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Figure 1: We present a novel technique for seamlessly cloning content from one stereoscopic image pair to another. Given a synthetic 3D
SIGGRAPH Asia 2012 logo as the source image pair and a target stereoscopic image pair of a bumpy wall (a), we use perspective-aware
warping to adjust the structure of the logo and paste it on to the bumpy wall (c). The perceived depth and projection of the pasted logo (b) are
adjusted locally and adaptively to fit onto the bumpy surface. (Note that the resultant left and right images are included in the supplemental
materials. It is recommended to watch them with stereoscopic displays for better visual effects.)

Abstract

This paper presents a novel technique for seamless stereoscopic
image cloning, which performs both shape adjustment and color
blending such that the stereoscopic composite is seamless in both
the perceived depth and color appearance. The core of the proposed
method is an iterative disparity adaptation process which alternates
between two steps: disparity estimation, which re-estimates the dis-
parities in the gradient domain so that the disparities are contin-
uous across the boundary of the cloned region; and perspective-
aware warping, which locally re-adjusts the shape and size of the
cloned region according to the estimated disparities. This process
guarantees not only depth continuity across the boundary but also
models local perspective projection in accordance with the dispari-
ties, leading to more natural stereoscopic composites. The proposed
method allows for easy cloning of objects with intricate silhouettes
and vague boundaries because it does not require precise segmen-
tation of the objects. Several challenging cases are demonstrated to
show that our method generates more compelling results compared
to methods with only global shape adjustment.

Keywords: Seamless cloning, stereoscopic images, image gra-
dients, disparity gradients, Poisson equation, disparity adaptation,
perspective-aware warping.
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1 Introduction

The success of stereoscopic 3D movies has ignited the rapid de-
velopment of 3D cameras and displays for consumers. Once users
are able to capture and display stereoscopic 3D media easily, the
next requirement will be the ability to manipulate these 3D media
similar to the way 2D media are manipulated. However, it can be
challenging to directly apply 2D media editing tools to stereoscopic
3D media, because the additional information (i.e., depth) in stereo-
scopic 3D images introduces additional constraints in maintaining
a comfortable and enjoyable 3D viewing experience. Naive exten-
sions of existing 2D image editing methods usually fail as they do
not take these constraints into account.

This paper focuses on stereoscopic image cloning, that is, select-
ing a region from a source image and pasting it into a target im-
age. Although successful 2D image cloning methods have been
proposed [Pérez et al. 2003; Jia et al. 2006; Farbman et al. 2009;
Yang et al. 2009], stereoscopic 3D image cloning has its own chal-
lenges: (1) we must adjust disparity values within the cloned re-
gion for depth continuity; (2) we must alter the projected shape
of the cloned region according to the disparity change to model
perspective effects such as foreshortening; (3) we must maintain
the coordination between the left and right views for comfortable
3D viewing. Lo et al. [2010] proposed a cut-and-paste system for
stereoscopic images which uses a segmentation technique to accu-
rately select the object that users intend to clone. Although their
system successfully meets some of these challenges, it still has two
shortcomings. First, it is difficult to accurately segment out objects
with complex silhouettes and objects without obvious boundaries
between them and the background. Second, their system models
the cloned objects as stereo billboards, which is more effective for
approximating objects standing on a ground plane and for flat ob-
jects without much depth variation.

To address the above challenges and limitations, we propose a novel
technique for seamless stereoscopic image cloning which performs
both shape adjustment and color blending such that the stereoscopic
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Figure 2: The results produced by two naive methods: (a) direct-
pasting and (b) global-adjustment. (c) Depth map comparisons of
the two naive methods and ours, which show that the two naive
methods do not perfectly attach the logo to the bumpy surface, while
the proposed method (the bottom one) generates a more compelling
depth map.

composite is seamless in both the perceived depth and color ap-
pearance. In order to achieve this, we propose an iterative disparity
adaptation procedure which consists of gradient-domain disparity
estimation and perspective-aware warping, so that the depth struc-
ture of the cloned region is locally and adaptively adjusted to fit that
of the target pasted location. In addition, the color of the cloned
region is seamlessly blended with the target image using Poisson
blending. Furthermore, to provide an easy-to-use selection mech-
anism, our method allows users to roughly select a region on only
one view of the source stereoscopic image, after which the system
automatically locates the corresponding region in the other view.
As Poisson blending techniques and segmentation-based copy-and-
paste methods for 2D images are suitable for different situations and
are complementary to each other, we consider the proposed method
complementary to Lo et al.’s method [2010] as well. Their method
is more suitable for objects that can be easily segmented out and
stand on the ground while ours is better suited for objects that are
difficult to segment and attach on the ground.

