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Abstract

Spectral clustering makes use of spectral-graph struc-
ture of an affinity matrix to partition data into disjoint
meaningful groups. Because of its elegance, efficiency and
good performance, spectral clustering has become one of
the most popular clustering methods. Traditional spectral
clustering assumes a single affinity matrix. However, in
many applications, there could be multiple potentially use-
ful features and thereby multiple affinity matrices. To ap-
ply spectral clustering for these cases, a possible way is to
aggregate the affinity matrices into a single one. Unfortu-
nately, affinity measures constructed from different features
could have different characteristics. Careless aggregation
might make even worse clustering performance. This paper
proposes an affinity aggregation spectral clustering (AASC)
algorithm which extends spectral clustering to a setting with
multiple affinities available. AASC seeks for an optimal
combination of affinity matrices so that it is more immune
to ineffective affinities and irrelevant features. This enables
the construction of similarity or distance-metric measures
for clustering less crucial. Experiments show that AASC
is effective in simultaneous clustering and feature fusion,
thus enhancing the performance of spectral clustering by
employing multiple affinities.

1. Introduction
Clustering is an important unsupervised learning method

for dividing data into a set of disjoint subsets with high
intra-cluster similarity and low inter-cluster similarity. It
has been addressed in many contexts and widely used for
computer vision, pattern recognition, and multimedia anal-
ysis. Among many clustering algorithms proposed before,
spectral clustering (SC) is one of the best. It often outper-
forms other methods by transforming data points into an-
other space in which their cluster properties are enhanced.

The success of spectral clustering algorithms depends
heavily on the choice of the metric [3]. However, spectral

clustering has no built-in mechanism for discovering good
metrics for better clustering results. Therefore, it is often
necessary to use other feature selection or feature weight-
ing methods as a precursor before invoking spectral cluster-
ing. The problem is aggravated for many real-world clus-
tering problems in which there are multiple potentially use-
ful cues. For example, for face clustering, cues such as hair
appearance, global positioning information and clothing ap-
pearance have been used for boosting the performance [1].
For clustering images, a variety of visual descriptors have
been proposed for colors, textures and bag-of-word mod-
els. Each type of the descriptors defines an affinity matrix
in association with its similarity metric. For such applica-
tions, to apply spectral clustering, it is often necessary to
aggregate similarity measures from different features into
a single affinity matrix by feature selection or feature fu-
sion. Otherwise, performance of spectral clustering could
degrade dramatically in the presence of irrelevant, ineffec-
tive or unreliable features.

This paper proposes affinity aggregation spectral clus-
tering (AASC), a method for aggregating affinity matrices
for spectral clustering. The proposed method shares simi-
lar ideas with multiple kernel learning (MKL) [23, 35, 8]
that aggregates several kernels to construct a better one. We
propose a framework for learning the similarity matrix of
spectral clustering, which attempts to make spectral cluster-
ing more robust by alleviating the impact of unreliable and
irrelevant features. However, the method is different from
MKL in the following two aspects: (1) our method is un-
supervised, i.e. no labels are available for data; and (2) the
affinity matrix composed by the pairwise similarity between
data is not necessarily positive semi-definite. We only as-
sume that affinity matrices are symmetric.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we briefly review spec-
tral clustering. Section 4 introduces our affinity aggregation
spectral clustering algorithm. Experiments are described in
Section 5. Finally, Section 6 concludes the paper with di-
rections for future work.



