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Multiple Kernel Fuzzy Clustering
Hsin-Chien Huang, Yung-Yu Chuang and Chu-Song Chen

Abstract—While fuzzy c-means is a popular soft clustering
method, its effectiveness is largely limited to spherical clusters.
By applying kernel tricks, the kernel fuzzy c-means algorithm
attempts to address this problem by mapping data with non-
linear relationships to appropriate feature spaces. Kernel com-
bination, or selection, is crucial for effective kernel clustering.
Unfortunately, for most applications, it is not easy to find the
right combination. We propose a multiple kernel fuzzy c-means
(MKFC) algorithm which extends the fuzzy c-means algorithm
with a multiple kernel learning setting. By incorporating multiple
kernels and automatically adjusting the kernel weights, MKFC is
more immune to ineffective kernels and irrelevant features. This
makes the choice of kernels less crucial. In addition, we show
multiple kernel k-means (MKKM) to be a special case of MKFC.
Experiments on both synthetic and real-world data demonstrate
the effectiveness of the proposed MKFC algorithm.

Index Terms—Clustering, soft clustering, fuzzy c-means, mul-
tiple kernel learning.

I. INTRODUCTION

CLUSTERING is an unsupervised method for dividing
data into disjoint subsets with high intra-cluster similarity

and low inter-cluster similarity. Over the past decades, many
clustering algorithms have been proposed, including k-means
clustering [1], mixture models [1], spectral clustering [2],
locality-sensitive hashing [3], and maximum margin cluster-
ing [4], [5]. Most of these approaches perform hard clustering,
that is, they assign each item to a single cluster. This works
well when clustering compact and well-separated groups of
data, but in many real-world situations, clusters overlap. Thus,
for items that belong to two or more clusters, it may be more
appropriate to assign them with gradual memberships to avoid
coarse-grained assignments of data [6]. This class of clustering
methods is called soft – or fuzzy – clustering.

Fuzzy c-means (FCM) [7], [8] is one of the most promising
fuzzy clustering methods. In most cases, it is more flexible
than the corresponding hard clustering algorithms. Unfortu-
nately, as with other clustering methods that are based on the
L2-norm distance in the observation space, it has been shown
while it is effective for spherical clusters it does not perform
well for more general clusters [9]. Thus kernel-based clus-
tering has been proposed to perform clustering in a typically
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higher-dimensional feature space spanned by embedding maps
and corrsponding kernel functions [10]. The fuzzy c-means
algorithm has also been extended to the kernel fuzzy c-means
algorithm [11] which yields better performance. However, for
such kernel-based methods, a crucial step is the combination
or selection of the best kernels among an extensive range of
possibilities. This step is often heavily influenced by prior
knowledge about the data and by the patterns we expect to
discover [12]. Unfortunately, it is unclear which kernels are
more suitable for a particular task [13], [14].

The problem is aggravated for many real-world clustering
applications, in which there are multiple potentially useful
cues. For such applications, to apply kernel-based clustering, it
is often necessary to aggregate features from different sources
into a single aggregated feature. However, these features are
often not equally relevant to clustering; some are irrelevant,
and some are less important than others [9]. As most clustering
methods do not embed a feature selection capability, such
feature imbalances often necessitate an additional process of
feature selection, or feature fusion, before clustering.

Instead of a single fixed kernel, multiple kernels may be
used. Recent developments in multiple kernel learning have
shown that the construction of a kernel from a number of basis
kernels allows for more flexible encoding of domain knowl-
edge from different sources or cues. However, as observed by
Zhao et al., previous multiple kernel learning approaches have
focused on supervised and semi-supervised learning [13]. A
notable exception is their work on multiple kernel maximum
margin clustering [13] which is designed for hard clustering.

We here extend the multiple kernel learning paradigm to
fuzzy clustering. The proposed multiple kernel fuzzy c-means
(MKFC) algorithm simultaneously finds the the best degrees
of membership and the optimal kernel weights for a non-
negative combination of a set of kernels. We also embed the
feature weight computation into the clustering procedure. The
incorporation of multiple kernels and the automatic adjustment
of kernel weights renders MKFC more immune to unreliable
features or kernels. It also makes combining kernels more
practical since appropriate weights are assigned automatically.
Effective kernels or features tend to contribute more to the
clustering and therefore improve results. Compared to Zhao
et al.’s work [13], our approach provides the following advan-
tages. First, our method does not require explicit evaluation in
the feature space but conducts only kernel-based evaluations.
Thus our method is more suitable for relational data than their
method. Second, MKFC is easy to implement. As mentioned
by Zhao et al. [13], their formulation leads to a non-convex
integer optimization problem which is much more difficult to
solve. Finally, MKFC yields fuzzy (soft) clustering results
which are more appropriate when clusters have significant
overlap.
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The rest of the paper is organized as follows. In Section II
we discuss related work, and in Section III we review the
fuzzy c-means algorithm. We derive the MKFC method in
Section IV, and we present in Section V experiments on both
synthetic and real data. We conclude in Section VI.

II. RELATED WORK

In the fuzzy c-means algorithm, a data item may belong to
more than one cluster with different degrees of membership.
The algorithm was first developed by Dunn in 1973 [7] and
was later improved by Bezdek in 1981 [8]. Dave and Krishna-
puram [15] analyzed several popular robust clustering methods
and established the connection between fuzzy set theory and
robust statistics. Hathaway and Bezdek [16] extended the
RFCM algorithm to arbitrary (non-Euclidean) dissimilarity
data. Dave and Sen [17] proposed the fuzzy relational data
clustering algorithm which can handle data sets containing out-
liers and can deal with all kinds of relational data. Parameters
such as the fuzzification degree greatly affect the performance
of FCM. While Pal and Bezdek [18] suggest that a good setting
for this degree for some applications is 2, this choice was based
on empirical studies and may not be appropriate for some
real data sets. Yu and Yang [19] presented the generalized
FCM algorithm, proposing an approach for setting algorithm
parameters. Krishnapuram et al. [20] presented the fuzzy c-
medoid relational clustering algorithm, which can efficiently
cluster large data sets.

The use of kernels has received considerable attention
because kernels make it possible to map data onto a high di-
mensional feature space in order to increase the representation
capability of linear machines. Genton [21] presented classes
of kernels for machine learning from a statistical perspective.
As FCM is similar to the k-means algorithm in that it uses
the squared Euclidean distance to measure similarity between
prototypes and data points, it is more effective when clustering
spherical clusters [11]. Girolami generalized the approach for
a wider variety of clusters when he proposed kernel-based
clustering [10]. Camastra and Verri [22] presented a kernel-
based clustering algorithm inspired by the k-means algorithm
that iteratively refines results using a one-class support vector
machine. Tzortzis et al. [23] proposed a deterministic and
incremental algorithm to overcome the cluster initialization
problem: their algorithm maps data points from the input
space to a higher dimensional feature space through the use
of a kernel function and optimizes the clustering error. Later,
Zhang and Chen proposed the kernel-based fuzzy c-means
(KFC) algorithm [11] which also allows for incomplete data.
Shen et al. addressed the same problem using weighted KFC
for better feature selection [9]. Leski extended the fuzzy c-
means algorithm with insensitivity control so that the re-
sulting method is more robust to noise and outliers [24].
Filippone et al. [25] contributed a survey of kernel and spectral
clustering methods. Kernel clustering methods are the kernel
versions of many classical clustering algorithms such as k-
means and SOM. Hathaway et al. [26] extended kernelization
to relational data clustering by proposing a kernelized form of
the non-Euclidean relational fuzzy c-means algorithm. Chiang

and Hao [27] proposed a multiple spheres support vector
clustering algorithm based on the adaptive cell growing model
which maps data points to a high dimensional feature space
using the desired kernel function. As mentioned by Graves
and Pedrycz [14], KFC is divided into two categories. In the
first category, prototypes reside in the feature space and are
implicitly mapped to the kernel space through the use of a
kernel function, whereas in the second category, prototypes
are directly constructed in the kernel space, which allows more
freedom for prototypes in the feature space.

Our method is related to multiple kernel learning. For kernel
methods, the key to success is the formation of a suitable
kernel function [13]. However, a single kernel selected from
a pre-defined group is sometimes insufficient to represent the
data. Different features chosen for data can result in different
similarity measures corresponding to distinct kernels. The
combination of multiple kernels from a set of basis kernels
has therefore gained acceptance as a way to refine the results
of single kernel learning. Multiple kernel learning originates
from Lanckriet et al.’s work [28] which results in a convex
optimization problem for support vector machines. Bach et al.
suggested an alternative algorithm based on sequential mini-
mization optimization [29]. Efficiency issues of multiple kernel
learning were later addressed by Sonnenburg et al. using semi-
infinite linear programming [30] and by Rakotomamonjy et al.
using a two-step alternation optimization scheme [31]. Varma
and Babu studied superlinear combinations of kernels [32]
and Gonen et al. studied local combinations of kernels [33].
Frigui et al. [34] proposed a semi-supervised algorithm that
clusters and aggregates relational data (SS-CARD): this al-
gorithm not only partitions the data into meaningful clusters,
but also aggregates pairwise distances from multiple relational
matrices and learns a relevance weight for each matrix in
each cluster. However, most effort along this direction has
been spent on supervised learning, in particular, support vector
classification and regression. An exception to extend multiple
kernels to unsupervised learning, hard clustering in particular,
is Zhao et al.’s work [13] which is based on maximum margin
clustering. Our work is the first to extend multiple kernels to
soft clustering.

