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Abstract—Top-down saliency detection aims to highlight the
regions of a specific object category, and typically relies on pixel-
wise annotated training data. In this paper, we address the high
cost of collecting such training data by a weakly supervised
approach to object saliency detection, where only image-level
labels, indicating the presence or absence of a target object in an
image, are available. The proposed framework is composed of two
collaborative CNN modules, an image-level classifier and a pixel-
level map generator. While the former distinguishes images with
objects of interest from the rest, the latter is learned to generate
saliency maps by which the images masked by the maps can
be better predicted by the former. In addition to the top-down
guidance from class labels, the map generator is derived by also
exploring other cues, including the background prior, superpixel-
and object proposal-based evidence. The background prior is
introduced to reduce false positives. Evidence from superpixels
helps preserve sharp object boundaries. The clue from object
proposals improves the integrity of highlighted objects. These
different types of cues greatly regularize the training process and
reduces the risk of overfitting, which happens frequently when
learning CNN models with few training data. Experiments show
that our method achieves superior results, even outperforming
fully supervised methods.

Index Terms—Top-down object saliency detection, convolu-
tional neural networks, weakly supervised learning.

I. INTRODUCTION

BJECT saliency detection has been an active topic in
O the fields of image processing and computer vision for
decades. The detected saliency maps highlight the regions of
objects attracting people. They are crucial to various applica-
tions such as image retargeting [1], visual tracking [2], object
segmentation [3], [4] and object recognition [5], because
they can indicate objects of interest and mask out irrelevant
background.

Following the previous studies of top-down saliency detec-
tion [6]-[11] object saliency detection methods can be roughly
divided into the bottom-up and the top-down groups. Bottom-
up methods rely on merely the information derived from
images alone for saliency detection. They seek object regions
by finding their distinct characteristics from the background.
Despite the generality, methods of this group often fail if the
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Fig. 1. Examples of the detected saliency maps and their ground truth
annotations for the categories bike (top row), car (middle row), and person
(bottom row). On the top of each map, we show the score by applying the
classifier to the image with its non-salient regions removed. For images in
(a), the saliency maps are of high quality and their classification scores are
also very high. For images in (b), the map quality is worse and the scores are
lower. Finally, for images in (c), the low-quality saliency maps lead to even
lower classification scores since more irrelevant background is retained and
it could disturb the classifier. It is clear that the better the non-salient areas
are removed, the higher the classification scores are.

difference between objects and the background is subtle. By
contrast, top-down approaches, e.g., [6]-[11], are category-
aware. They utilize the prior knowledge about the target object
category, such as object segment or bounding box annotations,
for saliency detection, and suffer less from the aforementioned
limitation. However, the top-down methods need training data
in the form of pixel-wise annotations, indicating whether a
pixel belongs to the target object category, which are usually
manually drawn or delineated by tools with intensive user
interaction as mentioned in previous work [12], [13]. The
heavy annotation cost of training data collection hinders the
advances in top-down saliency detection.

In this paper, we propose a weakly supervised approach
for addressing this issue. Our weakly supervised method only
requires training data with image-level labels, each of which
indicates the presence or absence of a target object in an image.
Image-level labels can be collected more efficiently than pixel-
level ones, so the annotation cost is substantially reduced. Even
better, many such annotations have already been collected
for other problems such as image classification. Compared
to the existing weakly supervised approaches, e.g., [9], [11],
our approach carries out top-down saliency detection based
on convolutional neural networks (CNNs) [14]. CNNs have
demonstrated the effectiveness in joint visual feature extraction
and nonlinear classifier learning. With CNNs, the highly
nonlinear mapping between images and their saliency maps
are better modeled. At the same time, the sub-optimal hand-
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Fig. 2. The overview of our approach. The classifier f distinguishes images of a target class from the rest. It propagates the classification information via
the loss function ¢.;¢ to train the generator g, which compiles saliency maps so that the masked images can be predicted by f with higher confidence. The
other three loss functions, £pg, £seg and £, explore cues from the background prior, superpixels, and object proposals, respectively. They are introduced

for generating high-quality saliency maps.

crafted features are replaced with the better features learned
automatically by CNNs. Therefore, saliency maps of higher
quality can be generated. Unlike most top-down saliency
approaches that generate down-sampled saliency maps due
to the computational issue, our approach can generate full-
resolution maps, and is suitable for the tasks where resolution
matters.

