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Abstract

This paper presents a technique for reconstructing a
high-quality high dynamic range (HDR) image from a set
of differently exposed and possibly blurred images taken
with a hand-held camera. Recovering an HDR image from
differently exposed photographs has become very popular.
However, it often requires a tripod to keep the camera still
when taking photographs of different exposures. To ease
the process, it is often preferred to use a hand-held cam-
era. This, however, leads to two problems, misaligned
photographs and blurred long-exposed photographs. To
overcome these problems, this paper adapts an alignment
method and proposes a method for HDR reconstruction
from possibly blurred images. We use Bayesian frame-
work to formulate the problem and apply a maximum-
likelihood approach to iteratively perform blur kernel es-
timation, HDR image reconstruction and camera curve re-
covery. When convergence, we simultaneously obtain an
HDR image with rich and clear structures, the camera re-
sponse curve and blur kernels. To show the effectiveness of
our method, we test our method on both synthetic and real
photographs. The proposed method compares favorably to
two other related methods in the experiments.

1. Introduction
High dynamic range (HDR) imaging has become more

and more popular in recent years [8]. It attracts many pro-
fessional and amateur photographers and finds utility in
many applications such as visual effects production. Al-
though a few special cameras can be used for directly cap-
turing HDR images, they are still expensive and not preva-
lent. Most photographers still use standard cameras to take
differently exposed photographs of the same scene and then
composite HDR images from them by recovering the cam-
era response curve [2, 6, 9]. One of the limitations for these
approaches is that the camera must be kept still when taking
photographs. A tripod or other specialized hardware is often
necessary to enforce this requirement, but these devices are

usually very bulky to bring with. Thus, most photographers
would prefer to take photographs with conventional hand-
held cameras. Unfortunately, images captured by hand-held
cameras are likely to be blurry due to camera shake, espe-
cially for the ones with long exposures. Camera shake can
be modeled as the convolution of the irradiance image with
a blur kernel, describing the camera motion during expo-
sure [4]. Since those differently exposed photographs taken
by the hand-held camera always have different blur kernels,
the directly recovered HDR image is often blurry even if
they are somehow aligned.

A naı̈ve solution is to apply image deblurring tech-
niques [4, 10] to each of these blurred low dynamic range
(LDR) images, and then to reconstruct the HDR image from
the deblurred ones. However, there are problems with this
approach. The quality of the reconstructed HDR image
highly depends on the quality of the deblurred LDR images.
However, the deblurred images may not be good enough,
especially for the ones with long exposures. Individual de-
blurred images may have artifacts such as ringing. The
problem is further aggravated in the combined HDR image
because these artifacts are often not coherent spatially.

This paper proposes a new technique to reconstruct a
sharp HDR image from a set of potentially blurry LDR
images with different exposure times while estimating the
blur kernels and the camera response curve at the same
time. Taking the advantage of having multiple observations
for the same scene, we formulate the problem based on a
Bayesian framework to obtain all parameters at once. Fur-
thermore, since we have multiple images, the dimension of
the observations is actually larger than the one of the param-
eters to be estimated. Thus, a maximum-likelihood method
is applied to iteratively optimize for the HDR irradiance im-
age, the blur kernels and the camera response curve until
converging to a good solution.

2. Background and related work
This section first introduces background for the problem.

Next, we review the related work of two categories, HDR
image reconstruction and image deblurring. For the former,
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Figure 1. Camera pipeline. This pipeline shows how scene radiance maps to pixel values for both film and digital cameras. Unknown
nonlinear mappings can occur during exposure, development, scanning, digitization, and remapping stages [2]. (Courtesy of Paul Debevec.)

we discuss related work on combining differently exposed
images into a single HDR image. For the later, we discuss
methods for recovering a sharp image from a single blurred
image or multiple blurred images due to camera shake.