III. FUZZY C-MEANS

In this section we briefly review the fuzzy c-means (FCM)
algorithm and its derivation. Given the number of clusters C
and a set of data X containing N l-dimensional vectors, xi, the
fuzzy c-means algorithm outputs the degrees of membership
uic, that is, the possibility that data xi belongs to the c-th
cluster, by minimizing the following objective function:

J(U,V) =
N∑
i=1

C∑
c=1

umicd
2(xi,vc) (1)

subject to
C∑

c=1

uic = 1, ∀i

and uic ≥ 0, ∀i, c

and
N∑
i=1

uic > 0, ∀c,
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Algorithm 1 Fuzzy c-means (FCM). Given a set of N data
points X = {xi}Ni=1 and the desired number of clusters C,
output a membership matrix U = {uic}N,C

i,c=1.

1: procedure FCM(Data X, Number C)
2: Initialize membership matrix U(0)

3: repeat
4: update V(t) = [vc] by calculating centers vc using

Equation (4)
5: update U(t) = [uic] by calculating memberships uic

using Equation (3)
6: until ∥ U(t) −U(t−1) ∥< ϵ
7: return U(t)

8: end procedure

where m is the fuzzification degree, which should be larger
than 1; d(·, ·) is the Euclidean distance; vc is the center of
the c-th cluster; U = [uic]i=1..N,c=1..C is an N ×C member-
ship matrix whose elements are the degrees of membership;
and V = [v1v2 · · ·vC ] is a l × C matrix whose columns
correspond to cluster centers. In the fuzzy c-means algorithm
we solve the above constrained optimization problem using
Lagrange multipliers:

Jλ(U,V) =
N∑
i=1

C∑
c=1

umicd
2(xi,vc) + λ

(
C∑

c=1

uic − 1

)
. (2)

The problem is solved by iteratively updating degrees of
membership with fixed centers and updating centers with fixed
degrees of membership. The closed-form formulas for updates
are derived by taking the partial derivatives with respect to
both and setting them to zero.

uic =
1

C∑
c′=1

(
d(xi,vc)
d(xi,vc′ )

) 2
m−1

(3)

and

vc =

N∑
i=1

umicxi

N∑
i=1

umic

(4)

One thing to note is that although we do not add any
Lagrange multiplier for the non-negative constraints in Equa-
tion (1), it can be verified that the above formula implicitly
satisfies constraints such as uic ≥ 0, ∀i, c. In addition, when
m is very close to 1, the fuzzy c-means algorithm degenerates
to the k-means algorithm. Algorithm 1 summarizes the fuzzy
c-means algorithm.

IV. MULTIPLE KERNEL FUZZY C-MEANS

A. Objective function

To discover nonlinear relationships among data, kernel
methods use embedding mappings that map features of the
data to new feature spaces [12]. Consider a set of M such
mappings, Φ = {ϕ1, ϕ2, · · · , ϕM}. Each mapping ϕk recodes
the l-d data x as a vector ϕk(x) in its feature space whose

dimensionality is Lk. Let {κ1, κ2, · · · , κM} be the Mercer
kernels corresponding to these implicit mappings respectively,

κk(xi,xj) = ϕk(xi)
Tϕk(xj).

To combine these kernels and also ensure that the resulted
kernel still satisfies Mercer’s condition, we consider a non-
negative combination of these feature maps, ϕ′, that is,

ϕ′(x) =
M∑
k=1

ωkϕk(x) with ωk ≥ 0.

Unfortunately, as these implicit mappings do not necessarily
have the same dimensionality, such a linear combination may
be impossible. Hence, we construct a new set of independent
mappings, Ψ = {ψ1, ψ2, · · · , ψM}, from the original map-
pings Φ as

ψ1(x)=


ϕ1(x)
0
...
0

 , ψ2(x)=


0

ϕ2(x)
...
0

 , · · · , ψM (x)=


0
0
...

ϕM (x)

 .
Each of these constructed mappings converts x into a L-d
vector, where L =

∑M
k=1 Lk. Note that it is possible that some

feature spaces have infinite dimensionalities. In such cases, we
can always interlace the dimensions of these features so that
they still form a set of orthogonal bases. However, as we later
eliminate evaluation in the feature space, this will not matter.
Constructing new mappings in this way ensures that the feature
spaces of these mappings have the same dimensionality and
their linear combination can be well defined. In addition, these
mappings form a new set of orthogonal bases since

ψk(xi)
Tψk(xj) = κk(xi,xj)

ψk(xi)
Tψk′(xj) = 0 if k ̸= k′.

As such orthogonal bases prevent cross terms between dif-
ferent implicit mappings, we can focus on the inner product
of data of the same mapping that can be well evaluated
by the original kernel functions. We seek to find ψ(x) =∑M

k=1 ωkψk(x), a non-negative linear expansion of the bases
in Ψ, which maps data to an implicit feature space. Thus, the
objective function becomes

J(w,U,V) =

N∑
i=1

C∑
c=1

umic (ψ(xi)− vc)
T
(ψ(xi)− vc) (5)

ψ(x) =ω1ψ1(x) + ω2ψ2(x) + · · ·+ ωMψM (x)

subject to ω1 + ω2 + · · ·+ ωM = 1 (6)
and ωk ≥ 0, ∀k (7)

and
C∑

c=1

uic = 1, ∀i (8)

and uic ≥ 0, ∀i, c (9)

and
N∑
i=1

uic > 0, ∀c,

where vc is the center of the c-th cluster in the implicit
feature space, w = (ω1, ω2, · · · , ωM )T is a vector consisting
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of weights, U is a N×C membership matrix whose elements
are the memberships uic, and V is a L × C matrix whose
columns correspond to cluster centers.

B. Optimizing memberships

The goal of multiple kernel fuzzy c-means (MKFC) is
to simultaneously find combination weights w, memberships
U, and cluster centers V which minimize the objective
function in Equation (5). However, directly evaluating the
cluster centers may not be possible because they are in the
implicit feature space; we show later that their associated
computation can be replaced by the kernel trick. Similar to
fuzzy c-means, we first fix the weights and cluster centers
to find the optimal memberships. For brevity, we use Dic to
denote the distance between data xi and cluster center vc,
i.e., D2

ic = (ψ(xi)− vc)
T
(ψ(xi)− vc). Thus, Equation (5)

can be written as

J(w,U,V) =
N∑
i=1

C∑
c=1

umicD
2
ic. (10)

When the weights and cluster centers are fixed, the distances
are constants. Similar to fuzzy c-means (Equation (2)), by
forming an energy function with Lagrange multiplier λ for the
constraint

∑C
c=1 uic = 1, we have the following equation:

Jλ(U,V) =

N∑
i=1

C∑
c=1

umicD
2
ic + λ

(
C∑

c=1

uic − 1

)
.

Next, we take its derivatives with respect to the memberships
and set them to zero; for each membership uic, we have

∂Jλ
∂uic

= mD2
icu

m−1
ic + λ = 0.

The solution for uic is

uic =

(
−λ
m

) 1
m−1 1

D
2/(m−1)
ic

.

Because of the constraint
∑C

c=1 uic = 1, we can eliminate λ
and obtain the closed-form solution for the optimal member-
ships as

uic =
1

C∑
c′=1

(
D2

ic

D2
ic′

) 1
m−1

. (11)

C. Optimizing weights

From Equation (11), it can be seen that when the weights
w and cluster centers V are fixed, the optimal memberships
U can be obtained. Now, let us assume the memberships are
fixed. We seek to derive the optimal centers and weights to
combine the kernels. By taking the derivative of J(w,U,V)
in Equation (5) with respect to vc and setting it to zero, we
have

∂J(w,U,V)

∂vc
= −2

N∑
i=1

umic (ψ(xi)− vc) = 0.

Hence, when U are given, the optimal vc is the following
closed-form solution represented by the combination weights:

vc =

N∑
i=1

umicψ(xi)

N∑
i=1

umic

=
N∑
i=1

ûicψ(xi), (12)

where ûic =
um
ic∑N

i=1 um
ic

is the normalized membership. How-
ever, these cluster centers are in the kernel-defined feature
space which might be implicit or even have an infinite dimen-
sionality. Therefore, it may be impossible to evaluate these
centers directly. Fortunately, for clustering, it is often sufficient
to just obtain the memberships; we later show that it is
possible to obtain memberships and weights without implicitly
evaluating cluster centers. Thus, we focus on finding optimal
weights for fixed memberships when the cluster centers are
the closed-form optimal solution (Equation (12)).