2. Related work
Multi-view and multi-kernel learning (MVL; MKL)

were both initiated from machine learning. Though they
are somewhat relevant, there is not a coherent view of them
even in the machine learning society. MVL seeks to em-
ploy multiple “independent” clues (e.g., bi-lingual informa-
tion, different modalities); MKL, however, combines mul-
tiple base kernels to create a “unified” kernel for learning,
where these kernels are not necessarily independent like the
“views” in MVL. Similarly, both were originally studied for
(semi-)supervised learning, and have been extended to un-
supervised setting recently [33, 6, 14, 15, 17, 16]. Multi-
view clustering [20, 34, 15, 16], as an extension of MVL,
assumes inherently that the views are uncorrelated. Our
affinity-aggregation approach is extended from MKL with-
out such assumptions. More importantly, unlike MKL fuses
multiple kernels into a single one, most multi-view cluster-
ing methods cannot provide an explicit form of the learned
kernel/affinity. They thus suffer from the out-of-sample
problem (i.e., re-training is needed to produce the cluster-
ing result for the new data). Both characteristics make our
method generally more applicable.

Despite most studies on learning an aggregated similar-
ity measure focused on supervised learning (such as MKL),
studies on combining multiple cues for clustering can be
found in several applicational or theoretical frameworks.
For example, to improve the performance of clustering,
several cues or repulsive constraints could be used. In
the domain of face clustering, Song and Leung [27] used
contextual information, such as clothes and time, to boost
the performance. They formulated the problem as a con-
strained optimization problem in which some cues are used
for the objective function and the others serve as constraints.
Anguelov et al. [1] constructed a graph based on face and
clothing cues. However, these approaches might suffer from
two problems. First, the constrained optimization problem
or the constructed graph becomes complex and difficult to
solve when many constrains are applied. Second, the deci-
sions on what appropriate cues to be included in the ob-
jective function and how to impose the constrains to the
optimization are still critical. MKL has been extended to
unsupervised settings by some researches recently. Lin et
al. [17] introduced a MKL-DR framework that incorporates
MKL into the training process of dimensionality reduction
(DR) methods. It works with multiple base kernels, each of
which is created based on a specific kind of data descrip-
tor, and fuses the descriptors in the domain of kernel ma-
trices. Zhao et al. [33] proposed a multiple kernel cluster-
ing (MKC) algorithm that finds the maximum-margin hy-
perplane, cluster labelling, and the optimal kernel simulta-
neously. However, MKC requires explicit evaluation in the
feature space and the formulation leads to a non-convex in-
teger optimization problem that is difficult to solve.

There are still only few studies on improving spectral
clustering by fusing multiple affinities to a single affinity.
To overcome existing spectral clustering algorithms with
2-way relationships, Karydis et al. [14] developed a data-
modeling scheme and a tag-aware spectral clustering pro-
cedure that uses tensors (high-dimensional arrays) to store
the multi-graph structures for capturing the personalized as-
pects of similarity. First, the Laplacian tensor was con-
structed by stacking affinity matrices. Then, they used ten-
sor factorization to extract spectral features from the Lapla-
cian tensor. Finally, data were clustered by spectral fea-
tures which preserve the 3-way relationships among inher-
ent dimensions of the data. Cai et al. [6] proposed the
multi-modal spectral clustering (MMSC) algorithm to learn
a commonly shared graph-Laplacian matrix by unifying dif-
ferent modals (or image features). MMSC integrates het-
erogeneous features on unlabeled images and unsegmented
images. An optimization framework is designed to find an
averaged clustering result with smaller training error. One
main limitation of MMSC is that it suffers from the out-
of-sample problem: MMSC does not find an explicit repre-
sentation to aggregate the affinities; thereby, when the input
data is out of the training samples, re-training is needed to
produce the clustering result for the new data. Our previous
work, multiple-affinity spectral clustering [12], also dealt
with the spectral clustering problem with multiple affinity
measures. However, its convergence is not guaranteed when
the method is implemented by finding generalized eigen-
vectors in each iteration. In addition, its performance is not
as good as the proposed AASC.