Our approach is developed based on the following observa-
tion. For a classifier that separates object images of a target
category from the rest, it tends to have a high prediction
confidence if the irrelevant background of an object image
is removed. Fig. 1 gives some examples of this observation.
The better the background areas are masked out, the higher
the prediction scores are. We leverage this observation to
compensate for the lack of pixel-wise annotated training
data in weakly supervised saliency detection. Specifically, our
approach is composed of two CNN-based modules, an image-
level classifier and a pixel-level map generator, as shown
in Fig. 2. The classifier is learned by using image-level
labels available in weakly supervised learning. It identifies
the presence or absence of the target object in an image, and
propagates prediction confidence to guide the training of the
pixel-level map generator. The generator is derived to compile
saliency maps with which the masked training images are
better predicted by the classifier.

A similar observation is also leveraged by Cholakkal et al.
[11] but with two major differences. First, our method utilizes
this observation in the training stage to learn the generator
while Cholakkal et al. [11] use it in the inference stage as
post-processing by fusing the best bottom-up saliency maps
generated by other methods. This difference makes our method
more efficient than their method [11] in inference since our
method only needs to apply the generator trained based on this
observation to the test images while theirs has to invoke several
other map generators and perform fusion in the inference

stage. Second, our method leverages this observation to derive
the generator, which directly learns the saliency maps from
raw input images. The method in [11] uses this observation
to fuse the saliency maps generated by other existing methods
in the domain of the extracted features rather than images or
maps themselves. Thus, the performance of the method in [11]
highly depends on the quality of the maps generated by other
methods and may suffer from the information loss caused by
the conversion from an image/map to the features.

The collaboration between the image classifier and the
map generator enables weakly supervised top-down saliency
detection. However, the collaboration alone is insufficient to
result in saliency maps of high quality. The generated saliency
maps often have false alarms, are blurred especially near object
boundaries, and highlight only discriminative object parts.
Hence, our approach further explores other evidence to address
these issues. First, the background prior is learned by referring
to the background images. This prior knowledge is helpful in
filtering out false positives. Second, we compute superpixels,
which reveal two important clues for saliency detection: 1)
Most object boundaries are discovered; 2) the pixels within
a superpixel tend to belong to the object or the background
all together. We leverage the clues to make saliency maps
sharper while removing noise. Third, we generate object-like
proposals. The evidence jointly explored by saliency detection
and proposal selection helps recover non-discriminative object
parts, making the whole objects completely highlighted in the
saliency maps.

The main contribution of this work is to develop a gen-
eral CNN-based framework for weakly supervised top-down
saliency detection. It utilizes the category-driven informa-
tion from the classifier to derive the generator of saliency
maps. In addition, three additional types of evidence are
adopted to enhance generator training. The resulting objective
function is differentiable, so the proposed approach is end-
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to-end trainable. Our architecture, the coupled CNN-based
classifier and map generator, is simple yet flexible. It can be
extended to address other weakly supervised tasks such as
object localization or semantic segmentation where map-like
outputs are derived from the given class labels in a top-down
manner. Our approach is comprehensively evaluated on three
standard benchmark datasets for top-down saliency detection,
including Graz-02 [15] and PASCAL VOC-07/12 [16]. The
results show that our approach outperforms the state-of-the-
art weakly supervised approaches and many fully supervised
ones in both accuracy and efficiency.

II. RELATED WORK

Saliency detection is an active topic in image processing
and computer vision, and has several important branches, such
as singe-image object saliency detection, object co-saliency
detection, and eye-fixation. Our review mainly focuses on
singe-image object saliency detection because it is the most
relevant to our proposed method.

A. Bottom-up object saliency detection

Bottom-up object saliency detection [17] receives much
research attention owing to superior computational efficiency
and less requirement of training data. As discussed in the
survey paper [17], bottom-up approaches find objects attract-
ing humans by referring to different category-independent
object observations or priors to distinguish salient objects
from the background, such as center-surround contrast [18],
[19], global/local contrast [20], [21], focusness [22], object-
ness [22]-[24]. These approaches sometimes fail because the
observations or priors vary from object category to object
category. To overcome the issue, learning-based methods, e.g.,
[25]-[27], were proposed to capture the concept of objects,
such as the space learning [25], [27] or a random forest
regressor with contrast descriptors [26]. Recently, more and
more researches [28]-[36] utilize CNNs to carry out the tasks
of bottom-up object saliency detection in different ways, such
as multi-level feature aggregation [33], uncertain convolutional
feature learning [34], global context and local context integra-
tion [35], and contour-saliency conversion [36].

