinet-fcn9x9 2.287 6.291 31.23 0.231 9.853 17.19 43.85 4.929 17.75 34.54 59.86 9.423 6.339 13.92 42.17 1.646
PS RF 6.015 22.45 80.67 0.288 17.17 32.32 79.79 7.926 10.48 21.89 66.47 15.24 13.57 36.45 80.32 2.393
EPN+OS+GC 7.543 16.76 58.93 1.188 11.59 24.85 64.10 6.411 9.190 25.72 67.13 11.58 10.75 27.08 67.35 10.09
SPO 4.864 23.53 72.37 0.209 10.91 26.90 71.13 5.570 8.260 30.62 86.62 11.23 11.69 32.71 75.58 2.032
Ours 2.792 5.318 13.33 0.366 9.511 15.99 31.35 3.350 5.219 9.483 19.27 6.605 4.824 8.925 22.19 1.733

Table 1: Comparisons of our method and the compared methods on the “Stratified”, “Training” and “Test” sets of the 4D Light
Field Dataset in terms of Badpix 0.07, 0.03, 0.01 and MSE*100.

ground truth depth can be obtained with ease. In our experi-
ment setting, we use 16 scenes in “Additional” for training,
8 scenes from “Stratified” and “Training” for validating and
4 scenes from “Test” for testing. While we randomly sam-
ple 32 × 32 gray-scale patches from the training dataset for
training, we use the full resolution 512× 512 for validation.
Dataset released by (Alperovich et al. 2018). This dataset
is also rendered using Blender with the same resolution and
number of views as the 4D Light Field Dataset. The scenes
contain up to five objects of different scales and complexity
in geometry. To prevent overfitting to certain types of sce-
nes, the positions and orientations of objects are randomly
adjusted and the environment light is also rotated randomly.
There are 36 pre-built scenes with 321 textures and 109 en-
vironment maps. The dataset provides 175 scenes with dif-
ferent conditions. In our experiment setting, we choose 100
scenes for training and 21 scenes for validation and testing.
The other settings are the same as the ones in the 4D Light
Field Dataset.

Implementation Details
In our implementation, we use patch-wise training by rand-
omly choosing gray-scale patches of size 32 × 32 from the
light field images in the training set. To avoid incorrect cor-
respondences, when training on the 4D Light Field Data-
set, we exclude patches from the areas containing objects
with non-diffuse reflection and refraction, such as glass, me-
tal and textureless regions. We manually mask out the non-
diffuse reflection and refraction areas and remove the tex-

tureless regions where the mean absolute difference of the
patch is less than 0.02 between the center pixel and other
pixels. For the dataset of (Alperovich et al. 2018), we utilize
whole scenes without any exclusion instead.

For training the network, given the predicted disparity
map d̂, the ground-truth disparity map d, and corresponding
exclusion mask M , we use Adam optimizer (Kingma and
Ba 2014) to minimize the following L1 loss

L =
∑
x∈X

M(x) · ||d̂(x)− d(x)||1, (2)

where x ∈ X denotes pixels in the image, and M(x) = 0 if
x is in the excluded regions; otherwise M(x) = 1.

The following parameters are set for training: the batch
size is 12 and the learning rate is 1e-3. The method is imple-
mented using Keras with TensorFlow as the backend. Trai-
ning took about one week on an NVIDIA GTX 1080Ti GPU.

Evaluation
For the quantitative evaluation, we mainly use the three test
sets in the 4D Light Field Benchmark, which are named
“Stratified”, “Training” and “Test”. Among the three test
sets, the ground-truth depth maps of the “Stratified” and
“Training” sets are available to the public while the ground
truth of the “Test” set is not released. The “Test” set is of-
ten used as the benchmark for evaluating methods and, for
obtaining the performance on this set, one has to submit the
results to the benchmark website. There are several popular
metrics for evaluation, including mean square errors (MSE)
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Figure 4: The estimated disparity maps of our method and compared methods for the four scenes in the “Training” set. For
each scene, the first image of the top row is the center-view image, whose ground-truth disparity map is shown underneath
the image. We then show the error map for Badpix 0.07 at the top and the disparity map at the bottom for each method. The
compared methods include: (a) Epinet-fcn (b) Epinet-fcn-m (c) Epinet-fcn-9x9 (d) PS RF (e) EPN+OS+GC and (f) SPO. In the
error map, red pixels indicate where the error of the estimated depth exceeds the threshold, 0.07 in this case, while the green
pixels denote the ones with more accurate depth estimations. It is clear that our method has much fewer bad pixels than others.
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Figure 5: The snapshot of the benchmark website (https:
//lightfield-analysis.uni-konstanz.de/). We submitted our re-
sults to the benchmark website. Our method is named
“LFattNet”. It is ranked the first in the four popular error
metrics as highlighted by red outlines.

MSE*100 Badpix 0.01 Badpix 0.03 Badpix 0.07
Alperovich 18.559 59.635 56.654 45.578
Ours 2.866 19.806 7.123 3.413

Table 2: Comparison with Alperovich et al.’s method (Al-
perovich et al. 2018). The numbers reported here are the
average errors over 21 scenes in the test set of the data-
set (Alperovich et al. 2018).