3. Spectral Clustering

Spectral clustering is originated from spectral graph the-
ory. Given n data points x1,x2, . . . ,xn and some pairwise
affinity wij that is symmetric and non-negative, measuring
the similarity between xi and xj , spectral clustering aims
to divide these data into C clusters by finding n indicators
f1, f2, . . . , fn which satisfies

min
f1,f2,...,fn

∑
i,j

wij ||fi − fj ||2. (1)

Let W be the n × n matrix constituted of the affinities
wij , and D be the diagonal matrix with its i-th diago-
nal element being the sum of i-th row of W, i.e. Dii =
wi1+wi2+ . . .+win. Spectral clustering solves Equation 1
by finding the smallest eigenvalues and their corresponding
eigenvectors of the Laplacian matrix L = D−W. Since the
smallest eigenvalue λ1 of L is always 0 which corresponds
to the trivial solution of the constant-one eigenvector 1, the
solution of spectral clustering is constructed by the eigen-
vectors corresponding to the next C smallest eigenvalues,
λ2, λ3, . . . , λC+1. After stacking these C eigenvectors into



a n × C matrix, the i-th row of the stacked matrix corre-
sponds to the indicator fi for xi. The above method is called
the unnormalized spectral clustering.

Shi and Malik [25] proposed a normalized spectral clus-
tering algorithm, in which the indicators are constructed
by finding the eigenvectors v of the generalized eigenprob-
lem Lv = λDv. In normalized spectral clustering, when
minimizing Equation 1, the constraint employed becomes
fTDf = 1 instead of fT f = 1. It is equivalent to mini-
mizing gT (D−1/2LD−1/2)g when transforming the vari-
ables with g = D1/2f and constrained by gTg = 1. Many
studies [25, 3] have shown that normalized spectral cluster-
ing performs considerably better than unnormalized spec-
tral clustering for various problems.

In practice, spectral clustering often serves as a prepro-
cessing step of other clustering algorithms such as k-means.
The main trick of spectral clustering is to transform the rep-
resentations of the data points xi into the indicator space in
which the cluster characteristics become more prominent.
Because cluster properties are enhanced in this new rep-
resentation space, even simple clustering algorithms, such
as k-means clustering, have no difficulty on distinguishing
clusters. Main reasons for spectral clustering’s success in-
clude: (1) it does not make any assumptions on the form
of the clusters (as opposed to k-means, where the clusters
are always convex sets); and (2) it can be implemented effi-
ciently even for large data sets as long as the affinity matrix
is sparse. However, one of its limitations is that choosing a
good affinity measure is not trivial for the application. For
real-world clustering problems, the affinities wij could be
obtained in multiple ways. They could be determined with
different types of extracted features, or be constructed by re-
producible kernels when xi are vectors in some Euclidean
space. We show how to find a weighted combination of the
affinities so that a better similarity measure can be learned
for spectral clustering in an unsupervised fashion.

4. Affinity aggregation spectral clustering

Assume that there are m affinity matrices Wk(k =
1 . . .m) available. The k-th matrix’s ij-th element wij;k

represents the similarity between xi and xj when measur-
ing with the k-th type of affinity metric. Since the affini-
ties wij;k are non-negative, we can denote wij;k = s2ij;k
to reflect this nature. As mentioned, the goal is to find a
proper weight assignment to these affinities. Let v =
[v1, v2, · · · , vk]T be a weight vector in association with
these affinities. The k-th weighted affinity can be denoted as
σij;k = vksij;k. We can then formulate the AASC problem

as

min
f1,...,fn
v1,...,vm

∑
k

∑
i,j

σ2
ij;k||fi − fj ||2

= min
f1,...,fn
v1,...,vm

∑
k

∑
i,j

v2kwij;k||fi − fj ||2

= min
f1,...,fn
v1,...,vm

∑
k

v2kf
T (Dk −Wk)f

≡ min
v1,...,vm

∑
k

βkv
2
k (2)

where Dk−Wk is the Laplacian matrix associated with the
k-th affinity metric, and

βk = fT (Dk −Wk)f .