Figure 1 shows a sample cloning result and Figure 2 shows the com-
parisons to two naive methods: direct-pasting (Figure 2(a)), which
completely ignores the depth discrepancy, and global-adjustment
(Figure 2(b)), which globally shifts the cloned region according to
the average of disparities within it. Although the global-adjustment
method (Figure 2(b)) compensates for depth discrepancy by glob-
ally shifting the underlying disparities, obvious depth discontinu-
ities exist along the boundary. Neither method produces visually
pleasing results because local adjustment should be performed over
the cloned region to match the local perspectives and depth struc-
tures. In contrast, our perspective-aware warping as well as the it-
erative disparity adaptation locally and adaptively adjust the depth
structure (Figure 1(c)). The depth maps from these methods (Fig-
ure 2(c)) show that our method provides the best depth composition.
Specifically, the contributions of this paper include:

• a disparity adaptation technique which can be used to alter
the composite depth structure such that it resembles the local
shape of the cloned region and adapts to the target image;

• a novel perspective-aware warping method for locally adapt-
ing the disparities as well as the projected shape and size of
the cloned region to those of the target location;

• a stereoscopic image cloning system which allows users to
clone image regions to another image without accurate fore-
ground segmentation.

2 Related Work

Image Composition. Image composition has attracted immense
research attention for many years, and many techniques have been
proposed. Matting-based methods are probably the most popular
image cloning techniques [Wang and Cohen 2007]. They extract
the foreground object with matting techniques, and then compos-
ite it into another image. Although the methods are quite effective,
they can produce unnatural composites when colors between the
source and target images are too different. Gradient-domain tech-
niques address this problem effectively by manipulating image gra-
dients, e.g., Poisson cloning [Pérez et al. 2003]. Jia et al. [2006]
suggested finding the optimal boundary before blending. Farb-
man et al. [2009] introduced a mean-value interpolation scheme
for seamless cloning. By doing away with the need to solve a
large sparse matrix derived from the Poisson equation, the blend-
ing process can be accelerated dramatically. Yang et al. [2009] in-
troduced additional color fidelity terms into the original Poisson
cloning method for better visual results. In the past few years,
other research [Lalonde et al. 2007; Chen et al. 2009; Ding and
Tong 2010] has combined both gradient-domain and matting-based
methods.

Stereoscopic media editing. Recently, research on stereoscopic
3D media editing is becoming more and more popular, and many
methods have been proposed. The stereoscopic viewing experience
is an important issue when watching stereoscopic content. Much
scientific research has been devoted to analyzing what is needed
for a comfortable stereoscopic viewing experience [Lambooij et al.
2007; Kim et al. 2011b]. For stereoscopic 3D film production,
there are quite a few practice rules learned from experience in the
3D film industry [Mendiburu 2009]. For specific editing operators,
Wang et al. [2008a] extended 2D image inpainting to stereoscopic
3D images. Koppal et al. [2011] formulated a mathematical frame-
work to enable user-centric manipulation with several stereo param-
eters. Lang et al. [2010] proposed a framework for disparity manip-
ulation. Chang et al. [2011] and Basha et al. [2011] addressed the
stereoscopic media retargeting problem with continuous and dis-
crete approaches, respectively. Kim et al. [2011a] generated stereo-
scopic pairs with per-pixel control over disparity using a lightfield
dataset. Lo et al. [2010] is most related to our work as both focus on
stereoscopic image cloning. Their method can be taken as the 3D
counterpart of matting-based 2D image cloning approaches while
ours belongs to the gradient-domain methods.

Image warping and deformation. Our method relates to
warping-based image manipulation methods, which have been
widely used to manipulate image structure. Igarashi et al. [2005]
and Schaefer et al. [2006] proposed methods for deforming 2D
shapes according to user-specified constraints while minimizing
the distortion of local shapes. In recent years, image warping
techniques have also been widely used in many image manipulation
applications, such as image and video retargeting [Wang et al.
2008b; Shamir and Sorkine 2009], perspective manipulation [Car-
roll et al. 2010] and video stabilization [Liu et al. 2009]. In this
paper, we propose a novel perspective-aware warping technique to
locally adjust the depth structure of the cloned region to adapt the
perceived depth and model the shape changes due to local disparity
changes.