Wang et al. [32] proposed a two-stage method to learn
a bottom-up saliency model by using image-level labeled
training data. At the first stage, the foreground inference
network with the proposed global smooth pooling is trained
on the ImageNet dataset. At the second stage, a self-training
scheme is applied by taking as input the pseudo ground truth,
which is initialized at the first stage and iteratively refined
by using CRF. On the contrary, our method is designed for
top-down saliency detection. In addition, our method is non-
iterative and end-to-end trainable, thereby leading to higher
training efficiency.

Despite the effectiveness, learning-based approaches to
bottom-up saliency detection have limited performance. First,
the definition of salient objects is ambiguous especially when
multiple objects are presented in an image. Bottom-up methods
only detect the most salient object in an image, and probably
fail in the condition that multiple objects of different categories

are presented in a scene. Second, they lack high-level semantic
meaning, so it is difficult to integrate them into the optimiza-
tion process of other tasks requiring the top-down prior. Thus,
they are usually used for pre-processing.

B. Top-down object saliency detection

Top-down saliency methods such as [6]-[9], [11] utilize
the category-specific information to learn the object concept
from a set of categorized training data. These methods are
confined to pre-defined categories, so they don’t suffer from
the aforementioned limitations caused by the lack of category
labels. Yang and Yang [6] proposed a method for top-down
saliency detection by jointly learning conditional random
fields and a dictionary. Kocak et al. [7] computed the first
and second order statistics and objectness on superpixels to
distinguish target objects from the background. Cholakkal et
al. [8] proposed the locality-constrained contextual sparse
coding (LCCSC) method for top-down saliency detection.
He et al. [10] proposed an exemplar-based method with the
strongly supervised CNNs guided by the selected exemplars
for both training and testing. Despite the effectiveness, these
top-down methods require pixel-wise annotated training data,
and result in a high annotation cost. The pioneering work by
Cholakkal et al. [9], [11] tackled this issue by formulating
saliency detection as a weakly supervised learning problem
where only image-level labels are provided.

The proposed approach also carries out top-down saliency
detection in a weakly supervised fashion. The major difference
between our approach and Cholakkal et al.’s approach [9] is
that the CNN-based architecture is leveraged in our approach.
Therefore, engineered features are replaced by the features
learned to optimize the objective of saliency detection. Much
better performance can be achieved as shown in the experi-
ments.

Cholakkal et al. [11] later extended their work by us-
ing CNN features and employing two-step post-processing,
bottom-up saliency map fusion and multi-scale superpixel-
averaging. Their method achieves very satisfactory perfor-
mance. Compared with their method, our method has the
following two advantages. First, the method in [11] is derived
based on the spatial pyramid pooling (SPP) and the formula-
tion of the linear SVM. Thus, feature extraction and saliency
detection are treated as separate steps. In contrast, our method
jointly learns the CNN features and estimates saliency maps
through end-to-end optimization. Second, the method in [11]
relies on superpixels and multiple saliency maps produced by
other off-the-shelf methods at the inference stage. Therefore,
its performance depends on the saliency maps yielded by other
methods and its efficiency is worse. In contrast, our method
carries out saliency detection by simply applying the learned
CNN model to test images. It requires neither superpixel
extraction nor saliency map fusion, thereby leading to much
higher efficiency. In addition, our method outperforms the
method in [11] if the two-step post-processing is turned off.

In addition to less costly annotation and good performance,
our approach can efficiently produce full-resolution saliency
maps without the extra steps for image down-sampling and



this work

prior work [37]  this work prior work [37]

Fig. 3. Comparison between the proposed method and our prior method. Each
example consists of the ground truth (GT) and two saliency maps, generated
by our prior work [37] and this work, respectively. Examples from three object
categories, including bike, car, and person, are displayed in the three rows,
respectively.

map up-sampling or superpixel computing. In the non-CNN-
based state-of-the-art methods for either weakly or strongly
supervised saliency detection such as [6]-[9], [11], the features
are computed on superpixels or over a grid to reduce the
complexity. The extra quantization procedure may induce
performance degradation. In the CNN-based method [10], a
sliding window scheme is used to produce the saliency map of
an image. Thus, multiple forward passes are required and they
lead to a high computational cost. Instead, in our method, one
forward pass is sufficient to perform saliency detection. Our
method is 142 times faster than the CNN-based method [10]
as reported in the experiments.