Note that applying an affinity aggregation vector v makes
the representation of new data easy. Hence, it avoids the
out-of-sample problem of previous works such as Cai et
al. [6]. Besides, we minimize the clustering error directly in
the representation space, making the results better than find-
ing an averaged representation of the single-affinity outputs
in their approach (c.f. the experimental validation).

The objective is minimized under the constraint that
weighted sum of vk is normalized,

∑m
k=1 tkvk = n,

where tk = tr(Sk) and Sk is the matrix constituted
of sij;k. This implies the trace of the aggregated affin-
ity matrix is bounded. It is because from Cauchy-
Schwartz inequality, the aggregated affinity matrix satisfies
that tr(W) =

∑m
k=1 tr(v

2
kWk) =

∑m
k=1 v

2
ktr(Wk) >

1
m (
∑m

k=1 vktr(Sk))
2 = n2

m , yielding a lower bound of the
trace of W. Without loss of generality, since the diagonal
element of an affinity matrix is always set as 1, which im-
plies tk = n. The constraint

∑m
k=1 tkvk = n thus becomes

a simpler form,
∑m

k=1 vk = 1.
In addition, to satisfy the normalized spectral clustering,

the constraint fTDf = 1 is also required. That is,

1 = fTDf = fT (v21D1 + · · ·+ v2kDk)f ≡
∑
k

αkv
2
k

where

αk = fTDkf .

To solve the above problem, there are two sets of vari-
ables, the indicator vector f and the affinity aggregation
weights v. It becomes much easier to solve if we solve
one set of variables at a time while fixing the other set of
variables. If the weights vk are given, the problem becomes
a standard spectral clustering problem (Equation 1) and the
affinities are set as wij =

∑
k v

2
kwij;k. This can be done by

finding the eigenvectors of the Laplacian matrix as reviewed
in the previous section.



On the other hand, assume that the indicator vector f is
given and fixed. From the definitions of αk and βk, it can
be seen that γk = βk

αk
represents the normalized spectral

clustering error obtained by using a single (i.e., the k-th)
kernel when the indicator f is given. Denote uk =

√
αkvk,

Equation 2 becomes
∑
k

βkv
2
k =

∑
k

γku
2
k. In summary, the

goal of AASC when f is fixed is conducted as

min
u1,...,um

∑
k

γku
2
k

subject to ∑
k

u2
k = 1, (3)∑

k

uk√
αk

= 1. (4)

It leads to a constrained optimization problem. This prob-
lem is nonconvex since it contains quadratic equality con-
straints in the formulation. It forms a nonlinear simulta-
neous equations system in the m-dimensional space. The
following shows that this problem can be reduced to a 1-
D search (or line-search) problem no matter m is, which is
easy to solve by existing packages. By applying Lagrange
multipliers λ1 and λ2 to the equality constraints, we have

Jλ1,λ2 =
∑
k

γku
2
k − λ1

(∑
k

u2
k − 1

)
− 2λ2

(∑
k

uk√
αk

− 1

)
(5)

By taking its partial derivatives with respect to uk and
setting them to zero, we have

1

2

∂Jλ
∂uk

= γkuk − λ1uk − λ2√
αk

= 0.

Note that the above equation is linear to uk. Hence, uk can
be analytically represented as an explicit form:

uk =
λ2√

αk (γk − λ1)
.

Substituting the above into Equation 4, we obtain∑
k

uk√
αk

=
∑
k

λ2

(γk − λ1)αk
= 1

which implies that

λ2 =
1∑

k
1

(γk−λ1)αk

. (6)

Furthermore, from Equation 3, we obtain∑
k

u2
k =

∑
k

λ2
2

(γk − λ1)
2
αk

= 1,

Algorithm 1 Affinity Aggregation Spectral Clustering
(AASC). Given a set of n data points xi, a set of m affinities
Wk and the desired number of clusters C, find a proper weight
assignment vk to affinities and cluster the data into C clusters.