2.1. Camera pipeline and HDR fusion

Figure 1 illustrates a typical camera pipeline [2]. In gen-
eral, the recorded pixel values Z are proportional to the
scene radiance E, transformed by some nonlinear mapping
called the camera response function. The nonlinearity is in-
duced by different parts of the imaging process. As the light
rays carrying radiance L pass through the lens from differ-
ent directions, they are attenuated and integrated by the lens
and aperture to yield sensor irradiance E. The energy of
light is accumulated on the image sensor during integration
time ∆t controlled by the shutter. The total recorded energy
is called the sensor exposure X ,

X =
∫ ∆t

t=0

Edt = E∆t. (1)

Typical sensors like CCD or CMOS are designed to produce
electrical signals which are linearly proportional to the sen-
sor exposure up to some saturation level. Above this level,
the sensor is not able to distinguish between different ex-
posure values. After exposure, the accumulated charge is
converted to integer values using analog-digital converters.
The process of digitization brings quantization noise to the
recorded data. In addition, for most digital cameras, the
digital values are further transformed nonlinearly to mimic
film characteristics or scaled by a gamma function to prop-
erly display on LCD. Individual sources of nonlinearity in
the imaging process are not important and the whole pro-
cess can be represented by one nonlinear function — the
camera response function f . The measured pixel values Z
are proportional to the sensor exposure X remapped by the
response function f , i.e. Z = f(X).

2.2. HDR construction

The idea of fusing images with different exposures into
an HDR image is not new. Its history can be traced back to
the early sixties. To recover an HDR image, multiple im-

ages of the same scene differing only in exposures are cap-
tured. Each captured image records different ranges of light
intensities. If there is enough overlap between these ranges,
an HDR image can be reconstructed by properly combining
these captured images. Debevec and Malik proposed one of
the most popular methods based on the assumption of reci-
procity [2]. This method can reconstruct HDR images up
to a scale factor. Mitsunaga and Nayar proposed a method
for recovering camera response curves assuming that they
are polynomials of Z [6]. Robertson et al. proposed a more
robust approach for HDR image reconstruction based on a
probabilistic formulation [9].

2.3. Image deblurring

Blur caused by camera shake is a common artifact in
digital photography. For the situations when there is not
enough light, a long shutter speed must be used and the re-
sultant photographs are often blurry and disappointing. Re-
covering an unblurred image from a single blurred image
or multiple blurred images is an important topic for dig-
ital photography. If one assumes the blur kernel is shift-
invariant, deblurring becomes a deconvolution problem:

B = I ⊗K + n, (2)

where B, I , K and n denote the observed blurred image,
the unknown latent sharp image, the blur kernel, and the
noise respectively. In most cases, the deconvolution prob-
lem is underdetermined since the blur kernel, the latent im-
age and the noise are all unknown. It is called blind de-
convolution and good results usually can be obtained only
for low-frequency blur kernels. Priors are often augmented
to improve the results. Fergus et al. [4] used natural image
statistics together with a sophisticated variational Bayes in-
ference algorithm to estimate the kernel and the latent im-
age. However, this approach is not robust enough and some-
times heavy human interactions must be involved [5]. Some
techniques make the problem more tractable with additional
inputs such as multiple images. Many deblurring methods
using multiple images have been proposed [1, 7]. They seek
to utilize the correlation among blurred images, based on
the assumption that all blurred observations come from the
same latent image. Promising results have been obtained



using multiple-image deblurring algorithms but they are of-
ten limited to blur due to simple directional motion. Yuan et
al. [13] proposed an image deblurring approach using a pair
of blurred/noisy images. It takes advantage of both images
to produce a high-quality reconstructed image. By formu-
lating the image deblurring problem using two images, they
have developed an iterative deconvolution algorithm which
can estimate a very good kernel and significantly reduce de-
convolution artifacts.

3. Algorithm
The inputs to our algorithm is a set of LDR images Zi

with different exposure times ∆ti taken by a hand-held
camera. Our goal is to recover the HDR scene irradiance
imageE from them. First, these LDR images are aligned by
median threshold bitmap (MTB) algorithm [11]. However,
here, we consider not only shifts but also rotations. Next,
Debevec’s algorithm [2] is used to combine the aligned
LDR images to construct a blurred HDR image to be used
as the initial guess to our algorithm. Our algorithm is based
on a Bayesian framework and solves the problem by itera-
tively updating the HDR irradiance image, blur kernels and
the camera response curve until convergence.