This work shares the same network architecture with our
prior work [37], namely an architecture consisting of two
collaborative CNN modules, the map generator and the image
classifier, for weakly supervised saliency detection. The image
classifier propagates the image-level information to train the
map generator. The paper provides significant improvements
by enhancing the loss function and the optimization procedure
to address the limitations of the prior work. First, the map
generator is learned by referring to prediction scores made by
the classifier. Therefore, our prior method tends to detect only
the discriminative parts of salient objects. The less discrim-
inative regions of salient objects are sometimes missing. In
addition, the prior method is prone to miss small salient objects
and the detected saliency maps are blurred, especially near
object boundaries. We address these limitations by integrating
segmentation- and object proposal-guided evidence into the
loss function. Thus, this work can better recover the whole
salient regions, discover small objects and preserve object
boundaries. We show some detected saliency maps by the
prior work [37] and this work in Fig. 3 for comparison.
It is clear that the above-mentioned limitations are properly
addressed by this work. Second, a two-stage optimization
procedure is adopted for saliency detection in our prior work.
The second stage is used to enforce the smoothness of saliency
maps. Although improving quality, the stage represents the
computational bottleneck in the framework. In this paper,
we add the information extracted from segmentation and
object proposals to the loss function for model training. It
significantly improves the quality. Thus, post-processing is no
longer required. It turns out that the proposed method is about
350 times faster than the prior method [37].
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C. CNN-based weakly supervised learning

Learning CNNs in a weakly supervised manner attracts
much attention, and has been explored in a few computer
vision tasks, such as object localization [38]-[43] and semantic
segmentation [44]—[47]. Top-down saliency detection is related
to the two tasks, and can be integrated into them, because all
of them utilize the top-down, class-specific knowledge.

Among them, the object localization methods in [42], [43]
are the most similar to our approach, because they gener-
ate saliency maps, too. The approach in [43] produces the
class-specific score maps, which are aggregated into a score
vector by using global max-pooling to optimize the multi-
class logistical loss. However, using max-pooling is prone
to find merely the discriminative parts of an object rather
than the whole object. Zhou et al. [42] replaced global max-
pooling with global average pooling to alleviate this problem,
but the global average pooling tends to over-estimate object
regions because it takes all the activations into account. Both
methods in [43] and [42] only produce coarse saliency maps
to save computation. The spatial structure and the object
boundaries are also missing because of the use of the pooling
operators. In our work, the generated maps are full-resolution,
so the spatial structure can be maintained. With the aid of
superpixels and object-like proposals, object boundaries and
the non-discriminative object parts can be well discovered in
our approach.

It is worth mentioning that semantic segmentation and top-
down saliency detection are highly correlated but different.
First, semantic segmentation aims to generate object segments
of classes of interest. It is a task of dense or pixel-wise
classification. Thus, the order of the class probabilities on each
pixel is crucial, and the segmentation results are discrete. In
contrast, top-down saliency detection produces the probability
map encoding the occurrence likelihood of salient objects. The
values in the resultant saliency maps are real-valued. Second,
according to the task goals, semantic segmentation is often
measured by IoU (intersection over union) and pixel-wise
accuracy rates, while top-down saliency detection is usually
evaluated by jointly considering precision and recall. Third,
according to the evaluation metrics, CNN-based methods for
semantic segmentation often employ loss functions based
on softmax or other classification-based criteria. In contrast,
methods for top-down saliency detection, including ours, often
use the Ly or L1 norm loss, and take the absolute magnitudes
of the saliency maps into account.

D. Top-down neural attention

Different from top-down object saliency detection, the
methods in [42], [48]-[52] analyze the neuron responses or
gradient of a classifier to generate class-specific activation
maps. In [48], [49], the partial derivatives of neuron activations
from error backward propagation are computed to highlight
important image regions. In [50], a feedback loop is proposed
to infer the activation of hidden layer neurons, and the feed-
back mechanism outputs the top-down attention which can
identify discriminative object parts. Zhou et al. [42] proposed
class activation mapping (CAM), which substitutes an average
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pooling layer for the fully-connected layer. Their method
helps generate coarse maps highlighting objects. Based on
the winner-take-all principle and the probabilistic formulation,
Zhang et al. [51] focused on generating highly discriminative
attention maps. These methods aim to identify discriminative
regions for a given class, and most of them are applied to
the classification or localization tasks where detecting precise
object boundaries and the whole objects are not necessary.