D2
ic =(ψ(xi)− vc)

T
(ψ(xi)− vc)

=ψ(xi)
Tψ(xi)− 2ψ(xi)

T

 N∑
j=1

ûjcψ(xj)


+

 N∑
j=1

ûjcψ(xj)

T  N∑
j′=1

ûj′cψ(xj′)


=

M∑
k=1

ω2
kκk(xi,xi)− 2

N∑
j=1

M∑
k=1

ûjcω
2
kκk(xi,xj)

+
N∑
j=1

N∑
j′=1

M∑
k=1

ûjcûj′cω
2
kκk(xj ,xj′) (13)

Since memberships are fixed and kernel functions can be
evaluated, Equation (13) can be re-arranged as

D2
ic =

M∑
k=1

αickω
2
k, (14)

where the coefficient αick can be written as

αick =κk(xi,xi)− 2
N∑
j=1

ûjcκk(xi,xj)

+
N∑
j=1

N∑
j′=1

ûjcûj′cκk(xj ,xj′). (15)

Note that we have eliminated cluster centers from the eval-
uation. Thus, the objective function in Equation (10) becomes

J(w,U) =
N∑
i=1

C∑
c=1

umic

M∑
k=1

αickω
2
k (16)

suject to ω1 + ω2 + · · ·+ ωM = 1

and ωk ≥ 0, ∀k

and
C∑

c=1

uic = 1, ∀i

and uic ≥ 0, ∀i, c.
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When memberships are fixed, we have

J(w) =
M∑
k=1

βkω
2
k (17)

subject to ω1 + ω2 + · · ·+ ωM = 1

and ωk ≥ 0, ∀k,

where the coefficient βk is

βk =

N∑
i=1

C∑
c=1

umicαick. (18)

This is a constrained optimization problem. By introducing a
Lagrange multiplier, we have

Jλ(w, λ) =
M∑
k=1

βkω
2
k − 2λ

(
M∑
k=1

ωk − 1

)
.

Note that for now, we ignore the constraint that weights must
be non-negative. Later we show that it is satisfied in our
solution. By taking the partial derivatives and setting them
to zero, we have

∂Jλ
∂ωk

= 2βkωk − 2λ = 0.

The solution for the above equation is ωk = λ
βk

. In addition,
we know that

M∑
k=1

ωk =

(
1

β1
+

1

β2
+ · · ·+ 1

βM

)
λ = 1.

Thus, we have

λ =
1

1
β1

+ 1
β2

+ · · ·+ 1
βM

,

and the weight is the harmonic mean

ωk =

1
βk

1
β1

+ 1
β2

+ · · ·+ 1
βM

. (19)

Above, we have derived the alternative optimizations of
memberships and kernel combination weights. However, the
derivations are based only on the equality constraints (Equa-
tions (6) and (8)) and do not take into account the inequality
constraint, that is, that the memberships and weights should
not be negative (Equations (7) and (9)). Since it is easy to
verify that the derived memberships (Equation (11)) always
satisfy uic ≥ 0 and

∑N
i=1 uic > 0, ∀c, we show that the

solution of the combination weights also satisfies the non-
negative constraint, i.e., ωk ≥ 0. We first show that βk ≥ 0 for
all k. By definition, D2

ic should always be non-negative for all
weights, that is, ∀ωk, D

2
ic =

∑M
k=1 αickω

2
k ≥ 0. Thus, we can

conclude that ∀ωk, αick ≥ 0. Otherwise, if αick′ < 0 for some
k′, we can let ωk′ = 1 and ωk = 0 if k ̸= k′. But this set of
weight assignments means that D2

ic < 0, which contradicts its
non-negative property. Therefore, since both αick and uic are
non-negative, from Equation (18), we conclude that βk ≥ 0.
Finally, since ωk’s are harmonic means of non-negative βk’s as
shown in Equation (19), they are also non-negative. Thus, even
though we do not initially take into account the non-negative

Algorithm 2 Multiple kernel fuzzy c-means (MKFC).
Given a set of N data points X = {xi}Ni=1, a set of kernel
functions {κk}Mk=1, and the desired number of clusters C,
output a membership matrix U = {uic}N,C

i,c=1 and weights
{ωk}Mk=1 for the kernels.

1: procedure MKFC(Data X, Number C, Kernels {κk}Mk=1)
2: Initialize membership matrix U(0)

3: repeat
4: û

(t)
ic =

u
(t)
ic

m∑N
i=1 u

(t)
ic

m ◃ calculate normalized memberships

◃ calculate coefficients by Equation (15)
5: for (i = 1..N ; c = 1..C; k = 1..M ) do

6: αick ← κk(xi,xi)− 2
N∑

j=1

û
(t)
jc κk(xi,xj) +

N∑
j=1

N∑
j′=1

û
(t)
jc û

(t)

j′cκk(xj ,xj′)

7: end for
◃ calculate coefficients by Equation (18)

8: for (k = 1..M ) do
9: βk ←

∑N
i=1

∑C
c=1

(
u
(t)
ic

)m

αick

10: end for
◃ update weights by Equation (19)

11: for (k = 1..M ) do
12: ω

(t)
k ←

1
βk

1
β1

+ 1
β2

+···+ 1
βM

13: end for
◃ calculate distances by Equation (14)

14: for (i = 1..N ; c = 1..C) do

15: D2
ic ←

M∑
k=1

αick

(
ω

(t)
k

)2

16: end for
◃ update memberships by Equation (11)

17: for (i = 1..N ; c = 1..C) do
18: u

(t)
ic ← 1

C∑
c′=1

(
D2

ic
D2ic′

) 1
m−1

19: end for
20: until ∥ U(t) −U(t−1) ∥< ϵ

21: return U(t), {ω(t)
k }

M
k=1

22: end procedure

constraint, the solution we obtain automatically satisfies this
constraint.

D. Algorithm

We start from the objective function involving cluster cen-
ters, memberships, and kernel weights. We show that the
cluster centers can be eliminated from the objective func-
tion so that we do not need to implicitly evaluate cluster
centers, which are potentially not computable. Algorithm 2
summarizes the MKFC algorithm, which starts by initializing
a random membership matrix satisfying non-negative and
unity constraints. Optimal weights are calculated by fixing the
memberships, and optimal memberships are updated assuming
fixed weights. The process is repeated until the amount of
change per iteration in the membership matrix falls below a
given threshold. The computational complexity of MKFC is
O(N2CM) per iteration, excluding construction of the kernel
matrices.
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Algorithm 3 Multiple kernel k-means (MKKM). Given a
set of N data points X = {xi}Ni=1, a set of kernel functions
{κk}Mk=1, and the desired number of clusters C, output a
membership matrix U = {uic ∈ {0, 1}}N,C

i,c=1 and weights
{ωk}Mk=1 for the kernels.

1: procedure MKKM(Data X, Number C, Kernels {κk}Mk=1)
2: Initialize membership matrix U(0)

3: repeat
4: run line 4 to line 16 of Algorithm 2
5: ◃ update memberships
6: for (i = 1..N ; c = 1..C) do
7: if D2

ic > min{D2
ic′}Cc′=1 then

8: u
(t)
ic ← 0

9: else
10:
11: u

(t)
ic ← 1

12: end if
13: end for
14: until ∥ U(t) −U(t−1) ∥< ϵ

15: return U(t), {ω(t)
k }

M
k=1

16: end procedure

E. Multiple Kernel K-means: a Special Case of MKFC

The proposed MKFC method can be viewed as a multiple
kernel extension of k-means, the most widely used clustering
algorithm. The argument is similar to that for k-means being
a special case of FCM.

Consider Equation (11) when m approaches 1. If there exists
any cluster c′ such that Dic′ < Dic, then the denominator
approaches ∞. On the other hand, if Dic is the smallest among
all Dic′ , the denominator approaches zero. That is,

uic =

{
0, if there exists c′ such that Dic′ < Dic

1, otherwise.

Since uic is either 1 or 0 as determined by the nearest
center, MKFC reduces to hard clustering. We here refer to the
resultant hard-clustering version of MKFC (when m is very
close to 1) as multiple kernel k-means (MKKM). MKKM is
depicted in Algorithm 3. To the best of our knowledge, there
is no previous study that has extended k-means to MKKM.

V. EXPERIMENTS

We begin this section by reviewing the measures we have
adopted to evaluate and compare the clustering results (Sec-
tion V-A), after which we discuss the issue of the base
kernel selection (Section V-B). We conclude the section with
a presentation of experiments on synthetic data (Section V-C),
a number of real data sets from the UCI machine learning
repository [35] (Section V-D), two well-known face databases
from ORL [36] and CMU-PIE [37] (Section V-E), and two
famous text datasets from 20 Newsgroups and Reuters-21578
(Section V-F).

For each set of experiments, we describe the data sets, the
experimental settings, the choice of kernels, the experimental
results, and comparisons to other methods.

These data sets are summarized in Table I. For all exper-
iments, we set the fuzzification degree m to 1.08 and the

stop threshold ϵ as 0.0001. Since the focus of this paper is
not the estimation of the number of clusters, we set as the
ground truth for all methods the number of clusters C. Because
the performance of these clustering methods depends on the
initial values, we performed 50 runs for each experiment and
report the average. We compare the proposed method (MKFC)
and multiple-kernel k-means (MKKM) to k-means (Kmean),
fuzzy c-means (FCM), and single-kernel-based fuzzy c-means
(KFC).