3.1. Image alignment

When taking a series of LDR images without a tripod,
one takes a picture, adjusts the shutter speed, takes another
one, and repeats these steps until a sufficient number of pic-
tures have been taken. During picture taking and shutter
speed adjustment, it is almost impossible to keep the cam-
era still. Thus, there often exists shift or rotation movement
between a pair of LDR images. Although, in principle, the
shift movement can be modeled by the blur kernel convolu-
tion, it is beneficial to register the images first. This thereby
reduces the kernel size, thus greatly speeding up the kernel
estimation process. Without image registration, the kernel
size must be set to be big enough to cover all shift move-
ments between LDR images. Experiments indicates that the
kernel needs to be more than 100 pixels wide. With align-
ment, kernel size can be reduced to 30 pixels.

We use the MTB alignment algorithm to register the dif-
ferently exposed photographs [11]. This algorithm is not
designed to register the blurred images originally, but it still
works well in our experiments. In order to handle camera
rotations, similar to estimating camera shift, we estimate
the rotation angle by a coarse-to-fine multigrid search ap-
proach. Alternatively, Yuan et al.’s blurred/non-blurred im-
age alignment algorithm could be used for such a task [12].

3.2. The Bayesian framework

We assume that each captured photograph Zi comes
from the same latent HDR irradiance image E. Each cap-

tured LDR image can be thought of as the output of the
HDR irradiance going through a number of processes. The
irradiance image is first convolved with the motion kernel
and then scaled up by the exposure time. Finally, the blurred
HDR irradiance image is transformed to the LDR one by ap-
plying the camera response function. The film reciprocity
equation can be written as

Zi = f ((E ⊗Ki)∆ti) , (3)

where Zi, Ki and ∆ti denote the differently exposed LDR
images, motion kernels and exposure times respectively,
and i = 1, 2, 3, . . . , N ranging over all exposure durations.
The response function of the camera is denoted by f and
assumed to be monotonic. Thus, it is invertible and let g
represent its inverse f−1. We can then define Bi as follows.

Bi = g(Zi)/∆ti = E ⊗Ki. (4)

The goal of our algorithm is to solve for the HDR ir-
radiance image E, the motion kernels K1,K2, . . . ,KN ,
and the camera response function f given the observed
LDR images Z1, Z2, . . . , ZN . Our approach formulates the
problem of computing these parameters in a well-defined
Bayesian framework and solves it using the maximum like-
lihood (ML) technique.

We try to find the most likely estimates for E, f and Ki

given the observation Zi. We can express this as a max-
imization over a probability distribution P and then use
Bayes’s rule to express the result as the maximization over
a product of probability distributions:

arg max
E,f,Ki

P (E,K1,K2, . . . ,KN , f |Z1, Z2, . . . , ZN )

= arg max
E,f,Ki

P (Z1, Z2, . . . , ZN |E,K1,K2, . . . ,KN , f)

P (E)P (K1)P (K2) . . . P (KN )P (f). (5)

Since the dimension of the observations are often much
larger than the dimension of parameters, the problem is es-
sentially overdetermined. Thus, we do not need to include
priors for E, f and Ki to constrain the solution. The prob-
lem is then turned into a maximum likelihood problem.

arg max
E,f,Ki

L(Z1, Z2, . . . , ZN |E,K1,K2, . . . ,KN , f)

= arg max
E,f,Ki

−
N∑

i=1

‖E ⊗Ki −Bi‖2. (6)

Recall that Bi = f−1(Zi)/∆ti as defined in Equation 4.
This leads to the minimization of the following objective
function

O =
N∑

i=1

‖E ⊗Ki −Bi‖2

=
N∑

i=1

‖EKi −Bi‖2 , (7)



where Ki and Bi are the vector forms of Ki and Bi, and
E is the matrix form of E [13]. In this energy function, the
irradiance, the blur kernel of each observed image and the
camera function are all unknown. We minimize the objec-
tive function with respect to a single variable at a time while
keeping the other two fixed. In order to optimize the energy
function O in Equation 7, we will iteratively estimate Ki,
E, and g in Bi in turns.

Before starting the optimization, each parameter is ini-
tialized as the following.

Initialization for Ki. We initialize Ki = δ, the delta
function, with all energy at the center of the kernel.

Initialization for E. We composite the HDR image
directly from the registered LDR images using Debevec’s
method [2], and initialize the matrix E accordingly.

Initialization for g. We initialize g to be a linear map-
ping from the pixel values to the irradiance values.