3 Stereoscopic Image Seamless Cloning

Figure 3 is an overview of our stereoscopic image cloning tech-
nique. The inputs are source and target stereoscopic image pairs,
(IlS , IrS) (IlT , IrT ), as shown in Figure 3(a). They are assumed
rectified. The system first estimates the disparity maps for both
image pairs and extracts features for the source stereoscopic im-
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Figure 3: An overview of the proposed method. Given input source and target stereoscopic image pairs (a), their disparity maps (b)
are estimated and corresponding feature pairs are extracted for the source image pair for offline preprocessing. To clone a region of the
source image pair, users simply draw a contour on one source image to specify it, and the system automatically transfers the contour to
the corresponding location with corresponding shape in the other image (c). Consistent meshes are also constructed for the source pair in
this step. When pasting the cloned region to the target image pair, the disparities of the cloned region are adapted to fit those of the pasted
location on the target image by iteratively performing gradient-domain disparity estimation and perspective-aware warping until convergence
(d). Finally, the warped cloned region is seamlessly blended onto the target image using the Poisson blending method (e).

age (Figure 3(b)) in an offline process (Section 3.1). To clone a
region of the source image pair, users simply draw a contour on
one of its images, and the corresponding contour in the other im-
age is automatically generated. Consistent meshes are constructed
for both source images (Figure 3(c)), as described in Section 3.2,
after which the user specifies a target location to which to paste the
cloned region. To avoid depth seams between the cloned region and
the target image, our disparity adaptation algorithm re-estimates the
disparities of the cloned region in the gradient domain so that the
disparities are continuous across the boundary of the cloned region
and the target image. Perspective-aware warping is then adopted
to adjust the shape and size of the cloned region according to the
estimated disparities. The above estimation and warping processes
are performed iteratively until the shape of the cloned region does
not change much (Figure 3(d)), as described in Section 3.3. Finally,
the warped source patches are blended into the target images using
Poisson blending (Section 3.4). Figure 3(e) shows the final result
which is seamless for both color and depth structures.

3.1 Preprocessing

Disparity map estimation. Horizontal disparity, the x-coordinate
difference between corresponding pixels on the two retinal images,
is the central factor in human depth perception. The proposed
method is based on the reconstruction of a plausible disparity map
from the source disparity map DS and the target disparity map
DT , which are assumed to be estimated for the left image using
the method proposed by Smith et al. [2009] (Figure 3(b)).

Feature extraction. The estimated disparity values may be inac-
curate in certain areas because of limitations of the particular al-
gorithm. Fortunately, previous research on disparity mapping and
stereoscopic image retargeting [Lang et al. 2010; Chang et al. 2011]
has demonstrated that plausible manipulation of depth perception
can still be achieved by coupling image warping with sparse but
reliable feature correspondences. Thus, our method relies on ro-
bust features to avoid the problem potentially caused by imperfect
disparity maps. SIFT [Lowe 2004] is used to establish the corre-
sponding feature pairs {

(
f l
i , f

r
i

)
}i=1..nf between the left and right

views for the source image1; RANSAC with the fundamental ma-
trix as the model is used to filter out outliers. Therefore, the dis-
parity values of these robust features are quite accurate and can be
used to guide image warping for contour transfer (Section 3.2) and
disparity adaptation (Section 3.3).

3.2 Contour transfer and mesh construction

To specify the cloning region (Ωl,Ωr) we require a pair of con-
tours (∂Ωl, ∂Ωr) in the source stereoscopic image pair. However,
it is redundant (and likely inconsistent) to ask users to specify con-
tours on both the left and right views. Our system requests users to
draw the contour on one view only and automatically infers the cor-
responding contour for the other view. Without loss of generality,
we assume that the users draw the contour ∂Ωl on the left image
and the right contour ∂Ωr is generated by the system.