A. Performance measures

The fuzzy-c-means-based soft clustering algorithms (FCM,
KFC, MKFC) described in this paper generate an N×C matrix
U = [uic]i=1..N,c=1..C whose elements uic ∈ [0, 1] are the
membership degrees, the possibility that data xi belongs to
the c-th cluster. These membership degrees make it possible
for us to measure the performance of these algorithms using
either hard clustering measures or soft clustering measures.

Hard clustering measures. Most clustering measures are
designed for the evaluation of the results of hard clustering,
in which each data item is assigned to a single class. To use
this kind of measure for soft clustering, one must convert
the membership degrees to hard assignments. We take the
conventional approach for such assignments, that is, we assign
each data item to the cluster with the highest membership
degree. Hard clusterings measures can be roughly categorized
into pair-counting-based measures (e.g., Rand index (RI) and
adjusted Rand index (ARI) [38]), set-matching-based measures
(e.g., H criterion) and information-theoretic-based measures
(e.g., mutual information and normalized mutual information
(NMI) [39]).

While there are studies that evaluate these clustering mea-
sures, there is currently no definite answer as to which measure
is best. Vinh et al. [40] reported that some popular measures
do not facilitate informative clustering comparisons because
they either do not have a predetermined range or do not
have a constant baseline value. For these measures, a poor
clustering could yield a very high performance index, espe-
cially with a large number of clusters. They suggest ARI as a
faithful measure that does not have these drawbacks. However,
Wu et al. [41] reported that, when clustering performances are
hard to distinguish, we may still want to use the normalized
variation of information, i.e., NMI. For fair comparisons, this
paper uses both NMI and ARI as hard clustering measures.

The goal for NMI [39] is to compare two hard partitions (R
and Q) of a data set X with N objects. Assume that R and
Q have I and J clusters, respectively. The probability P (i)
that a randomly selected object from X falls into cluster Ri

of partition R is

P (i) =
|Ri|
N

.

The entropy H (R) associated with R is then defined as

H (R) = −
I∑

i=1

P (i) logP (i) .
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TABLE I
SUMMARY OF THE DATA SETS USED IN THE EXPERIMENTS. THE FIRST TWO, Equal AND Variant, ARE SYNTHETIC DATA SETS WHOSE DIMENSIONS HAVE

DIFFERENT FEATURE RELIABILITY CHARACTERISTICS. THE FOLLOWING 20 DATA SETS ARE ADOPTED FROM THE UCI MACHINE LEARNING REPOSITORY,
TWO FACE DATABASES FROM ORL AND CMU-PIE, AND THE LAST TWO ARE TEXT DATASETS FROM 20 NEWSGROUPS AND REUTERS-21578

ID Name #instances #features #classes comment
S1 Equal 160 10 8

S2 Variant 160 10 8

R1 Wine 178 13 3

R2 Glass Identification 214 9 6

R3 SPECT Heart 267 22 2

R4 Ecoli 336 7 8

R5 Ionosphere 351 34 2

R6 Libras Movement 360 90 15

R7 Breast Cancer Wisconsin(Diagnostic) 569 30 2

R8 Balance Scale 625 4 3

R9 Optical Recognition of Handwritten Digits(1, 7) 361 64 2 digit 1 and 7 in test set

R10 Optical Recognition of Handwritten Digits(2, 7) 356 64 2 digit 2 and 7 in test set

R11 Optical Recognition of Handwritten Digits(0, 6, 8, 9) 713 64 4 digit 0,6,8 and 9 in test set

R12 Optical Recognition of Handwritten Digits(1, 2, 7, 9) 718 64 4 digit 1,2,7 and 9 in test set

R13 Pima Indians Diabetes 768 8 2

R14 Connectionist Bench(Vowel Recognition-Deterding Data) 990 10 11

R15 Yeast 1,484 8 10

R16 Statlog(Landsat Satellite) 2,236 36 2 class 1 and 2

R17 Statlog(Landsat Satellite) 480 36 6 randomly choose 80 instances from each class

R18 Letter Recognition(A,B) 1,555 16 2 letter A and B

R19 Letter Recognition(A,B,C,D) 3,096 16 4 letter A,B,C,D

R20 Waveform Database Generator(Version 2) 5,000 21 3

F1 ORL 360 7744 40

F2 CMU-PIE 1496 7744 68 The frontal images (Pose 27) with 22 different lightings

T1 20 Newsgroups 2000 25753 20 randomly choose 100 instances from each class in test set

T2 Reuters-21578 2189 8575 8 The test set

Let P (i, j) denote the probability that an object belongs to
cluster Ri in R and cluster Qj in Q:

P (i, j) =
|Ri ∩Qj |

N
.

The NMI between the two hard partitions R and Q can then
be defined as

NMI (R,Q) =

I∑
i=1

J∑
j=1

P (i, j) log P (i,j)
P (i)P (j)√

H (R)H (Q)
. (20)

In describing the formula for ARI, we start with the defini-
tions of the following quantities:

a the number of pairs of data objects belonging to the
same class in R and to the same cluster in Q

b the number of pairs of data objects belonging to the
same class in R and to different clusters in Q

c the number of pairs of data objects belonging to
different classes in R and to the same cluster in Q

d the number of pairs of data objects belonging to
different classes in R and to different clusters in Q.

The Rand index RI is then defined as

RI =
a+ d

a+ b+ c+ d

and the adjusted Rand index (ARI) is

ARI =
a− (a+b)(a+c)

a+b+c+d

(a+b)+(a+c)
2 − (a+b)(a+c)

a+b+c+d

. (21)

By measuring the ARI between the clustering results and
the ground-truth clustering, we can evaluate the clustering
performance for each method.

Soft clustering measures. As pointed out by Campello [42],
the casting of soft clusterings to hard clusterings often fails to
faithfully reflect the performance of soft clustering algorithms.
For example, different fuzzy partitions (with potentially widely
divergent spatial distributions) may result in the same crisp
partition; accordingly, both will have the same hard cluster-
ing measure. This loss of information due to the disposal
of the fuzzy membership values makes the hard clustering
measures unable to discriminate between overlapped and non-
overlapped clusters. As such, these hard clustering measures
might not be appropriate for the assessment of fuzzy clus-
tering algorithms. To get around these drawbacks, Campello
proposed a fuzzy extension of the Rand index and other related
indices [42]. The extended index is obtained by first rewriting
the formulation of the Rand index in a fully equivalent form
using basic concepts from set theory. Given two membership
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matrices (U1 and U2), the quantities a, b, c, d are redefined as

a = |V ∩ Y |
b = |V ∩ Z|
c = |X ∩ Y |
d = |X ∩ Z| , (22)

where V , defined as V (j1, j2) = ski=1t (rij1 , rij2), is the set
of pairs of data objects belonging to the same class in U1;
X , defined as X (j1, j2) = si1,i2∈[1,k]|i1 ̸=i2t (ri1j1 , ri2j2), is
the set of pairs of data objects belonging to different classes
in U1; Y , defined as Y (j1, j2) = svl=1t (qlj1 , qlj2), is the set
of pairs of data objects belonging to the same cluster in U2;
and Z, defined as Z (j1, j2) = sl1,l2∈[1,v]|l1 ̸=l2t (ql1j1 , ql2j2),
is the set of pairs of data objects belonging to different clusters
in U2.

Here, “t” is a t-norm used as a conjunction to implement the
connective “and” of the proposition: we use the “min” operator
as a t-norm. Likewise, “s” is a co-norm used as a disjunction
to implement the connective “or” of the proposition: we use
the “max” operator as a co-norm. Since the cardinality of a
fuzzy set is given by the sum of its membership values, we
rewrite Equation (22) as

a = |V ∩ Y | =
N∑

j2=2

j2−1∑
j1=1

t (V (j1, j2) , Y (j1, j2))

b = |V ∩ Z| =
N∑

j2=2

j2−1∑
j1=1

t (V (j1, j2) , Z (j1, j2))

c = |X ∩ Y | =
N∑

j2=2

j2−1∑
j1=1

t (X (j1, j2) , Y (j1, j2))

d = |X ∩ Z| =
N∑

j2=2

j2−1∑
j1=1

t (X (j1, j2) , Z (j1, j2)) .

Plugging the above quantities into Equation (21) yields EARI,
the fuzzy extension to ARI. As we are not aware of any soft
extension for NMI, for the soft clustering measure we use only
EARI. In the following experiments, we use NMI, ARI, and
EARI to compare algorithms.

B. Selection of base kernels

Kernels are often used to address the problems of ineffective
features and similarity measures. Features can be ineffective
for two possible reasons. First, the data could exhibit non-
linear relationships. For better modeling, kernel functions
define the similarity of data in a more appropriate feature
space. Second, the provided feature vectors may not faithfully
reflect the intrinsic properties of the data, and thus the resulting
similarities will not reflect the actual similarities between data
items.