Methods discussed above have several limitations. First,
these methods depend on the neuron responses of a classifier,
and the activation maps are usually smaller than the input
images. Therefore, test images must be resized to meet the
learned models, and outputs are then resized back to original
sizes. The step of image resizing often results in object
distortion and makes it difficult for the attention maps to
preserve object boundaries. Second, these methods find only
discriminative object parts, and neglect non-discriminative but
salient parts, so they cannot well identify complete objects.
Third, they perform both the forward and backward propaga-
tion for each test image, so the computational cost is high. In
our framework, the fully convolutional networks (FCN) [53]
architecture is adopted for the generator, and image resizing
is not required. Thus, distortion seldom happens. Superpixel
segmentation and object proposals are extracted to regularize
the training of CNNs. The evidence from superpixels and
proposals helps preserve object boundaries and discover non-
discriminative object parts. Furthermore, our approach is more
efficient since it needs just one forward pass for detecting the
saliency map of an input image.

III. THE PROPOSED APPROACH

In this section, we first give the problem definition. Then,
the proposed formulation and its optimization are described.
Finally, the implementation details of our approach are pro-
vided.

A. Problem definition

We aim at weakly supervised saliency detection with image-
level annotated training data. In the stage of training, a training
set of binary labels is given, D = D, UDp; = {(In, yn)}2_1,
where N is the number of training images. [, is the nth
training image with its label y, € {0,1} indicating the
presence (y, = 1) or absence (y, = 0) of a target object.
D,y; and Dy, are the subsets of object images and background
images, respectively. With D, our goal is to learn a model that
accurately detects the target objects in testing images.

B. Our formulation

As shown in Fig. 2, our approach is composed of two CNN
modules, the image-level classifier f(-) and the pixel-level map
generator g(-). The classifier f(-) is learned to best separate the
two-class training set D. It predicts for each I,,, and propagates
the classification score to guide the training of the generator
g(+). For each I,,, the generator g(I,,) estimates its saliency
map S,,, which highlights the target objects if they exist. The
generator ¢(-) is learned in a way where the highlighted I,, by

S, can be predicted by f(-) with a higher confidence. Note
that the proposed method uses the sigmoid function as the
activation functions in the last layers of both f(-) and g(-).
Thus, the prediction of f(-) and each pixel in the saliency
map S, ranges between O and 1. In the phase of testing, the
generator g(-) produces the saliency map g(I) for an input
image I with one forward pass.

The classifier f(-) is a deep model derived to separate the
two-class training set D. Once the classifier f(-) is obtained,
we focus on learning the map generator g(-). Suppose the
generator ¢(-) is parametrized by w. The proposed objective
for training the generator g(-) is composed of four loss
functions, and is defined by

(W)= > LoaalTn; W) + Aeeglocg(In, My w)
IneDobj
(1)
+ Apslepsl(jna On; W) + Z )\bgebg(ln; W))

I,€Dyy

where Apg, Aseg, and Apg are constants for weighting losses.
M, is the set of the superpixels extracted in image I,,.
O, is the selected object proposal for I,,. The four loss
functions, i.e., {eis, log, Lseg, and £,q, estimate the quality
of saliency maps by considering the classification scores, the
prediction errors in the background images, the superpixel-
wise consistency of the saliency maps, and the difference
between the saliency map and the selected object proposal,
respectively. They are defined and justified as follows.

1) Classification loss f.s: It guides the training of the
generator by referring to the classification scores given by the
classifier f(-). Its definition on an object image I,, is given
below:

Cors(In;w) = || £(®(Sn, 1)) — 1|2
+ [l f(®(1 = S, I,,)) — 0|12, )

where S,, = gw(I,) is the saliency map predicted by the
current generator gy, and ® is the operator of element-
wise multiplication. Thus, ®(Sy,I,,) is the image I,, with
its estimated salient regions highlighted. The classification
loss £¢5(I,; w) encourages the generator g(-) to highlight the
discriminative regions of I,, so that a high classification score
f(®(Sp, I,)) can be obtained. The assumption behind this
loss function is that most discriminative regions reside in the
target objects. We also consider the symmetric counterpart.
Namely, the non-salient areas, 1 — S,,, should not contain any
object parts. Thereby, the classification score f(®(1—.S,, I,))
is minimized.

2) Background loss (y4: It prevents the generator from
detecting salient objects in a background image I,. It is
defined by

1

gbg(jn;w) = W X H

5. — Z|1?, 3)

where W and H are the width and the height of I,, respec-
tively. Z € RW>*H is a matrix whose elements are 0. This
loss greatly reduces false alarms in saliency detection.