3.3. Optimizing Ki

In this step, we fixE and g to optimize forKi. By taking
E and Bi as constants, the optimal Ki can be obtained by
finding the least-square solution to the linear system EKi =
Bi. However, this naı̈ve approach may lead to poor results
because the problem is often ill-posed. In order to obtain a
better result, we use Tikhonov regularization to stabilize the
solution by solving

min
Ki

N∑
i=1

‖EKi −Bi‖2 + λ2
1 ‖Ki‖2 ,

and the Landweber method is used to iteratively update the
Ki as follows [3].

1. Initialize K0
i = δ if it is the first time for optimizing

Ki; otherwise, initialize K0
i as the optimum from the

previous Ki optimizing step.

2. Update Kn+1
i = Kn

i + β1

(
ET E + λ2

1I
)−1(

ET Bi −
(
ET E + λ2

1I
)
Kn

i

)
.

3. set Kn+1
ij = 0 if Kn+1

ij < 0 and normalize Kn+1
ij =

Kn+1
ij /

∑
j Kn+1

ij , where Kn+1
ij is the j-th element of

the vector Kn+1
i .

The iteration stops when the change between two steps is
sufficiently small. We typically run about 3 to 10 iterations
by setting λ1 = 5 and β1 = 0.8. In order to reduce the
cost of memory and reduce the running time, we applied
the above method in the Fourier domain. Note that, after the
first optimization for kernels, we can update the blur kernel
of each input image. We will take these Ki as initialization
in next iteration of optimizing Ki as described in the step 1
of the above procedure.

3.4. Optimizing E

In this step, Ki and g are fixed to optimize for E. The
objective function in Equation 7 is transformed into

O2 =
N∑

i=1

‖E ⊗Ki −Bi‖2

=
N∑

i=1

∥∥∥K̃iẼ−Bi

∥∥∥2

, (8)

where Ẽ and Bi are the vector forms of E and Bi, and K̃i

is the matrix form of Ki. Comparing to the step of opti-
mizing Ki, the roles of E and Ki are exchanged. Tikhonov
regularization method is again used to stabilize the solution
by solving

min
Ẽ

∥∥∥K̃Ẽ−B
∥∥∥2

+ λ2
2

∥∥∥Ẽ∥∥∥2

,

where K̃ is the matrix formed by concatenating
K̃1, K̃2, . . . , K̃N and B is the vector formed by con-
catenating B1,B2, . . . ,BN .

We again adopt the Landweber method to find the opti-
mum by iteratively updating Ẽ as follows.

1. Initialize Ẽ from the previous E optimizing step; If
it is the first time, initialize E as the HDR image by
directly compositing the input LDR images.

2. Update Ẽn+1 = Ẽn + β2

(
K̃T K̃ + λ2

2I
)−1(

K̃T Bi −
(
K̃T K̃ + λ2

2I
)
Ẽn
)

.

3. set Ẽn+1
j = 0 if Ẽn+1

j < 0, where Ẽn+1
j is the j-th

element of the vector Ẽn+1.

In our experiments, setting λ2 as 3 or 4 often leads to
good results. We set β2 as 0.8 and run about 6 to 15 iter-
ations. The optimization is also performed in the Fourier
domain to reduce the memory and computation cost. After
optimization, E can be set according to the optimum Ẽ.

3.5. Optimizing g

After optimizingKi and E, we fixKi and E to optimize
the inverse camera function g. We rewrite Equation 7 and
add a smoothness term to ensure the function g is smooth:

O3 =
N∑

i=1

P∑
j=1

‖(Ej ⊗Ki) ∆ti − g(Zij)‖2

+ λ3

Zmax−1∑
z=Zmin+1

g′′(z)2, (9)



where P is the number of pixels in an image; Zij is the pixel
value of the j-th pixel in the i-th image; Zmax = 255 and
Zmin = 0. Recovering g only requires finding the finite
number of values that g(z) can take. Since z represents a
pixel brightness value, it can only take the 256 discrete val-
ues within [0..255]. By setting g′′(z) = g(z− 1)− 2g(z) +
g(z + 1), Equation 9 leads to a quadratic function that can
be optimized as a linear least square problem [2]. The scalar
λ3 weights the smoothness term relative to the data fitting
term, and should be chosen appropriately for compensating
the amount of noise in the Zij measurements. As suggested
by Debevec [2], we use the following hat weighting func-
tion to downweight the unreliable observations:

w(z) =
{
z − Zmin, for z ≤ 1

2 (Zmin + Zmax)
Zmax − z, for z > 1

2 (Zmin + Zmax) (10)