As kernel functions are essentially similarity measures for
pairs of data, they can be used in many different ways, and
sets of multiple kernels can be constructed in various ways.
There are two common ways to construct kernel functions,
corresponding to the two situations mentioned above. First,
given a set of representative vectors for data items, one can

employ a number of reproducible kernel functions in the
Hilbert space for the construction of multiple kernels. For
example, we could measure the similarities between data items
in different nonlinear spaces by mapping data to these spaces
with different Gaussian kernels. For the UCI experiment, since
we did not have access to the raw data, we constructed kernels
in this way. Second, given a set of raw data, different types of
feature vectors can be extracted. These feature vectors often
correspond to different cues and similarities can be measured
in different feature spaces. For example, given a set of facial
images for face clustering, one could extract different types
of visual features such as colors or textures. For the face
clustering experiment, we extract three types of features to
define different similarity measures (kernels). For the synthetic
data, to facilitate analysis, we treat each dimension as a feature.
This allows for intuitive interpretation of the experimental
results.

In summary, the guideline for selecting base kernels is to
use kernels (features) that are known to be effective in related
problems. For example, Gaussian kernels are known to be
effective in many classification problems and LBP is a popular
feature in face image applications. In principle, the more
kernels (features) are used, the better the performance will
be. We are still however limited by computational resources
and the algorithm’s tolerance to bad kernels.

C. Synthetic data

We first evaluate MKFC on synthetic data because we know
the correct answers for this case. Our primary goal is to show
that because the proposed method assigns proper weights to
kernels, it is less vulnerable to irrelevant or ineffective features
or kernels. For this purpose, we synthesize l-dimensional
vectors and treat each dimension as a feature. Given a pair
of data xi, xj which are l-dimensional vectors, each of its
dimensions xir(r=1···l) is taken as a scalar feature, and a kernel
function κ(·, ·) in 1-D space is used to measure the similarity
between xir and xjr. In this way, l kernels (similarities) can
be obtained for each of the data pair xi, xj . Two sets of
synthetic data were generated as follows. For the first one,
Equal, we synthesized 8 groups of 10-d data, with 20 data
points in each group. We made these groups well separated
by sampling 8 points whose coordinates are uniformly sampled
along each dimension. These 8 points were then used as
centers of Gaussians with the same width. For each Gaussian,
20 points were drawn. For this setup, it is reasonable to
assume that each dimension has a roughly equal capability
to separate the 8 groups. A similar procedure was used for
the second set, Variant. The only difference lies in the widths
of the Gaussians. In Equal, we used the same width in each
dimension, but in Variant, the widths were increased with the
dimension index. Therefore, there was more overlap in Variant
data in the dimensions with higher indices.

Accordingly, we use a Gaussian kernel for each dimension:

κr(xir,xjr) = exp(−||xir − xjr||2/σ).

To choose σ, let the minimal value allowed for the Gaussian
kernel over the data set be γ. We then obtain the corresponding
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σ as
σ = min

i,j
(−||xir − xjr||2/log(γ)).

We set γ to 0.005. Figure 1(a) illustrates the results for the
Equal experiment. The x-axis is for the NMI index values.
Each row shows the NMI value distribution over runs for a
method. From left to right, the three green points of each
row are sequentially the minimal, mean, and maximal NMI
values among the runs. Thirteen methods are compared: k-
means (Kmean), fuzzy c-means (FCM), multiple kernel fuzzy
c-means (MKFC), and 10 kernel-based fuzzy c-means (KFC)
methods. In the synthetic-data experiment, k-means and FCM
use 10-dimensional feature vectors, but each of the KFC
methods uses only one dimension as the feature. Hence, we
expect k-means and FCM to outperform each KFC since the
latter method uses incomplete data. As our MKFC method
uses a weighted combination of these 1-d kernels, we expect
it to outperform single kernel-based methods. As can be seen,
although the maximal NMI value of MKFC is the same
as for Kmean and FCM, MKFC has a better mean NMI
index (0.9521) than the other two (0.9486 for FCM and
0.9206 for Kmean). Note that we expect MKFC to exhibit
performance similar to that of FCM, since the features are
equally important in this synthetic data set. The real numbers
for each KFC method are the weights discovered by MKFC.
These kernel weights are all of similar magnitudes, which is
appropriate, considering the artificial setting of equal weights
in this synthetic data set. Note that due to the overlap between
clusters and noise, the discovered weights are not perfectly
equal. Figure 1(b) shows the NMI values for each MKFC
iteration for the Equal experiment: it converges after only a
few iterations.

Figure 2 shows the results for the Variant experiment. As in
the Equal experiment, k-means and FCM use 10-dimensional
vectors, each KFC uses only one dimension as the feature, and
MKFC uses a weighted combination of these 10 dimensions.
Because of the experiment settings, there is more data overlap
in the dimensions of higher indices; i.e., for data in these
dimensions, it is more difficult to separate the 8 groups. This
is evident from Figure 2(a). We observe that the NMI value
decreases as the index of KFC increases. Accordingly, MKFC
assigns higher weights to the kernels corresponding to the
dimensions with lower indices. For example, the weight for
KFC1 is 0.23147 while the weight for KFC10 is only 0.041994.
Figure 3 shows the evolution of weights in a run. In the first
iteration, all dimensions have roughly equal weights. With
each iteration, more weight is added to the more important
dimensions (those with lower indices). Overall, MKFC has
a better NMI value (0.9192) than Kmean (0.9041) and FCM
(0.9102). Note that in the Variant data set, MKFC performs
noticeably better than FCM because MKFC puts more empha-
sis on important features.

D. UCI repository

We tested these methods on 20 data sets selected from the
UCI repository. For each set, only the extracted feature vectors
are available – not the raw data. Using the provided feature
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Fig. 3. The evolution of weights for the Variant experiment.

vectors for data items, we employ different types of kernel
functions as bases for multiple kernel learning. These vectors
are normalized to have zero mean and unit standard deviation.
They are then substituted into the chosen kernels to calculate
pairwise distances. As mentioned in Section I, optimal kernel
choice is still an open research topic. Here, following the
strategy of other multiple kernel learning approaches, we select
a set of reasonable kernels that are frequently used by kernel
methods. In our experiments, we used one polynomial kernel

κk(xi,xj) = (θ + xT
i xj)

p,

with θ = 1 and p = 2, and several Gaussian kernels

κk(xi,xj) = exp(−(xi − xj)
T (xi − xj)/σ).

Assume that the minimal value of the Gaussian kernel over
the data set is γ. We then obtain the corresponding σ as

σ = min
i,j

(−(xi − xj)
T (xi − xj)/log(γ)).

We vary γ over {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
to obtain 7 Gaussian kernels. Finally, we normalize the value
of each kernel function to the range of [0.0001..1]. We use
KFC1, · · · , KFC8 to denote KFC’s with the above 8 kernels
(1 polynomial and 7 Gaussians) respectively.

We first use hard clustering measures (NMI and ARI) to
compare Kmean, FCM, KFC, and MKFC. Unlike previous
settings for the synthetic data, all the methods (k-means, FCM,
KFC and MKFC) use data with the same dimensions (specified
by the #features attribute in Table I). In Table II we present the
average NMI values over 50 runs and the corresponding ranks
for different algorithms on the 20 UCI data sets. The numbers
in parentheses are the ranks of different methods for each data
set. For example, MKFC ranks number one with an NMI of
0.909 for the data set R1 while Kmean ranks number eight
with an NMI of 0.865. The last two rows (mNMI, mRank) of
Table II display the average NMI value and the average rank
for each method over 20 data sets, respectively. MKFC has
an average NMI 0.516 and ranks the best of all the methods
in terms of average NMI (mNMI). In terms of average rank
(mRank), MKFC’s average rank is 2.85, again the best of all
the methods. Note that mNMI and mRank both yield similar
rankings. Table III presents the results of different algorithms
in terms of ARI. Changing the measure from NMI to ARI
does not change the rankings significantly. Again, MKFC is
the best in terms of both mARI and mRank.

It is true that MKFC is not ranked number one for each
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Fig. 1. For the Equal experiment, (a) the results and (b) the NMI values for each step of a single run.
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Fig. 2. For the Variant experiment, (a) the results and (b) the NMI values for each step of a single run.

individual data set. However, given the data sets, we do not
know in advance which kernel will perform better for each,
and there is no single kernel suitable for all of them. While
kernel combination does not yield the best performance in
every single case, on average it yields the best overall perfor-
mance. If we were to use a fixed kernel, it would have better
performance for some data sets but perform worse in general.
This suggests that combining kernels for clustering yields
better overall performance than when using a fixed kernel.
For real-world applications, we have no cues in advance as to
which kernel will work best for the given problem. Despite
its not always ranking the first, MKFC on average is the best
and yields stable performance.