3) Segmentation-based loss ls.4: The classification loss
L. and the background loss /, are designed to identify the
regions that are classified with high confidence as foreground
and background, respectively. Therefore, the two loss functions
often seek the discriminative object parts and exclude the non-
salient regions whose appearance is similar to the background
images. Using the two loss functions alone is insufficient to
preserve object boundaries, and some noises are present in the
saliency maps.

We address these issues by utilizing clues from segmen-
tation. For each image in D, we decompose it into super-
pixels, which have the following two properties helpful for
saliency detection. First, pixels within the same superpixel
tend to belong to either a salient object or the background all
together. Second, object boundaries often coincide with bound-
aries between superpixels from over-segmentation. The former
property can be used to filter out noises in a superpixel-wise
manner, while the latter can be leveraged to preserve object
boundaries and generate sharper saliency maps. Specifically,
the segmentation-based loss for the image I,, is given below:

DD

zseg(lny Mna W) =

pEM,, i€p
- Sn(g
[Zzepm(f) > 0.5] 18 (0) = 11”4
N Zﬂeppf@ §0.51|Sn(i) —0Jf%,

where M, is the set of superpixels of I,,, [-] is the indicator
function, Sy, (¢) is the saliency value of I,, at pixel ¢, and |p| is
the size of the superpixel p. W is the average saliency
value of the superpixel p. In Eq. (4), we maximize the saliency
value of a pixel if it belongs to a superpixel whose average
saliency value is larger than 0.5, otherwise we minimize it.
Eq. (4) can be expressed equivalently as the following matrix
form:

1

W x H

where G, € {0, 1} > is a mask decided by average saliency

values of superpixels, and is defined as
if Zeee 0 05,
otherwise,

Eseg(Ina Mnyw) = ||Sn - Gn||27 (5)

(6)

where p is the superpixel containing the pixel <.

4) Proposal loss f,s: When the three aforementioned
loss functions, i.e., £¢s, fbg, and £,cq, are used for saliency
detection, some salient objects cannot be detected completely
because none of the three loss functions encourages the
detection of the non-discriminative parts of salient objects.
It leads to incomplete objects or objects with holes in the
resultant saliency maps. This problem can be alleviated by
taking the clue derived from objectness into account. To this
end, we compile a pool of object proposals for each image
I, € D by using any existing, unsupervised algorithm for
proposal generation. We pick the proposal that is the most
consistent with the saliency map, and further enhance the
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consistency between the saliency map and the picked proposal,
ie.,

1
épsl(InaOn;W) = WXHHSn_On||27 (7)
— ; _ 2
where O,, = arg min IIS» — O] (8)

In Eq. (8), O, is the pool of object proposals produced
for I,, by using the adopted proposal generation algorithm.
We pick the proposal O,, € {0,1}" > which best matches
the saliency map S,. The saliency map S,, is optimized to
be consistent with O, via Eq. (7). The idea behind this
proposal loss is intuitive: The object proposal covering the
discriminative parts, i.e., consistent with .S,,, likely covers the
non-discriminative parts at the same time. This property is
leveraged to enforce the generator g(-) to highlight the non-
discriminative parts along with the discovered discriminant
parts. Consequently, this loss reduces false negatives, and
facilitates the detection of complete salient objects. In .,
the pseudo ground truth is yielded by picking superpixels indi-
vidually. It does not necessarily maintain the whole objects. In
contrast, the goal of an object proposal algorithm is to generate
at least one proposal that can cover the whole object, and
we can pick the top-ranked proposal via Eq. (8) to overcome
issues of incomplete objects or objects with holes.

C. Optimization process

The objective in Eq. (1) is differentiable and convex, and
can be efficiently and effectively optimized with stochastic
gradient descent (SGD). An iterative method is adopted to
sequentially update superpixel masks {G,,}, object proposals
{0, }, and CNN parameters w. The extraction of superpixels
and object proposals is carried out before executing our
method. The resultant superpixels and object proposals remain
fixed during the iterative process of our method.