A contour is implemented as a closed polyline in our system. As-
sume that the left contour ∂Ωl consists of nc vertices qli ∈ R2. A
naive solution for contour transfer would be to find the correspond-
ing point qri ∈ R2 in the right image for each vertex qli by looking
up the estimated source disparity map, i.e., qri = qli − (DS(qli), 0),
where DS(qli) denotes the disparity value of the vertex qli in the
disparity map DS . However, because the user-drawn contour ver-
tices are not necessarily located within salient regions, their dis-
parity values may be inaccurate. Using only such estimated dis-
parities would result in jaggy transferred contours (Figure 4(b)).
For more robust contour transfer, we adopt mesh-based warping
and reliable feature correspondences to avoid unreliable contour
correspondences. We first construct a triangular mesh for the left
source image. In addition to contour transfer, the mesh is also used
for perspective-aware warping during iterative disparity adaptation
(Section 3.3). Since the extracted features in Section 3.1 and user-
drawn contour are reliable, it is preferred that the features and con-
tour are parts of the triangular mesh. In addition, we also uniformly
sample a set of points B along the image border and use them as

1Note that we do not need features for the target stereoscopic image
because its disparity values will not be altered in the composite.
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Figure 4: Contour transfer. (a) User-specified left contour. (b)
Right contour transferred by finding the correspondence points in
the right image using the estimated source disparities. The con-
tour jagginess is due to imperfect disparity values in the texture-less
area. (c) The right contour transferred using our method.
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Figure 5: The mesh structure. The blue polyline in the left image
represents the user-specified contour. Constrained Delaunay trian-
gulation is used to construct the mesh for the left source image as
shown on the left. A consistent mesh is constructed for the right
image as shown on the right. Subsequent processing requires only
the inner meshes (indicated by yellow).

the vertices of the mesh. Specifically, to construct the mesh of the
left image, we perform a constrained Delaunay triangulation with
{f l

i |i = 1..nf}∪{qli|i = 1..nc}∪B as vertex constraints and line
segments {ql1ql2, ql2ql3, . . . qlnc

ql1} as edge constraints. The left of
Figure 5 shows an example of the constructed mesh. Let Ul be the
set of all vertices of the left mesh, which contains features, contour
vertices, border vertices, and vertices added during triangulation.
To transfer the left mesh to the right image, we seek vertex set Ur

satisfying the following constraints:

(1) Feature correspondence. Given a reliable feature correspon-
dence (f l

i , f
r
i ), the corresponding vertex in the right mesh (vri ∈

Ur) of the feature f l
i should closely approach fr

i . This term is
defined as Ef =

∑nf

i=1(vri − fr
i )2.

(2) Vertical alignment. Because the image pair is rectified, each
vertex’s y-coordinate in the right mesh should be close to that of
the corresponding vertex in the left mesh. This term is defined as
Ev =

∑
vl
i∈Ul(v

r
i [y]− vli[y])2, where the operator [y] extracts the

y-coordinate of a vertex. We don’t enforce it as a hard constraint
because the human is somewhat tolerant to vertical drift.

(3) Triangle shape distortion. The triangles should not be dis-
torted too much from the left mesh to the right mesh; this can be
enforced by requiring each triangle in the right mesh to resemble
its counterpart in the left mesh. For a single triangle with ver-
tices (vli, v

l
j , v

l
k) in the left mesh, vertex vli can be represented by

the other two vertices as vli = Fl(v
l
j , v

l
k), where Fl means the

transformed coordinate of vli in the local frame formed by vlj and
vlk as defined in [Igarashi et al. 2005]. We formulate the term as
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Figure 6: Two naive methods and our disparity adaptation. With
direct-pasting, the pasted region “floats” on the target image. Al-
though global-adjustment globally adjusts disparities, depth dis-
continuities along the boundary cause unnatural shape interpreta-
tion. With our approach, the region is seamlessly pasted onto the
target image.

Es =
∑

(vl
i,v

l
j ,v

l
k

)∈Tl ||vri − Fl(v
r
j , v

r
k)||2, where Tl is the set of

triangles in the left mesh.

By minimizing an energy function combining these three con-
straints, E = wfEf +wvEv +wsEs, we obtain the vertices of the
right mesh Ur . We used wf = 10, wv = 10, and ws = 1.