1: procedure AASC(Data xi, Affinities Wk, Number C)
2: Initialize the weights as vk = 1/m
3: repeat
4: ◃ fix weights vk and find indicators fi
5: form the aggregated affinity matrix W with

wij =
∑

k v
2
kwij;k and the diagonal matrix D

6: find eigenvectors v2, . . . ,vC+1 of generalized
eigenproblem Lu = λDu corresponding to
eigenvalues λ2, . . . , λC+1

7: indicator fi = the i-th row of [v2 · · ·vC+1]
8: ◃ fix indicators fi and find weights vk
9: let αk = fTDkf ,βk = fT (Dk −Wk)f ,γk = βk

αk

10: solve a 1-D search problem of λ1 in Equation 8
11: obtain λ2 by substituting λ1 into Equation 6
12: weight vk = λ2

(γk−λ1)αk

13: until convergence
14: run k-means on f1, . . . , fn to cluster data into C groups
15: end procedure

which implies that

λ2
2 =

1∑
k

1
(γk−λ1)

2αk

. (7)

Replacing λ2 in Equation 7 by Equation 6, we have(∑
k

1

(γk − λ1)αk

)2

=
∑
k

1

(γk − λ1)
2
αk

. (8)

Equation 8 has only a single variable λ1. Thus, the problem
becomes a 1-D line-search problem which can be solved
easily. Many approaches have been proposed to solve the 1-
D optimization or equation-solving problem [2]. For exam-
ple, the shuffled complex evolution (SCE-UA) method [10]
has been shown to have good performance in solving the
problem of irregular functions . Gradient-based approaches
such as the Newton Raphson method with automatic step-
size selection (such as the Armjjo step-size rule) can also
solve the problem well [4].

In sum, we can solve the AASC problem (Equation 2)
using a two-step iterative algorithm which alternatively
finds the optimal weights vk and the optimal indicators fi.
More specifically, the iterations alternate between closed-
form solution (eigen vectors) and 1-D search. Given the
initial weights vk, in the first step, we set the affinity as
wij =

∑
k v

2
kwij;k and use standard spectral clustering to

find the optimal indicator fi. Next, in the second step, the
indicators fi are fixed and we refine the weights vk by solv-
ing a 1-D search problem in Equation 8. The convergence



is ensured since the objective in Equation 2 is minimized by
solving the weights v under the constraints (Equation 3 and
4), and also minimized by solving indicator f under the con-
straint that f is orthogonal to the constant-one-vector. Thus,
alternatively finding v and f keeps reducing the error, en-
suring convergence of the iterative process. Algorithm 1
summarizes the proposed AASC algorithm.

5. Experiments
We have implemented and tested the proposed AASC al-

gorithm on a variety of clustering problems including image
clustering, face clustering and text clustering. This section
starts by describing the procedure for calculating similar-
ity and the adopted metrics for comparing clustering results
(Section 5.1). For image clustering (Section 5.2), we used
two benchmark datasets, Caltech-101 [11] and Microsoft
Research Cambridge Volume 1(MSRC-v1) [30]. Two well-
known face databases from ORL [24] and CMU-PIE [26]
were used for face clustering (Section 5.3). As for text
clustering (Section 5.4), we adopted two data sets from 20
Newsgroups and Reuters-21578. Statistics of these data
sets are summarized in Table 1, including the number of
instances, dimensionality of data and the number of clus-
ters. For each set of experiments, we describe the data sets,
the experimental settings, the choice of pairwise affinities,
the experimental results and comparisons to other methods.

5.1. Settings and measures

We first describe how to obtain the affinity matrix for
each type of feature. Given the raw data in the data set,
the first step is to extract features for each instance. Each
feature can be represented as a vector. These feature vec-
tors were substituted into the Gaussian kernel to calculate
pairwise distances,

κ(xi,xj) = exp(−(xi − xj)
T (xi − xj)/σ).