and bad pixel ratios. The definition of the bad pixel ratio
(Badpix) is the percentage of pixels whose absolute errors
exceed the specified threshold, i.e., |d̂(x)−d(x)| > ε, where
ε is the threshold. Three thresholds are often used for calcu-
lating the bad pixel ratios: 0.01, 0.03 and 0.07.
Comparisons with state-of-the-art methods. We compare
our method with several top-ranked methods with publicati-
ons on the 4D Light Field Benchmark, Epinet-fcn (Shin et al.
2018), Epinet-fcn-m (Shin et al. 2018), Epinet-fcn9x9 (Shin
et al. 2018), PS RF (Jeon et al. 2017), EPN+OS+GC (Luo
et al. 2017), and SPO (Zhang et al. 2016). Table 1 reports
performance of our method and the compared methods on
the “Stratified”, “Training” and “Test” sets of the 4D Light
Field Dataset. Our method achieves the best performance in
most scenes of the three sets. We have submitted our results
to the benchmark website. Our method (LFattNet) ranks the
first as shown in the snapshot of the benchmark website as
shown in Figure 5 as of November 2019. Our method out-
performs all methods in terms of MSE*100, Badpix 0.07,
Badpix 0.03 and Badpix 0.01. Figure 4 shows the visual re-
sults of our method and the compared methods on the four
scenes of the “Training’ set’. For each method, we show its
depth map and error map in which red pixels indicate bad
pixels. It is clear that our method has the lowest number of
bad pixels in all scenes.

For the dataset of (Alperovich et al. 2018), Table 2 com-
pares the performance of our proposed method and Alpe-
rovich et al.’s method (Alperovich et al. 2018). Our met-
hod outperforms their method significantly in all metrics.

Center view Ground truth Alperovich et al. Ours

17.548

17.552

0.6805

1.2444

Figure 6: Comparison with (Alperovich et al. 2018) on their
dataset. This figure shows the results of two examples using
both our method and Alperovich et al.’s method. The num-
bers under the resultant depth maps are their MSE*100 er-
rors. Our method outperforms Alperovich et al.’s method
significantly both quantitatively and qualitatively.

Center view Epinet Ours Zoom-in view

(Wanner, Meister, and Goldlcke 2013)

(Bok, Jeon, and Kweon 2017)

(Vaish and Adams 2008)

Figure 7: Evaluation of real-world light field images. Three
light field images from previous papers are used. We com-
pare our method with the Epinet (Shin et al. 2018). In the
zoom-in views on the rightmost column, we compare our re-
sults (the right or bottom inset) with Epinet’s (the left or top
inset) in detail. Our results generally contain fewer artifacts
than Epinet’s results.

Figure 6 shows the result depth maps of both our and their
methods for two scenes. From this example, our method can
handle the textureless and glossy regions better than Alpe-
rovich et al.’s method.

We have also tested our method on real-world light field
images from previous work (Wanner, Meister, and Gold-
lcke 2013; Bok, Jeon, and Kweon 2017; Vaish and Adams
2008). Our model is trained using the synthetic images in
the 4D light field dataset. We compare our results with the
Epinet (Shin et al. 2018) in Figure 7. Our results generally
exhibit fewer artifacts than the Epinet’s results.



Epinet Ours Ours Ours Ours
(Shin et al. 2018) w/o attention w/ free attention w/ symmetric attention w/ radial attention

Input views

#Parameters 5.12M 5.00M 5.06M 5.06M 5.06M
MSE*100 1.461 1.438 1.284 1.174 0.982
Badpix 0.07 3.91 3.44 3.08 2.73 2.45

Attention map N/A N/A

Table 3: Comparisons of different types of attention maps. By imposing constraints on the structure of the attention map, the
performance of our method can be significantly improved. We also compare our method with the Epinet (Shin et al. 2018)
which has almost the same number of network parameters as our model. It uses a set of pre-selected views and has worse
performance than our model.

Center view Ground truth Ours

11.2669

18.0721

MSE*100 Error

Figure 8: Failure cases. When the scene contains glossy ma-
terials or large textureless regions, our method could predict
wrong disparity values, as shown in the two examples from
the dataset (Alperovich et al. 2018). The numbers under the
error maps are the MSE*100 errors of the corresponding
depth maps.

Ablation study. We have experimented with the three diffe-
rent types of attention maps listed in Figure 3. Table 3 com-
pares their performance and the last row shows the learned
attention maps of the three different types. It shows that the
imposed constraints improve performance significantly. Ta-
ble 3 also compares our models with the Epinet (Shin et al.
2018) which ranks high on the benchmark. It uses only pre-
selected views and can be considered as a method with the
pre-defined attention map. It has almost the same number of
network parameters as our model, but with worse MSE and
bad pixel ratio than ours.
Discussions. Although our method demonstrates good per-
formance and provides a great improvement over previous
methods on the benchmark and other datasets, it still has se-
veral limitations. As shown in Figure 8, when the scene con-

Stratified
Backgammon Dots Pyramids Stripes

Epinet-fcn 1.973 1.969 1.965 1.968
Epinet-fcn-m 10.67 10.64 10.70 10.60
Epinet-fcn9x9 1.886 2.034 2.027 2.032
PS RF 979.8 969.9 929.7 1093
EPN+OS+GC 249.2 381.0 386.7 172.2
SPO 2195 2138 2256 1945
Ours 5.542 5.817 5.704 5.918

Table 4: Computation time (seconds) as reported by the aut-
hors on the 4D light field benchmark.

tains shining materials or has large textureless regions, our
method would fail to estimate the accurate disparity values
for those areas. As for the speed, Table 4 reports computa-
tion time for our method and several methods. Our method
is reasonably fast.

Conclusion
This paper proposes an attention-based view selection net-
work for disparity estimation for light field images. By ex-
ploring the repetitive structure of light field cameras and the
inherited redundancy within views, our method can utilize
all views for estimating disparity maps both effectively and
efficiently. Experiments demonstrate that our method achie-
ves the best performance on a popular benchmark and other
datasets. In the future, we would like to improve the propo-
sed network so that it is more robust to glossy materials and
textureless regions.
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