After finding the vertices Ur , the same connectivity as the left
mesh is applied to complete the mesh structure for the right image.
The set of corresponding vertices of the left mesh’s contour ver-
tices {qli|i = 1..nc} in Ur specify the transferred contour for the
right image. Figure 4(c) shows that the transferred contour using
the proposed approach is much better than the naive method (Fig-
ure 4(b)). Figure 5 shows the constructed mesh on the left image
and the transferred result on the right image for the example shown
in Figure 3. For our cloning application, only the inner meshes of
the left and right images, (Ml,Mr), are needed in following pro-
cesses. Hence, the cloning regions and contours can be inferred
from the inner meshes. Let Ω(M) be the region operator which
returns the region defined by mesh M. We have Ωl = Ω(Ml) and
Ωr = Ω(Mr). Similarly, let ∂Ω(M) be the contour operator which
returns the contour defined by M; thus we have ∂Ωl = ∂Ω(Ml)
and ∂Ωr = ∂Ω(Mr).

3.3 Iterative disparity adaptation

Given the source disparity map DS , target disparity map DT , and
meshes Ml and Mr specifying the cloned region in the source im-
age, the goal of iterative disparity adaptation is a proper disparity
map and mesh structure which adapt to both the shape and perspec-
tive of the target image while closely approximating the original
local shape of the cloned region.

The disparities of adjacent pixels along the boundary of the cloned
region may be discontinuous if composited directly or incorpo-
rated using a simple global adjustment. Thus, for seamless cloning,
gradient-domain disparity estimation is used to re-estimate the dis-
parities within the source cloned region in the gradient domain
to remove the disparity discontinuities along the boundary while
maintaining the local shape of the cloned region (Section 3.3.1).
Figure 6 compares the two naive methods with ours.

An important characteristic of perspective projection is foreshort-
ening: objects become smaller as their distances from the observer
increase. In other words, the projected size of an object depends
on its disparity (depth). This provides a strong cue for the posi-
tion (depth) of an object. When there are large changes in dispar-
ity due to gradient-domain disparity estimation or when there is a
significant discrepancy between the perspectives of the source and
target images, the 2D shape of the cloned region must be adjusted
according to the adapted disparity values (depths) to match such



changes or discrepancies. We propose perspective-aware warping
to accomplish this (Section 3.3.2).

The disparity adaptation process is iterative. In the first step, given
the meshes, we re-estimate the disparities within the cloned region
in the gradient domain. In the second step, we adjust the meshes ac-
cording to the adapted disparities (depths) using perspective-aware
warping, after which the locations and shapes (both contours and
interior structures) of the meshes are updated, potentially leading
to disparity adjustment within the cloned region. Adjusted dispari-
ties can also lead to shape changes in the cloned objects. Therefore,
perspective-aware warping and target disparity adjustment are mu-
tually dependent; this dependency is addressed using an iterative
method which alternately adjusts the shapes and disparities until
convergence.

3.3.1 Gradient-domain disparity estimation

For seamless cloning, the disparity values must be adjusted to re-
move any disparity discrepancy along the boundary of the cloned
region. Lang et al. [2010] indicate that disparity gradients signifi-
cantly influence human depth perception, and that it is possible to
alter the perceived depth structure by manipulating these disparity
gradients. Inspired by their results, we adopt a gradient-domain ap-
proach for adapting disparity values to the shape of the target image.
By using the desired disparity gradients as the guidance field G and
enforcing the disparity values along the boundary in the new source
disparity map to be the same as the target disparity map, we obtain
the adapted source disparity map D̂S by minimizing the following
weighted Poisson equation:

Ψg(D̂S)=

∫∫
Ωl

ω(DS)
∣∣∣∇D̂S−G

∣∣∣2 with D̂S |∂Ωl=DT |∂Ωl , (1)

where ω(DS) ∝ 1/ |∇DS | is the weighting function defined over
the pasted region, which is used to penalize the pixels in smoother
depth regions more because there is no need to maintain the gra-
dient in depth-discontinuous regions (i.e., the boundaries of fore-
ground and background objects). The guidance field is obtained as
G = ∇DS for general cases, which keeps the shape of the pasted
object. Alternatively, to attach the cloned region onto the target im-
age, the field can be calculated as G = max(∇DS ,∇DT ). Note
that the new disparity map D̂S is defined only within the cloned re-
gion Ωl. In addition, the guidance field may be warped and region
Ωl may be deformed if mesh Ml has been deformed by perspective-
aware warping (Section 3.3.2).