When running the proposed method, at each epoch, we first
fix the CNN parameters w and apply the generator g(-) to
the training images to get the saliency maps, {5, }. Then, we
refer to the generated saliency maps and pick the superpixels
to produce the masks {G,,} via Eq. (6). The most consistent
proposals {O,,} are selected based on the generated saliency
maps via Eq. (8). The generated masks {G,, } and the selected
object proposals {O,} serve as the pseudo ground truth
for optimizing the generator based on the objective function
in Eq. (1). The same steps are repeated for each epoch.
The optimization is finished until convergence or reaching
the maximum epoch number. Algorithm 1 summarizes the
optimization procedure.

It is worth mentioning that the superpixels and object pro-
posals are only adopted in the training stage. During testing,
the saliency map of a test image is obtained by applying the
learned generator to the test image.

D. Implementation details

We implemented the proposed network based on MatCon-
vNet [54]. ResNet-50 [55] is adopted as the image-level
classifier f(-), because using other network architectures, such
as AlexNet [14] or VGG-16/19 [56], sometimes results in
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the vanishing gradient problem. The two-class classifier f(-)
is pre-trained on ImageNet [57] and fine-tuned by using the
training set D. The batch size, weight decay and momentum
are set to 32, 0.0005, and 0.9, respectively. The learning rate
is initially set to 0.001, and decreased by a factor of 10 every
20 epochs. In total, the learning rate is decreased 4 times, and
the learning process stops after 100 epochs.

The map generator is developed based on the VGG-16 [56]
setting of FCN [53] with the same batch size, weight decay,
and momentum except for the last layer. We replace the
activation function softmax in the last layer with the sigmoid
function. The output of the sigmoid function is the estimated
saliency map. The learning rate is set to 0.00001, and fixed
during training. The maximum number of epochs is set to
200. In the first 100 epochs, we optimize Eq. (1) with loss
functions Z,., and £, removed because the initial model is
not stable enough to generate reliable superpixel masks and
select plausible object proposals. Superpixel masks and object
proposals of low quality will drop the performance. In the
last 100 epochs, the four loss functions are jointly optimized.
Data augmentation including vertical flip, horizontal flip, and
rotation at 90, 180, 270 degrees, is used to avoid over-fitting.
In addition, because the classifier f(-) requires the inputs of
the same size, each training image is resized to the resolution
384 x 384 in advance.

For the set of superpixels M,, used in the segmentation
loss Eq. (4), the superpixel extraction algorithm SLIC [58]
implemented in VLFeat [59] is adopted to decompose an
image into superpixels because of its computational efficiency,
better compactness and regularity. The average number of
superpixels in an image is about 361. For generating the pool
of object proposals O,, used in the proposal loss Eq. (8), we
use the fast object proposal generation algorithm, geodesic
object proposal (GOP) [60]. According to the weakly super-
vised setting of this work, the unsupervised setting of GOP is
adopted. The number of the generated proposals for an image
ranges between 200 and 1100. The parameters of SLIC and
GOP are the same as those in their demo codes for superpixel
extraction and unsupervised proposal generation, respectively.

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed approach. We first
describe the datasets and the metrics for performance evalu-
ation. Next, we report the sensitivity analysis on the model
parameters and assess the impacts of each loss function.
Finally, we compare the proposed approach with the stare-
of-the-art weakly supervised and fully supervised approaches.
These methods are compared both quantitatively and visually.

A. Datasets and evaluation criterion

We evaluated our proposed method on three benchmarks for
top-down saliency detection, including Graz-02 [15], PASCAL
VOC-07, and VOC-12 [16]. We chose the three datasets be-
cause they are composed of real-world images with large intra-
class variations, occlusions and background clutters. They
have been widely used in the literature of top-down saliency
detection, such as [6]-[10], [37].

Algorithm 1 The Optimization Procedure
Input: Object image set: D.p;; Background image set: Dyg;
Maximum number of epochs: T

1: Train the image classifier f(-); (Sec. III-D)

2: Extract the superpixels for each image; (Sec. III-D)

3: Compute the object proposals for each image; (Sec. III-D)
4: Initialize the map generator g(-); (Sec. III-D)

5. for Epoch: 1, ..., T do

6: Generate saliency maps {S,,} with g(-), VI, € Dgy;;
7: Update {G,,} with {S,,} via Eq. (6), VI, € Dg;;

8: Update {O,,} with {S,,} via Eq. (8), VI,, € Dg;;

9: Optimize objective in Eq. (1) with {G,,} and {O,};
10: if convergence then

11 Return g(-);

12: end if

13: end for

Output: Saliency map generator g(-);

1) Graz-02: The Graz-02 dataset [15] contains images of
three object categories, bike, car and person, and a background
category. Each category has 300 images of resolution 640 x
480. The ground truth in the form of pixel-level object masks
are provided for the performance evaluation. Following the
setting used in previous papers [6], [8], [9], the odd numbered
150 images from each category served as the training data,
while the rest were treated as the test data. Three saliency
models were trained, one for each object category.