Like most fuzzy clustering algorithms, choosing the best
fuzzification degree m remains an open problem. Graves and
Pedrycz [14] had conducted a comparative study on fuzzy
clustering and found that different applications and clustering
methods may have the best performance with different m’s.
That is, the choice of m depends on both applications and
clustering algorithms. Figure 4 shows the performance given
various fuzzification degrees m. As mentioned in the experi-
ment setting, we set m to 1.08 in all experiments. Note that
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Fig. 4. The average NMI of various m for the UCI experiment.

both MKFC and FCM perform best around m = 1.08, and
MKFC is consistently better than FCM for all m’s. We can
also see that making the clustering a little fuzzy provides better
performance than hard clustering.
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TABLE II
COMPARISONS OF DIFFERENT ALGORITHMS ON UCI DATA SETS IN TERMS OF NMI.

ID Kmean FCM KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFC8 MKFC MKKM
R1 0.865( 8) 0.865( 8) 0.878( 6) 0.893( 3) 0.893( 3) 0.892( 5) 0.877( 7) 0.842(10) 0.842(10) 0.811(12) 0.909( 1) 0.899( 2)
R2 0.320(12) 0.333(11) 0.333(10) 0.335( 9) 0.342( 6) 0.349( 5) 0.356( 1) 0.356( 2) 0.354( 4) 0.335( 8) 0.355( 3) 0.338( 7)
R3 0.139(11) 0.137(12) 0.153( 9) 0.201( 2) 0.198( 3) 0.145(10) 0.167( 6) 0.167( 6) 0.167( 6) 0.178( 5) 0.226( 1) 0.196( 4)
R4 0.570( 6) 0.574( 3) 0.574( 1) 0.573( 5) 0.574( 4) 0.568( 7) 0.563(10) 0.564( 9) 0.561(11) 0.556(12) 0.574( 2) 0.565( 8)
R5 0.125( 8) 0.120(10) 0.120(10) 0.115(12) 0.122( 9) 0.198( 5) 0.197( 6) 0.244( 1) 0.231( 2) 0.211( 3) 0.202( 4) 0.185( 7)
R6 0.581(12) 0.583(11) 0.590( 8) 0.596( 7) 0.600( 6) 0.604( 3) 0.608( 1) 0.606( 2) 0.601( 5) 0.586(10) 0.603( 4) 0.590( 8)
R7 0.577( 5) 0.571( 7) 0.584( 1) 0.584( 1) 0.578( 3) 0.546( 8) 0.527( 9) 0.501(10) 0.474(11) 0.409(12) 0.578( 3) 0.572( 6)
R8 0.121( 1) 0.118( 6) 0.119( 4) 0.119( 3) 0.118( 5) 0.112(12) 0.114(11) 0.116( 7) 0.116( 8) 0.116( 9) 0.120( 2) 0.115(10)
R9 0.980( 7) 1.000( 1) 1.000( 1) 0.992( 4) 0.990( 5) 0.982( 6) 0.975( 8) 0.521(10) 0.483(11) 0.325(12) 1.000( 1) 0.955( 9)
R10 0.806( 2) 0.806( 2) 0.806( 2) 0.806( 2) 0.806( 2) 0.795( 8) 0.784( 9) 0.743(10) 0.700(11) 0.607(12) 0.806( 2) 0.808( 1)
R11 0.803( 5) 0.800( 7) 0.801( 6) 0.804( 3) 0.816( 1) 0.788( 8) 0.755( 9) 0.728(10) 0.555(12) 0.573(11) 0.812( 2) 0.804( 3)
R12 0.664( 6) 0.707( 1) 0.686( 3) 0.683( 5) 0.683( 4) 0.653( 7) 0.616( 9) 0.425(10) 0.417(11) 0.403(12) 0.686( 2) 0.651( 8)
R13 0.102(12) 0.114(10) 0.130( 8) 0.130( 7) 0.127( 9) 0.140( 5) 0.144( 3) 0.146( 1) 0.145( 2) 0.143( 4) 0.140( 6) 0.111(11)
R14 0.362(11) 0.369( 9) 0.371( 7) 0.371( 6) 0.370( 8) 0.373( 4) 0.372( 5) 0.377( 3) 0.378( 1) 0.234(12) 0.378( 2) 0.366(10)
R15 0.253( 3) 0.250(10) 0.253( 3) 0.254( 2) 0.252( 8) 0.253( 3) 0.253( 3) 0.250( 9) 0.246(11) 0.238(12) 0.253( 3) 0.255( 1)
R16 0.454( 1) 0.411( 2) 0.359( 6) 0.361( 5) 0.374( 3) 0.350( 7) 0.347( 9) 0.320(11) 0.322(10) 0.302(12) 0.373( 4) 0.348( 8)
R17 0.722( 8) 0.725( 7) 0.726( 6) 0.729( 5) 0.732( 2) 0.730( 4) 0.722( 9) 0.711(10) 0.703(11) 0.700(12) 0.734( 1) 0.731( 3)
R18 0.707( 7) 0.707( 7) 0.718( 1) 0.718( 1) 0.718( 1) 0.712( 6) 0.702( 9) 0.677(10) 0.657(11) 0.635(12) 0.716( 5) 0.718( 1)
R19 0.387(11) 0.372(12) 0.389(10) 0.401( 9) 0.411( 8) 0.421( 7) 0.441( 5) 0.521( 1) 0.516( 2) 0.509( 3) 0.493( 4) 0.431( 6)
R20 0.374( 2) 0.374( 1) 0.372( 3) 0.371( 4) 0.369( 5) 0.352( 8) 0.338( 9) 0.271(10) 0.259(11) 0.243(12) 0.369( 5) 0.369( 5)

mNMI 0.497( 7) 0.497( 7) 0.498( 5) 0.502( 3) 0.504( 2) 0.498( 5) 0.493( 9) 0.454(10) 0.436(11) 0.406(12) 0.516( 1) 0.500( 4)
mRank 6.900( 8) 6.850( 7) 5.250( 4) 4.750( 2) 4.750( 2) 6.400( 6) 6.900( 8) 7.100(10) 8.050(11) 9.850(12) 2.850( 1) 5.900( 5)

We also implemented MKKM and compared it with the
other methods. MKFC performs better than MKKM in terms
of both NMI and ARI. As can be seen, the performance is still
improved by when there is a slight softness in the clustering.
This implies that fuzzy clustering methods may be more
able to handle overlapping clusters than the corresponding
hard ones, and a slightly larger fuzzification degree may help
improve clustering performance.

Again, hard clustering measures do not necessarily faithfully
reflect the performance of soft clustering algorithms, as they
completely ignore membership degrees. As such, we also use
the soft clustering measure EARI to compare FCM, KFC, and
MKFC. Kmean and MKKM are omitted since they are hard
clustering methods. The results in Table IV show that MKFC
again ranks number one in this measure.

Table V shows the computation time results for averages
over 50 runs as the number of iterations and the total time
in seconds of each run for the sum of eight KFCs, MKFC,
and MKKM on all real data sets respectively. Both MKFC
and MKKM use all eight kernels, while a single KFC only
uses one kernel. To ensure a fair comparison, we report the
sum of the eight KFCs. For most cases, MKFC requires fewer
iterations than the average of the KFCs. This indicates that
MKFC converges more quickly. In terms of running time,
MKFC took anywhere from less than a second to almost
a minute for the test data, and was consistently faster than
the combined running time of the eight KFCs. MKFC was a
bit slower than MKKM, because MKFC uses more iterations
to compute the membership of each object, which results in
performance gains.

TABLE V
THE NUMBER OF ITERATIONS AND TIME PER RUN FOR THE SUM OF EIGHT

KFCS, MKFC, AND MKKM ON ALL REAL DATA SETS.

KFC MKFC MKKM KFC MKFC MKKM
ID iter. iter. iter. time time time
R1 13.6 11.3 12.1 0.066 0.046 0.050
R2 30.8 35.0 28.5 0.267 0.317 0.248
R3 22.6 27.2 20.0 0.127 0.145 0.097
R4 50.4 42.0 38.8 0.797 0.707 0.692
R5 15.2 17.4 14.5 0.127 0.132 0.125
R6 47.6 43.0 41.7 1.361 1.275 1.272
R7 21.0 14.2 11.4 0.479 0.338 0.283
R8 57.5 41.0 35.2 2.058 1.509 1.331
R9 33.8 29.6 23.9 0.329 0.317 0.280
R10 13.8 9.0 9.1 0.127 0.092 0.102
R11 33.8 20.2 16.4 1.737 1.058 0.875
R12 37.8 23.8 22.2 1.973 1.266 1.203
R13 38.2 31.2 25.0 2.012 1.675 1.367
R14 60.4 58.0 49.1 6.542 6.340 5.416
R15 78.3 70.2 61.7 16.219 14.611 12.90
R16 19.1 15.0 12.0 10.785 8.485 6.800
R17 35.7 28.6 22.7 2.423 1.970 1.586
R18 13.5 9.3 8.9 3.834 2.650 2.545
R19 50.5 38.8 33.9 70.611 54.290 47.468
R20 18.2 16.1 13.9 31.238 27.650 23.886

E. Face clustering

We also evaluated MKFC with face clustering. The face
databases are from ORL and CMU-PIE. Figures 5 (a) and
(b) show several sample images of a single person from the
ORL and CMU-PIE databases, respectively. The face images
are all nearly frontal, and those in ORL include various facial
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TABLE III
COMPARISONS OF DIFFERENT ALGORITHMS ON UCI DATA SETS IN TERMS OF ARI.