3.3.2 Perspective-aware warping

As mentioned above, the projective size of an object depends on its
depth under perspective projection. To better match the perspective
and adapted depth obtained from Section 3.3.1, the size and shape
of the cloned region must be adjusted according to the disparity
values. We first sketch the relationship between the projective size
and the disparity value and then describe how to warp the meshes
according to the disparity values.

The relationship between scale and disparity. The scale of an
object on an image depends on its depth, which is related to the
disparity. We seek to derive the relationship between the scale and
disparity so that we can scale the object according to its dispar-
ity. First, we derive the relationship between depth and disparity.
Here, we assume a parallel stereoscopic camera setting, which is
a common configuration for consumer stereoscopic cameras (Fig-
ure 7). From Figure 7(a), the image disparity is d = xL − xR,
where xL and xR are the x-coordinates of a pair of corresponding
points. Note that xR is negative in this particular example. Accord-
ing to the similar triangle theorem, we have (b−d)/b = z/(z+f),
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Figure 7: Stereoscopic camera configuration for inferring the re-
lationship between the projective size and the disparity.

where b is the baseline distance between two cameras; f is the fo-
cal length and z is the depth of the scene point. From this equation,
we have the relationship between the depth z and the disparity d
as z = (b − d)f/d. Next, we relate the disparity value with the
scale by the depth. From Figure 7(b), we know that the projective
size x is related to object size L as x = Lf/(z + f). Substituting
z = (b− d)f/d in this equation, we have the relationship between
the projective size and disparity as x = (L/b)d. Note that although
focal length plays a role during the derivation, it disappears in the
end. Thus it is not a required parameter.

Perspective-aware warping. For the i-th vertex of the left mesh
Ml, we obtain the associated scale factor si according to the ra-
tio between the current and original disparity values, i.e., si =

x̂i/xi = D̂S(v̂li)/DS(vli), where v̂li and vli are the current (af-
ter deforming) and original (obtained in Section 3.2) vertex posi-
tions, respectively; DS and D̂S are the original (obtained in Sec-
tion 3.1) and updated (calculated in Section 3.3.1) disparity maps,
respectively. The scale factors describe how the meshes should be
deformed so that their sizes and shapes match the updated depths.
Taking Figure 6 as an example, to match the target shape, the source
patch must move back to attach to the target shape. Thus the dispar-
ity values decrease and the scale factors are smaller than 1. In this
case, the cloned region should shrink in size to adapt to the target
image. In more complex examples where vertices have different
scaling factors, the shape of the mesh may be distorted. In addition
to the scale constraints, stereoscopic constraints are used to make
sure the deformation maintains good stereoscopic properties. The
goal of perspective-aware warping is to deform the meshes to sat-
isfy both scale and stereoscopic constraints. We design an energy
function with the following four terms to deform the meshes by
finding their new vertex positions v̂li and v̂ri .

Disparity-dependent scaling. For each edge (vli, v
l
j) of the left

mesh Ml, given the associated scale factors, si and sj , assuming
the scale factor varies linearly along the edge, the scale factor for
the edge is lij = 1

2
(si + sj). The same scale factor is applied

to the corresponding edge in the right mesh. Hence we have the
disparity-dependent scaling term

Φs(v̂li, v̂
r
i ) =

∑
(vl

i,v
l
j)∈El

(
‖v̂li − v̂lj‖ − lij‖vli − vlj‖

)2

+
∑

(vr
i ,v

r
j )∈Er

(
‖v̂ri − v̂rj ‖ − lij‖vri − vrj ‖

)2
, (2)

where El and Er are the sets of edges of Ml and Mr , respectively.
This energy term promotes meshes with the desired edge lengths
derived from the disparity values.

Disparity consistency. This constraint forces the disparities of all
vertices Vl within the cloned region to be consistent with the es-
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Figure 8: A number of cloning results using our method. Firework has intricate silhouettes, rainbow contains transparency, and
sculpture has vague boundaries. These cases are challenging for segmentation-based approaches.

timated disparities. For each vertex pair (vli, v
r
i ) ∈ V, their x-

coordinate difference should approximate the current estimated dis-
parity. Let di be the target disparity for the i-th feature pair accord-
ing to the current disparity map, i.e., di = D̂S(v̂li). We have the
disparity consistency term:

Φd(v̂li, v̂
r
i ) =

∑
(v̂l

i,v̂
r
i )∈V̂

(
(v̂li[x]− v̂ri [x])− di

)2

, (3)

where operator [x] extracts the x-component of a 2D vector.