Assume that the minimal value of the Gaussian kernel over
the data set is γ. We then obtain the corresponding σ as

σ = min
i,j

(−(xi − xj)
T (xi − xj)/log(γ)).

and we set γ to 0.005.
For comparing clustering results, clustering measures

were used to evaluate how well data are grouped in
comparison with the ground truth. Clustering measures
can be roughly categorized into pair-counting-based mea-
sures (e.g. Rand index (RI) and adjusted Rand index
(ARI) [13]), set-matching-based measures (e.g. H criterion)
and information-theoretic-based measures (e.g. mutual in-
formation and normalized mutual information (NMI) [28]).
Several papers have attempted to evaluate these clustering
measures. Unfortunately, there is no definite answer on

Table 1. Statistics of the data sets used in the experiments. The
first two data sets are adopted from Caltech-101 with seven and
twenty classes. Along with the third data set MSRC-v1, these three
sets were used for image clustering. For face clustering, two face
databases from ORL and CMU-PIE were used. For CMU-PIE, we
used the frontal images (Pose 27) with 22 different lightings. The
last two are text data sets from 20 Newsgroups and Reuters-21578.
For 20 Newsgroups, we randomly chose 100 instances from each
class in the training set. For Reuters-21578, we used the test set of
R52.

ID Name #instances #dimensions #classes
I1 Caltech-101 441 100,000 7
I2 Caltech-101 1,230 100,000 20
I3 MSRC-v1 210 100,000 7
F1 ORL 360 7,744 40
F2 CMU-PIE 1,496 7,744 68
T1 20 Newsgroups 2,000 25,753 20
T2 Reuters-21578 2,568 8,575 52

which measure is the best yet. Vinh et al. [29] reported that
some popular measures do not facilitate informative cluster-
ing comparisons because they either do not have a predeter-
mined range or do not have a constant baseline value. For
those measures, a poor clustering could yield a very high
performance index, especially when there are many clus-
ters. They suggested that ARI is a faithful measure that
does not have these drawbacks. They also proposed another
fair measure, adjusted mutual information (AMI). However,
Wu et al. [32] reported that, when clustering performances
are hard to distinguish, the normalized variation of mutual
information, i.e. NMI, could still work the best. For fair
comparisons, this paper uses AMI, NMI and ARI as met-
rics for reporting clustering performance.

5.2. Image clustering

In order to compare AASC to MMSC [6], we used the
same data sets Caltech-101 and MSRC-v1. For Caltech-
101, we follow MMSC to choose the same 7 and 20 classes.
For MSRC-v1, the same 7 classes were obtained in the same
way as MMSC. As MMSC, five types of features were used,
LBP [21], GIST [22], CENTRIST [31], Dog-SIFT [18], and
HOG [9]. We denote SCL, SCG, SCC , SCD and SCH

as the single-affinity spectral clustering methods with five
different affinity matrices derived from the above five fea-
tures (LBP, GIST, CENTRIST, Dog-SIFT, and HOG), re-
spectively. In addition, we also combined the above five
affinity matrices by equal weights and denoted it as EASC.
Tables 2, 3 and 4 show AMI, NMI and ARI values for
different algorithms on Caltech-101 (7 classes), Caltech-
101 (20 classes) and MSRC-v1. As the results show, the
proposed AASC method has better performance than other
methods. Note that, the performance of our single-affinity
spectral clustering methods are not exactly the same with
the ones listed in the MMSC paper [6] due to implemen-



Table 2. Comparisons of different methods on Caltech-101 (7
classes) in terms of AMI, NMI and ARI.

AMI NMI ARI
SCL 0.3746 0.4011 0.2631
SCG 0.4958 0.5260 0.4289
SCC 0.4488 0.4713 0.3280
SCD 0.5313 0.5683 0.4051
SCH 0.3928 0.4503 0.1768

EASC 0.6412 0.6614 0.5471
MMSC N/A 0.6792 N/A
AASC 0.6747 0.6853 0.6692

Table 3. Comparisons of different methods on Caltech-101 (20
classes) in terms of AMI, NMI and ARI.