ID Kmean FCM KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFC8 MKFC MKKM
R1 0.884( 7) 0.884( 7) 0.899( 5) 0.915( 3) 0.915( 3) 0.897( 6) 0.879( 9) 0.862(10) 0.862(10) 0.796(12) 0.941( 1) 0.931( 2)
R2 0.172(10) 0.181( 2) 0.182( 1) 0.176( 6) 0.175( 8) 0.179( 3) 0.177( 5) 0.172( 9) 0.161(11) 0.136(12) 0.179( 4) 0.176( 6)
R3 0.153(11) 0.153(11) 0.239(10) 0.343( 2) 0.355( 1) 0.306( 9) 0.324( 4) 0.324( 4) 0.324( 4) 0.324( 7) 0.324( 7) 0.342( 2)
R4 0.384( 2) 0.387( 1) 0.379( 6) 0.380( 4) 0.380( 5) 0.371( 8) 0.361( 9) 0.349(10) 0.342(11) 0.329(12) 0.383( 3) 0.379( 6)
R5 0.146( 1) 0.141( 2) 0.133( 3) 0.124( 4) 0.108( 7) 0.098( 8) 0.074( 9) 0.056(10) 0.033(11) 0.010(12) 0.123( 5) 0.109( 6)
R6 0.297(12) 0.299(10) 0.307( 9) 0.313( 7) 0.320( 3) 0.321( 1) 0.317( 4) 0.316( 6) 0.317( 5) 0.297(11) 0.321( 2) 0.312( 8)
R7 0.695( 7) 0.690( 8) 0.701( 1) 0.701( 1) 0.701( 1) 0.695( 5) 0.672( 9) 0.621(10) 0.573(11) 0.379(12) 0.695( 5) 0.701( 1)
R8 0.129(11) 0.138( 1) 0.136( 2) 0.136( 2) 0.132( 7) 0.135( 4) 0.133( 6) 0.130( 9) 0.127(12) 0.131( 8) 0.135( 5) 0.130( 9)
R9 0.960( 4) 1.000( 1) 1.000( 1) 0.956( 5) 0.954( 6) 0.798( 8) 0.715( 9) 0.579(10) 0.472(11) 0.346(12) 1.000( 1) 0.954( 6)
R10 0.869( 1) 0.869( 1) 0.869( 1) 0.869( 1) 0.869( 1) 0.859( 8) 0.859( 8) 0.848(10) 0.838(11) 0.787(12) 0.869( 1) 0.869( 1)
R11 0.770( 9) 0.779( 7) 0.785( 6) 0.802( 3) 0.804( 2) 0.794( 4) 0.773( 8) 0.700(10) 0.674(11) 0.644(12) 0.824( 1) 0.794( 4)
R12 0.634( 6) 0.663( 1) 0.652( 3) 0.662( 2) 0.639( 5) 0.619( 7) 0.583( 9) 0.507(10) 0.480(11) 0.262(12) 0.651( 4) 0.610( 8)
R13 0.136( 2) 0.143( 1) 0.135( 3) 0.116( 4) 0.109( 7) 0.099( 8) 0.096( 9) 0.086(10) 0.081(12) 0.083(11) 0.116( 5) 0.112( 6)
R14 0.165(12) 0.171(11) 0.173( 9) 0.174( 5) 0.175( 3) 0.174( 8) 0.174( 7) 0.175( 2) 0.175( 1) 0.171(10) 0.175( 4) 0.174( 5)
R15 0.127( 9) 0.130( 1) 0.130( 3) 0.130( 4) 0.130( 2) 0.129( 7) 0.128( 8) 0.126(10) 0.122(11) 0.111(12) 0.130( 5) 0.130( 5)
R16 0.456( 1) 0.409( 2) 0.333( 3) 0.308( 6) 0.307( 7) 0.320( 5) 0.305( 8) 0.278( 9) 0.245(11) 0.208(12) 0.332( 4) 0.265(10)
R17 0.661( 1) 0.618(10) 0.639( 7) 0.641( 6) 0.642( 5) 0.650( 2) 0.644( 4) 0.638( 8) 0.614(11) 0.582(12) 0.649( 3) 0.637( 9)
R18 0.759( 6) 0.759( 6) 0.761( 1) 0.761( 1) 0.761( 1) 0.755( 8) 0.752( 9) 0.726(10) 0.693(11) 0.643(12) 0.761( 1) 0.761( 1)
R19 0.336( 8) 0.324(12) 0.334(10) 0.338( 7) 0.339( 5) 0.345( 4) 0.350( 2) 0.346( 3) 0.356( 1) 0.335( 9) 0.339( 6) 0.330(11)
R20 0.258( 1) 0.258( 1) 0.258( 3) 0.257( 4) 0.256( 5) 0.250( 8) 0.244( 9) 0.190(10) 0.169(11) 0.142(12) 0.256( 6) 0.255( 7)

mARI 0.449( 6) 0.450( 5) 0.452( 4) 0.455( 2) 0.454( 3) 0.440( 8) 0.428( 9) 0.402(10) 0.383(11) 0.336(12) 0.461( 1) 0.449( 6)
mRank 6.050( 7) 4.800( 5) 4.350( 4) 3.850( 2) 4.200( 3) 6.050( 7) 7.250( 9) 8.500(10) 9.400(11) 11.200(12) 3.650( 1) 5.650( 6)

expressions and those in CMU PIE include variable lighting
conditions. In contrast to the UCI datasets, for this application,
we have only the raw data. Thus, our first step is to extract
features from the image data. All images were first normalized
and cropped to 88× 88 pixels. To utilize cues from different
perspectives, we extracted three different features.

1) Eigenface [43]. After performing principal compo-
nent analysis, each face image was projected into the
eigenspace which preserves 90% of the energy of the
eigenvalues.

2) Gabor texture [44]. Each face image was filtered with
40 Gabor filters generated with five different scales and
eight orientations.

3) Local binary pattern (LBP) [45]. We used a uniform LBP
with 8 neighbors and radius 1. Thus, each face image
was represented as a 256-bin histogram.

These three features are frequently used for face recognition
and represent face images from different perspectives. After
extracting these three features, each feature was treated as a
vector; these vectors were substituted into the Gaussian kernel
to calculate pairwise distances. As with the UCI data sets,
we set γ to 0.005. We denote as KFCe, KFCg, and KFCl

the resulting three different kernels from these three features
(Eigenface, Gabor texture, and LBP), respectively.

In this experiment, we compared the proposed method
(MKFC) to single-kernel-based fuzzy c-means (KFC) and
multiple-kernel k-means (MKKM). Tables VI and VII show
the ARI, NMI, EARI, the average number of iterations,
and the average total time in seconds for ORL and CMU-
PIE, respectively. The eigenface, Gabor, and LBP kernel
weights as determined by MKFC were 0.175, 0.164, and
0.661 for ORL and 0.626, 0.157, and 0.217 for CMU-PIE.

TABLE VI
COMPARISON OF DIFFERENT METHODS ON FACE DATABASE ORL IN
TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN.

KFCe KFCg KFCl MKFC MKKM
ARI 0.046 0.139 0.406 0.464 0.383
NMI 0.369 0.562 0.755 0.783 0.744
eARI 0.108 0.296 0.411 0.462 0.383

Iterations(I) 53.260 5.980 46.180 48.320 36.000
Time(T) 0.625 0.081 0.495 1.7830 1.3284

Notably, LBP was more effective for ORL (varying facial
expressions) while Eigenface was the best for CMU-PIE
(lighting changes). MKFC successfully combined the strengths
of different features for different datasets and outperformed
all other measures for both datasets. As with the UCI data
sets, MKKM performed slightly worse than MKFC, showing
that fuzzy methods are more able to separate overlapping
data than hard methods. The combined computation times for
all three KFCs are 1.201 and 14.211 seconds for ORL and
CMU-PIE, respectively, while MKFC took 1.783 and 10.562
seconds. MKFC was thus comparable to the combination of
the three KFCs. However, MKFC performs feature selection
automatically and provides better clustering results. MKFC
was slightly slower than MKKM but yielded better clustering
performance.

F. Text clustering

For text clustering, we used two popular text datasets,
20 Newsgroups and Reuters-21578, downloaded from [46].
Each of them is pre-processed by four steps: all-terms, no-
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TABLE IV
COMPARISON OF DIFFERENT ALGORITHMS ON UCI DATA SETS IN TERMS OF EARI.