Instead of using all pixels, we only need to use enough
pixels to optimize Equation 9 as long as the resulting linear
system is sufficiently overdetermined. We prefer to select
pixels from flat regions to avoid problems with misalign-
ment. We take the mid-exposed photograph as the reference
image and apply edge detection. We randomly pick samples
from the regions which are not on edges. After the process
of inverse camera curve optimization, we can update the in-
verse camera function g and thereby Bi.

These three steps complete one iteration, and the process
repeats by updating kernel Ki of each image (Section 3.3),
the irradiance image E (Section 3.4) and inverse camera
function g (Section 3.5) until convergence. We typically
run 10 to 15 iterations.

3.6. Implementation details

Irradiance scaling. Because of the regularization term
in optimizing ‖E‖2, the optimal irradiance values E are al-
ways scaled down by a factor. Thus, after optimizing E
in each iteration, we scale up the reconstructed irradiance
E to keep its values in a similar scale as the initialized ir-
radiance Einitial. The scaling factor is determined by the
ratio of their mean values, mean(Einitial)/mean(E). We
determine the scale factor for each color channel separately.

Color handling. We make the assumption that all three
color channels have the same blur kernels. Thus, in our im-
plementation for optimizingKi, we only consider the green
channel. The same set of kernels Ki are used for optimiz-
ing E and g for all three color channels separately. How-
ever, optimizingE and g separately for three color channels
sometimes causes a scale difference between color chan-
nels. In order to produce a color-balanced high dynamic
range image, we need to relate color channels after the al-
gorithm converges. We assume that the camera response
functions of three channels are very similar, and find the
scale factors for red channel and blue channel by taking the
inverse camera function g of green channel as reference.

4. Results and comparisons
To demonstrate the effectiveness of our algorithm, we

tested our method on both synthetic examples and real pho-
tographs. For comparisons, since there is no other algorithm
solving the same problem this paper addresses, we com-
pared our algorithm to the naı̈ve applications of two image
deblurring algorithms, Fergus’ algorithm [4] and Yuan’s al-
gorithm [13]. For Fergus’ algorithm, each LDR image is de-
blurred individually, and then all deblurred images are com-
posited together to reconstruct the HDR image using De-
bevec’s algorithm. Yuan’s algorithm needs a noisy/blurred
image pair for deblurring. We use the LDR image with the
shortest exposure time as the noisy one, and others as the
blurred images to obtain the deblurred images. After de-
blurring, the HDR image is also reconstructed using De-
bevec’s algorithm. The implementation of Fergus’ algo-
rithm is directly taken from the authors, and Yuan’s algo-
rithm is implemented by ourselves. We also tried to use
Shan et al.’s single-image deblurring algorithm [10], but
found it frequently failed when dealing with images of our
resolution, 2, 000× 1, 500.

We first create a synthetic example so that we have
the ground truth to compare with. We created five virtual
LDR images synthesized from a HDR image E by setting
Zi = Q(f((E⊗Ki)∆ti)), where Q is a quantization func-
tion that quantizes values to 256 discrete levels. In this ex-
periment, ∆ti’s are set to 1

512 , 1
256 , 1

128 , 1
64 and 1

32 to gener-
ate five differently exposed LDR images. The camera func-
tion f is adopted from a real camera’s (Canon G9) response
curve, and Ki’s are taken from previous deblurring work.

Figure 2 shows the results for the experiment with syn-
thetic data. Figure 2(a) is the tone-mapped image of the
ground truth HDR image taken from Debevec’s website.
Figures 2(b-f) show the LDR images synthesized using the
above configuration and their kernels. Figure 2(g) is the
initial guess for the irradiance image generated by directly
applying Debevec’s algorithm. Figures 2(h) and (i) are re-
spectively the estimated blur kernels and the camera re-
sponse curve outputted by our algorithm. In Figure 2(i), the
sky blue curve stands for the ground truth camera response
curve. The red, green and blue curves are the recovered re-
sponse curves of red, green and blue channels, respectively.
Figure 2(j), (k) and (l) are results of our algorithm, Fergus’
algorithm and Yuan’s algorithm. Our result clearly exhibits
sharper image details than other two algorithms and more
resembles the ground truth.