AMI NMI ARI
SCL 0.3673 0.4247 0.2841
SCG 0.5100 0.5467 0.3799
SCC 0.3356 0.4033 0.2182
SCD 0.5718 0.5995 0.4471
SCH 0.3967 0.4522 0.2071

EASC 0.5926 0.6210 0.4528
MMSC N/A 0.6329 N/A
AASC 0.6202 0.6458 0.5110

Table 4. Comparisons of different methods on MSRC-v1 in terms
of AMI, NMI and ARI.

AMI NMI ARI
SCL 0.4094 0.4474 0.2733
SCG 0.5656 0.6113 0.4189
SCC 0.5410 0.5702 0.4515
SCD 0.5561 0.6053 0.4064
SCH 0.4821 0.5189 0.3284

EASC 0.7428 0.7578 0.7156
MMSC N/A 0.7745 N/A
AASC 0.7588 0.7806 0.7244

tation details. However, the performance of equal weight
combination is very close. Thus, to some extent, it can be
regarded as a fair comparison.

5.3. Face clustering

We have also evaluated AASC on face clustering. The
face databases are from ORL and CMU-PIE. The face im-
ages are all nearly frontal; those in ORL include various
facial expressions and those in CMU PIE include variable
lighting conditions. All images were first normalized and
cropped to 88 × 88 in resolution. To utilize cues from dif-
ferent perspectives, we extracted three different features.

1. Eigenface [5]. After performing principal compo-
nent analysis, each face image was projected into the
eigenspace which preserves 90% of the energy of the
eigenvalues.

Table 5. Comparisons of different methods on face database ORL
in terms of AMI, NMI and ARI.

AMI NMI ARI
SCe 0.5613 0.7630 0.3270
SCg 0.6015 0.7848 0.3897
SCl 0.5598 0.7539 0.4001

EASC 0.7377 0.8639 0.5629
AASC 0.7687 0.8820 0.6187

Table 6. Comparisons of different methods on face database CMU
in terms of AMI, NMI and ARI.

AMI NMI ARI
SCe 0.8049 0.9108 0.3390
SCg 0.7928 0.9027 0.3533
SCl 0.7574 0.8490 0.5181

EASC 0.8347 0.9196 0.5538
AASC 0.8506 0.9310 0.5695

2. Gabor texture [19]. Each face image was filtered with
40 Gabor filters generated with five different scales and
eight orientations.

3. Local binary pattern (LBP) [21]. We used a uniform
LBP with 8 neighbors and radius 1. Thus, each face
image was represented as a 256-bin histogram.

These three features are frequently used for face recog-
nition and represent face images from different perspec-
tives. We denote SCe, SCg, and SCl as the spectral clus-
tering methods with three different affinity matrices derived
from these three features (Eigenface, Gabor texture, and
LBP), respectively. Tables 5 and 6 show AMI, NMI and
ARI values for different algorithms on these two face data
sets. Note that faces in ORL exhibit facial expressions while
CMU-PIE has more variations in illumination. Thus, Gabor
is more effective in ORL and eigenface performs better for
CMU-PIE. This is evident from Table 5 in which SCg is the
best among three single-affinity SCs for ORL while SCe

is the best for CMU-PIE. We also show visual clustering
results in Figure 1 and Figure 2 for ORL and CMU-PIE,
respectively. We can see that AASC produced better clus-
tering results than other methods. AASC correctly grouped
photos of a subject into a cluster while other methods ei-
ther wrongly included photos of other subjects or left out
some photos of the subject. Without knowing the charac-
teristics of the databases, AASC successfully combined the
strengths of different features and outperformed all other
methods for both data sets.