Vertical alignment. To avoid unwanted vertical parallax, this con-
straint restricts the left and right meshes to preserve vertical align-
ment after warping. We have

Φv(v̂li, v̂
r
i ) =

∑
(v̂l

i,v̂
r
i )∈V̂

(
v̂li[y]− v̂ri [y]

)2

, (4)

where operator [y] extracts the y-component of a 2D vector. It is not
enforced as a hard constraint because the human vision system is
somewhat tolerant to vertical drift; we would like to take advantage
of this flexibility.

Position fixation. The above three constraints restrict only the
shapes of the meshes but not their positions. Thus, we add a po-
sition fixation term so that the location of the cloned region is close
to the user-specified position despite changed shape and size. We
choose to fix the left mesh center. Let cl be the center of the initial
left mesh, i.e., cl = 1

|Vl|

∑
vl
i∈Vl v

l
i. The position fixation term is

Φp(v̂li, v̂
r
i ) =

∥∥∥∥∥∥cl − 1

|V̂l|

∑
v̂l
i∈V̂l

v̂li

∥∥∥∥∥∥
2

. (5)

The energy function is a weighted sum of the above four terms,
Φ = wsΦs + wdΦd + wvΦv + wpΦp, where ws = 50, wd =
50, wv = 100, and wp = 1 for all results in this paper. The
energy function is non-linear because of the disparity-dependent
scaling term. We optimized it using the steepest-descent method.
For the initial guess, the meshes are globally shifted to the average
disparities of the pasted location.

3.4 Color blending

Iterative disparity adaptation outputs the adapted left and right
meshes M̂l and M̂r for the source stereoscopic image pair. Let
W (I,M, M̂) be the warping operator which returns the warped
image patch by mapping the original mesh M to target mesh M̂.

(a) (b)

Figure 9: Automatic resizing. (a) The left view of input stereoscopic
images. (b) The cloned objects pasted at several places. The scales
of the cloned objects are automatically inferred using perspective-
aware warping.

We obtain the warped cloned region pair P̂ l = W (IlS ,M
l, M̂l)

and P̂ r = W (IrS ,M
r, M̂r), where Ml and Mr are the initial

meshes obtained in Section 3.2. The system then seamlessly blends
the color channels of P̂ l and P̂ r with the target images IlT and IrT ,
respectively using Poisson blending [Pérez et al. 2003] to obtain the
final composite.

4 Results

In this section, we demonstrate several stereoscopic image cloning
results using the proposed method. The input stereoscopic images
are either collected from Flickr or captured by a Fujifilm FinePix
W3 camera. The results are presented as red-cyan anaglyph images
in the paper; the uncompressed left and right images are included
in the supplemental materials. We encourage readers to view them
with stereoscopic displays for better visual effects.

Figure 8 shows several cloning examples for images for which users
may have difficulty precisely specifying the cloned regions because
of complex silhouettes (Figure 8(a)), transparency (Figure 8(b)), or
vague boundaries (Figure 8(c)). It would be difficult to achieve
good results using Lo et al.’s segmentation-based method [2010].
In contrast, our method does not need to precisely segment out the
objects, and is effective for these cases. Figure 9 shows that our
method automatically adjusts the sizes of the pasted objects using
perspective-aware warping.
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(a) Input images (b) Direct-Pasting (c) Global-Adjustment (d) Our method (e) Depth profiles

Figure 10: Comparisons with direct-pasting and global-adjustment. Our results look better by taking into account both depth continuity
and foreshortening. On the left of each result (b)∼(d), we show the composited disparity map (upper) and the mesh (bottom). The depth
profiles (e) obtained from the same scanline for these methods show that our method yields the best depth composition. Arrows in (e) indicate
composite boundaries. Note the visible depth discontinuities along the boundaries for direct-pasting and global-adjustment.

(a) (b)

Figure 11: Depth estimation using traditional Poisson equation
(a) and our weighted version (Eq.(1)) (b). Both the composite
image and the composited disparity map (inset) are shown.