ID FCM KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFC8 MKFC
R1 0.876( 6) 0.893( 4) 0.902( 3) 0.908( 2) 0.891( 5) 0.875( 7) 0.839( 8) 0.818( 9) 0.751(10) 0.918( 1)
R2 0.266( 5) 0.266( 4) 0.268( 2) 0.267( 3) 0.265( 7) 0.265( 6) 0.264( 8) 0.264( 9) 0.262(10) 0.272( 1)
R3 0.149(10) 0.238( 9) 0.329( 3) 0.353( 1) 0.317( 8) 0.321( 7) 0.322( 5) 0.321( 6) 0.323( 4) 0.350( 2)
R4 0.389( 1) 0.381( 5) 0.382( 4) 0.382( 3) 0.376( 6) 0.366( 7) 0.354( 8) 0.346( 9) 0.332(10) 0.388( 2)
R5 0.160( 1) 0.155( 2) 0.119( 6) 0.137( 3) 0.120( 5) 0.090( 7) 0.081( 8) 0.052( 9) 0.037(10) 0.180( 4)
R6 0.327( 3) 0.325( 9) 0.326( 4) 0.323(10) 0.330( 2) 0.330( 1) 0.326( 7) 0.325( 8) 0.326( 5) 0.327( 6)
R7 0.688( 1) 0.687( 2) 0.686( 3) 0.683( 4) 0.667( 6) 0.655( 7) 0.588( 8) 0.528( 9) 0.357(10) 0.683( 5)
R8 0.161(10) 0.165( 9) 0.174( 8) 0.178( 7) 0.191( 5) 0.197( 4) 0.198( 3) 0.200( 2) 0.208( 1) 0.190( 6)
R9 0.992( 1) 0.992( 1) 0.980( 4) 0.977( 5) 0.938( 7) 0.959( 6) 0.795( 8) 0.730( 9) 0.601(10) 0.992( 1)
R10 0.902( 1) 0.902( 3) 0.899( 4) 0.897( 5) 0.887( 6) 0.881( 7) 0.858( 8) 0.845( 9) 0.802(10) 0.902( 1)
R11 0.859( 3) 0.868( 1) 0.851( 4) 0.833( 5) 0.827( 6) 0.820( 7) 0.801( 8) 0.792( 9) 0.754(10) 0.860( 2)
R12 0.637( 5) 0.638( 4) 0.649( 3) 0.652( 2) 0.635( 6) 0.632( 7) 0.616( 8) 0.591( 9) 0.520(10) 0.661( 1)
R13 0.141( 1) 0.132( 3) 0.114( 4) 0.109( 5) 0.095( 6) 0.087( 7) 0.073( 8) 0.069( 9) 0.068(10) 0.136( 2)
R14 0.181( 9) 0.181(10) 0.182( 7) 0.181( 8) 0.183( 6) 0.184( 3) 0.185( 2) 0.184( 3) 0.186( 1) 0.184( 3)
R15 0.129( 9) 0.133( 1) 0.132( 2) 0.130( 4) 0.129(10) 0.129( 6) 0.130( 5) 0.129( 8) 0.129( 7) 0.132( 3)
R16 0.400( 1) 0.383( 3) 0.337( 5) 0.321( 6) 0.343( 4) 0.314( 7) 0.285( 8) 0.250( 9) 0.215(10) 0.393( 2)
R17 0.620( 8) 0.641( 6) 0.645( 5) 0.650( 3) 0.661( 2) 0.649( 4) 0.635( 7) 0.618( 9) 0.599(10) 0.663( 1)
R18 0.722( 9) 0.722( 9) 0.728( 8) 0.730( 1) 0.730( 1) 0.730( 1) 0.728( 6) 0.728( 6) 0.728( 5) 0.730( 1)
R19 0.292(10) 0.294( 9) 0.315( 8) 0.324( 7) 0.350( 5) 0.355( 4) 0.380( 3) 0.391( 2) 0.400( 1) 0.350( 6)
R20 0.254( 1) 0.254( 1) 0.254( 3) 0.254( 4) 0.254( 6) 0.254( 7) 0.254( 8) 0.254( 9) 0.254(10) 0.254( 5)

mEARI 0.458( 6) 0.463( 4) 0.464( 3) 0.464( 2) 0.460( 5) 0.455( 7) 0.436( 8) 0.422( 9) 0.393(10) 0.478(1)
mRank 4.750( 4) 4.750( 4) 4.500( 3) 4.400( 2) 5.450( 6) 5.600( 7) 6.700( 8) 7.600( 9) 7.700(10) 2.750(1)

(a) ORL (b) CMU-PIE

Fig. 5. Sample images of a subject from (a) ORL and (b) CMU-PIE datasets. Note that ORL exhibits more variation in facial expressions while CMU-PIE
exhibits various lighting conditions.

TABLE VII
COMPARISON OF DIFFERENT METHODS ON FACE DATABASE CMU-PIE IN

TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN.

KFCe KFCg KFCl MKFC MKKM
ARI 0.914 0.088 0.597 0.931 0.875
NMI 0.983 0.584 0.845 0.987 0.975
eARI 0.912 0.230 0.587 0.935 0.875

Iterations(I) 24.280 7.300 74.320 25.660 19.020
Time(T) 3.291 0.965 9.955 10.562 7.829

short, no-stop and stemmed. We use the datasets 20ng-test-
stemmed and r8-test-stemmed to evaluate MKFC. Let D =
{d1, · · · , dn} be the set of documents and T = {t1, · · · , tm}
the set of distinct words occurring in D. We denote the
frequency of word t ∈ T in the document d ∈ D as tf (d, t).
tf -idf is a weighting scheme which weights the frequency
of a word t in the document d with a factor that discounts

its importance with its occurrences in the whole document
collection, which is defined as

tf -idf (d, t) = tf (d, t)× log(
|D|
df (t)

),

where df (t) is the number of documents in which the word t
appears. Thus, the feature vector representation of a document
d is defined as

−→
td = (tf -idf (d, t1) , · · · , tf -idf (d, tm)) .

After normalizing the vectors to a unit length, we used the
following four kernels to calculate the pairwise distances
between two documents.

1) Euclidean distance.

κed(
−→
tdi ,

−→
tdj ) =

(
m∑
t=1

|tf -idf (di, t)− tf -idf (dj , t)|2
) 1

2

,
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TABLE VIII
COMPARISON OF DIFFERENT METHODS ON TEXT DATASET 20

NEWSGROUPS IN TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND
TIME PER RUN.

KFCed KFCcs KFCjc KFCpcc MKFC MKKM
ARI 0.131 0.140 0.129 0.139 0.143 0.139
NMI 0.381 0.386 0.379 0.391 0.394 0.388
eARI 0.192 0.201 0.187 0.200 0.205 0.139

Iterations(I) 18.100 22.900 19.600 22.880 25.340 19.250
Time(T) 2.559 3.384 2.870 3.371 15.343 11.656

2) Cosine similarity.

κcs(
−→
tdi ,

−→
tdj ) =

−→
tdi ·

−→
tdj

|−→tdi ||
−→
tdj |

,

3) Jaccard coefficient.

κjc(
−→
tdi ,

−→
tdj ) =

−→
tdi ·

−→
tdj

|−→tdi |2 + |−→tdj |2 −
−→
tdi ·

−→
tdj

,

4) Pearson correlation coefficient.

κpcc(
−→
tdi ,

−→
tdj ) =

m× (
−→
tdi ·

−→
tdj ) − TFi × TFj√
I × J

,

where

TFi =
m∑
t=1

tf -idf (di, t) ,

TFj =
m∑
t=1

tf -idf (dj , t) ,

I = m

m∑
t=1

tf -idf (di, t)
2 − TFi

2,

J = m

m∑
t=1

tf -idf (dj , t)
2 − TFj

2.

Finally, we normalized the value of each kernel function. We
denote as KFCed, KFCcs, KFCjc and KFCpcc the resulting
four kernels, respectively.

Tables VIII and IX show the ARI, NMI, EARI, the average
number of iterations, and the average total time in seconds for
20 Newsgroups and Reuters-21578, respectively. The kernel
weights determined by MKFC were 0.249, 0.250, 0.248,and
0.253 for 20 Newsgroups and 0.248, 0.252, 0.247, and 0.253
for Reuters-21578. Note that documents are represented with
the bag-of-word model and these four kernels essentially have
quite similar clustering capability. Nevertheless, MKFC was
still able to assign the weights appropriately to improve the
clustering performance.

VI. CONCLUSIONS

We extended the fuzzy c-means algorithm to MKFC. The
proposed algorithm is easy to implement and provides soft
clustering results that are immune to irrelevant, redundant,
ineffective, and unreliable features or kernels. Experiments
show that the method effectively incorporates multiple kernels
and yields better overall performance. These characteristics

TABLE IX
COMPARISON OF DIFFERENT METHODS ON TEXT DATASET

REUTERS-21578 IN TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND
TIME PER RUN.

KFCed KFCcs KFCjc KFCpcc MKFC MKKM
ARI 0.273 0.287 0.236 0.275 0.305 0.275
NMI 0.418 0.428 0.406 0.427 0.434 0.425
eARI 0.311 0.320 0.285 0.303 0.331 0.275

Iterations(I) 5.820 30.440 51.420 30.120 34.440 29.260
Time(T) 0.616 3.135 5.365 3.124 20.331 17.450

make it useful for real-world applications. In the future, we
expect to devote our efforts to related open topics, such as
strategies for setting the fuzzification degree or choosing the
basis kernels.
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