Note that those two algorithms are not designed for HDR
reconstruction. Thus, it is not surprising that both have
worse results than ours since our algorithm takes advan-
tage of solving HDR images from all observations together.
However, since our algorithm is the first of its kind, these
two algorithms are probably the closest ones we can com-
pare to. The comparison at least shows that the naı̈ve ex-



(a) Ground-truth (b) Z1 with ∆t = 1/512 (c) Z2 with ∆t = 1/256

(d) Z3 with ∆t = 1/128 (e) Z4 with ∆t = 1/64 (f) Z5 with ∆t = 1/32

(g) Einitial (h) Estimated blur kernels (i) Response curves

(j) Our result (k) Fergus’ result (l) Yuan’s result
Figure 2. Results and comparisons for a synthetic example.

tensions of previous image deblurring algorithms will not
lead to satisfactory results and solving the problem is not a
trivial task.

Figure 3 shows the application of our algorithm on a set
of differently exposed real photographs taken by a hand-
held camera. The image size is 2, 000× 1, 500 and the ker-
nel size is 31 × 31. Figure 3(a-d) shows four captured im-
ages and the blur kernels estimated by our algorithm. Note
that, for this example, we did not perform image alignment.
Thus, the kernels are not necessarily centered. Figures 3(e)
and (g) show close-ups of the reconstructed HDR image us-
ing Debevec’s algorithm. Figures 3(f) and (h) show close-
ups of our results. Clearly, our result is shaper.

Figure 4 shows comparisons on two sets of real pho-
tographs. Figure 4(a) shows the real photos with shutter
speeds of 1

256 , 1
128 , 1

64 , 1
32 and 1

16 seconds. Figure 4(b)
shows the images taken with the longest exposure and their
close-ups. Clearly, they are blurred. Figure 4(c), (d), (e)
are the results and the close-ups of Fergus’ algorithm and
Yuan’s algorithm and our algorithm respectively. Our algo-
rithm has better results than the other two. Note that Yuan’s
method sometimes shows more high frequencies than our
method, particularly for the leftmost brick wall in the close-
up. However, at the same time, it also introduces high-
frequency artifacts. For example, when looking closely
at the brick wall in the middle, Yuan’s method shows rip-



(a) Z1 at 1/64s and K1 (b) Z2 at 1/32s and K2

(c) Z3 at 1/16s and K3 (d) Z4 at 1/8s and K4

(e) close-up of Einitial (f) close-up of E

(g) close-up of Einitial (h) close-up of E
Figure 3. Results for an example with real photographs.

ples instead of vertical stripes that the wall should have.
Such high-frequency artifacts also appear in the stone tex-
ture above the brick wall. It appears rougher than it should
be. Stochasticity of the stone texture helps hide the artifacts.
Such artifacts are more obvious in the black lamp cover and
the left scene of Figure 4.

5. Conclusions and future work
This paper proposed a unified formulation for recover-

ing radiance image, blur kernels and camera response curve.
With this, we propose a technique for reconstructing a non-
blurred HDR image from a set of differently exposed and
blurred images taken with a hand-held camera. Bayesian
framework is used to define the probabilistic model. A
maximum-likelihood approach is applied to find the best so-
lutions for the blur kernels, the HDR irradiance image and
the camera response curve through an EM-like optimiza-
tion algorithm. We found that the proposed technique suc-
cessfully reconstructs HDR images from LDR images taken
with hand-held cameras in most cases.

In the future, we plan to augment priors for kernel p(Ki),
for the reconstructed HDR image p(E) and for the camera
curve p(f). By adding these priors, it could improve the
results. In addition, our method could be more efficient and
effective by taking account that short exposed images are
less blurred. Finally, our approach shares the same limita-
tion with most image deblurring techniques: the blur ker-
nel must be shift-invariant. When the blurred images taken
from hand-held cameras are affected by blur that is not shift-
invariant, e.g. from slight camera rotation or non-uniform
object motion, our approach will have problems. Image
deblurring can be further improved if we replace the shift-
variant assumption with a more general kernel assumption.
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