5.4. Text clustering

For text clustering, we used two popular text data sets,
20 Newsgroups and Reuters-21578, downloaded from [7].
Each of them is pre-processed by four steps: all-terms, no-
short, no-stop and stemmed. We use the data sets 20ng-



(a) Eigenface

(b) Gabor texture

(c) LBP

(d) EASC

(e) AASC

Figure 1. The visual clustering performance of different methods
for ORL data set. AASC correctly grouped photos of a subject
into a cluster while other methods either wrongly included photos
of other subjects or left out some photos of the subject.

(a) Eigenface

(b) Gabor texture

(c) LBP

(d) EASC

(e) AASC

Figure 2. The visual clustering performance of different methods
for CMU data set. AASC correctly grouped photos of a subject
into a cluster while other methods either wrongly included photos
of other subjects or left out some photos of the subject.

train-stemmed and r52-test-stemmed to evaluate AASC. Let
D = {d1, · · · , dn} be the set of documents and T =
{t1, · · · , tm} the set of distinct words occurring in D. We
denote the frequency of word t ∈ T in the document d ∈ D
as tf (d, t). tf -idf is a weighting scheme which weights the
frequency of a word t in the document d with a factor that
discounts its importance with its occurrences in the whole
document collection, which is defined as

tf -idf (d, t) = tf (d, t)× log(
|D|
df (t)

),

where df (t) is the number of documents in which the word
t appears. Thus, the feature vector representation of a doc-
ument d is defined as

−→
td = (tf -idf (d, t1) , · · · , tf -idf (d, tm)) .

Table 7. Comparisons of different methods on text data set 20
Newsgroups in terms of AMI, NMI and ARI.

AMI NMI ARI
SCed 0.5230 0.5749 0.2868
SCcs 0.5212 0.5723 0.2816
SCjc 0.5237 0.5762 0.2854
SCpcc 0.5152 0.5661 0.2779
EASC 0.5199 0.5690 0.2814
AASC 0.5340 0.5840 0.3003

Table 8. Comparisons of different methods on text data set
Reuters-21578 in terms of AMI, NMI and ARI.

AMI NMI ARI
SCed 0.3585 0.5151 0.1854
SCcs 0.3519 0.5086 0.1828
SCjc 0.3671 0.5208 0.1967
SCpcc 0.3506 0.5085 0.1805
EASC 0.3555 0.5104 0.1861
AASC 0.3695 0.5213 0.2096

After normalizing the vectors to a unit length, we used the
following four metrics to calculate the pairwise distances
between two documents: Euclidean distance, Cosine sim-
ilarity, Jaccard coefficient and Pearson correlation coeffi-
cient, which measure distance between feature vectors of
the i-th and j-th documents

−→
tdi and

−→
tdj in different ways.

We denote as SCed, SCcs, SCjc and SCpcc the spectral
clustering with these four affinity matrices, respectively. Ta-
bles 7 and 8 show the AMI, NMI and ARI for 20 News-
groups and Reuters-21578, respectively. Note that doc-
uments are represented with the bag-of-word model and
these four affinity metrics only define different ways to mea-
sure distances. Thus, they have similar clustering capabil-
ity. Nevertheless, AASC is still able to assign the weights
appropriately to improve the clustering performance.

6. Conclusions

We have extended the spectral clustering algorithm to
the setting where there are multiple affinities available. Our
method can explore strengths of different features automat-
ically and weight them properly. Experiments show that it
effectively incorporates multiple affinities and yields bet-
ter performance compared to spectral clustering with only a
single affinity or naive feature fusion strategies. In addition,
it outperforms the previous method such as [6], and does
not suffer from the out-of-sample problem. Furthermore, it
is easy to implement, since only the computation of eigen-
vectors and 1-D search are involved. These characteristics
make it useful for real-world applications. In the future, we
will work on strategies for choosing the basis kernels to cal-
culate pairwise distances.
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