We compare our method with two naive approaches: direct-pasting
and global-adjustment of the cloned region. Figures 1 and 2 show
the comparison of pasting the SIGGRAPH Asia 2012 logo onto a
bumpy surface. Our approach is able to locally adjust the cloned
logo such that it is attached to the surface. In constrast, direct-
pasting and global-adjustment cannot perfectly adapt to the depth
variation of the bumpy surface. Figure 10 shows other cases for
comparison. Figure 10(b) show the results of direct-pasting; neither
the disparity nor the perspective is adjusted. In the upper row, the
cloned swimmer and water region appear far behind the target wa-
ter surface, while in the lower row, the arrow floats on the road and
its perspective does not match the road’s. The global-adjustment
method corrects the depth discontinuity somewhat (Figure 10(c)),
but only adjusts the disparities of the cloned regions globally and
does not take into account perspective foreshortening. Thus the
global method still produces noticeable depth discontinuousness.
Our results are better because local disparities are adapted (Fig-
ure 10(d)). The depth profiles show the superiority of our method
over the others (Figure 10(e)).

Figure 11 compares the results generated with the traditional Pois-
son equation (ω(DS) = 1 in Eq.(1)) and our weighted version
(Eq.(1)). The cloned region contains a cone and a part of the
ground. The disparity estimation based on the traditional equa-
tion forces the disparity gradients to resemble the guidance gra-
dient field at every point. When pasted into the target image, the

Example Resolution of #∆ of meshes Contour Disparity adaptation
source image (entire/inner) Transfer (3 iterations)

Figure 1 309 × 319 408/236 0.004 8.385
Figure 8(b) 477 × 600 626/88 0.001 0.187
Figure 8(c) 472 × 637 737/172 0.011 1.326
Figure 9(Upper) 904 × 467 929/73 0.01 0.115
Figure 10(Upper) 837 × 654 1095/146 0.011 0.104
Figure 10(Lower) 950 × 513 1113/250 0.011 6.77

Table 1: Statistics for several examples. Time measured in seconds.

Figure 12: A failure case. A large perspective change leads to an
unnatural composite. View interpolation is required in this case.

cone leans backwards toward the ground (Figure 11(a)), because
the source ground pulls the cone towards the ground to match the
less tilted target ground. With our weighted Poisson equation, the
disparity gradients need not resemble the guidance gradient field
where there are large disparity gradients; this allows the cone to
stand up as in the source image (Figure 11(b)).

Performance. Table 1 shows statistics for several examples in-
cluding image resolution, number of triangles of the entire/inner
meshes, and processing time for contour transfer and iterative dis-
parity adaptation (3 iterations are sufficient for convergence). All
results were generated on a desktop PC with an Intel Core 2 Duo
3.2GHz CPU and 4GB RAM.

Limitations. Our method shares with Lo et al.’s method [2010] the
limitation for extremely large perspective differences between the
source and target images. In these cases, it is often not plausible to
approximate the large 3D perspective changes by 2D image warp-



ing only (Figure 12). This problem could be addressed to some
degree using depth-image-based rendering or perspective manipu-
lation [Carroll et al. 2010]. The proposed approach relies heavily
on disparity maps and features. Fortunately, existing stereo and fea-
ture matching techniques mostly lead to visually plausible results.
However, our method still suffers from inaccurate disparity maps
and insufficient features.

5 Conclusion

Stereoscopic image cloning is challenging because both the depths
and colors of the cloned regions must be seamlessly blended with
the target stereoscopic images. We have presented a novel gradient-
domain technique to reduce depth discontinuity and maintain global
depth structure so that the cloning results are visually plausible and
natural. The proposed method has the following advantages: First,
our method allows for easy cloning of objects with intricate silhou-
ettes and vague boundaries because it does not require precise seg-
mentation of the objects. Second, the proposed iterative disparity
adaptation guarantees not only depth continuity across the bound-
ary but also models perspective foreshortening. Third, the depth
structure within the pasted region is better preserved instead of be-
ing highly approximated.

Two research directions warrant further exploration. First, view in-
terpolation or depth-image-based rendering might be necessary for
handling large perspective differences between the source and tar-
get images. Second, we would like to enhance the user controlla-
bility for stereoscopic image cloning. For example, as users might
want to control the depths of the pasted objects, the disparity values
should be adjusted to satisfy both the users’ control and plausibil-
ity.
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