2) PASCAL VOC-07 and VOC-12: The PASCAL VOC-07
and VOC-12 datasets are more challenging and difficult than
the Graz-02 dataset because more variations, occlusions and
background clutters are present in the images. The PASCAL
VOC-12 [16] dataset consists of 20 object categories. It
contains 5,717 training images and 5,823 validation images
in the tasks of object classification and detection, while it
has 1,464 training images and 1,449 validation images in the
segmentation task. For all the three tasks, the ground truth
of the test images are not available. Following the evaluation
protocols adopted in previous work [10], [37], [43], we used
the 5,717 training images in the classification task as the
training data, while adopting the 1,449 validation images,
which have pixel-wise object masks, in the segmentation task
as the testing data. For each object category, only images
where the target object are present were used for evaluation.

PASCAL VOC-07 is a subset of PASCAL VOC-12, but
the ground truth of the 210 test images for segmentation is
provided. For PASCAL VOC-07, because CNNs require a
lot of training images, the same training images were used
to train the models, and the 210 test images were used for
testing. Following the setting used in previous work [6], [8],
[9], all models were evaluated on the 210 test images no matter
whether the target objects are present or not.

3) Evaluation criterion: The precision rate at equal error
rate (Prec@EER), was adopted to measure the performance.
Following the previous researches [6]-[10], [37], the saliency
maps in the Graz-02 and PASCAL VOC-07 datasets were
not binarized when computing Prec @EER. For the PASCAL
VOC-12 dataset, we used the same setting as He et al. [10]
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Fig. 5. (a) The performance gains in Prec@EER obtained by adding the four loss functions, i.e., £cis, £bg, £seg, and £5,5;, one by one on the Graz-02 dataset.
(b) The ground truth masks for the two examples. (c) ~ (f) The saliency maps produced on two examples when the four loss functions are sequentially added

to the objective function.

to evaluate our model. In their work [10], the saliency maps
were first binarized with every integer threshold in the range
of [0,255], and then Prec @EER was computed by using the
threshold with the smallest difference between precision and
recall.

B. Results on the Graz-02 dataset

In the following, we first conduct model analysis to de-
termine the values of the parameters in our method, and then
compare our method with the existing methods on the Graz-02
dataset.

1) Model analysis: Following the previous work [6], [9],
we analyze our model and empirically select the hyper-
parameters on the Graz-02 test data. The proposed objective in
Eq. (1) consists of four loss functions. Except the classification
loss £, the other three loss functions, lyg, fseq, and £y,
are associated with weighting parameters, i.e., Apg, Aseg, and
Apst» respectively. We conduct sensitivity analysis of the three
parameters, and assessed the effect of adopting these loss
functions. The classification loss /., is always included in
the objective function with the weight 1. We first add the
background loss ¢, for removing false positives in saliency
maps. Fig. 4(a) reports the performance of the proposed
method by varying \pg. It can be observed that ¢ is crucial,
since the performance gain by changing Ay, from zero to a
positive value is significant. We empirically set Ayq to 4.

Next, the third loss {4 is included to preserve the object
boundaries and remove the noise. The performance of our
approach with different values of A,.4 is similarly reported in
Fig. 4(b). The loss ¢s., moderately enhances saliency detec-
tion. The parameter A, is fixed to 6. Finally, the fourth loss
{51 is introduced to cover the non-discriminative object parts
and highlight the complete objects in the images. As shown
in Fig. 4(c), this loss enhances the performance of saliency
detection. The parameter )\, is set to 7. The optimal values
of these parameters have similar trends among the three object
categories. We fix the parameters, (Apg, Aseg, Apst) = (4,6,7),
for all categories in the following experiments.

To quantify the effect of each of the four loss functions,
we report the performance gains obtained by sequentially
adding these losses, £cis, fbg, Lseg, and £y, to the objective
function. The results in Fig. 5(a) indicate that each loss
function makes its own contribution to saliency detection for
all the three object categories. To get insight into the gains,
two examples of the detected saliency maps generated through
the procedure of sequentially adding the four loss functions
are given in Figs. 5(c) ~ 5(f). With only the classification
loss £.s, the target objects, bicycle and car, are detected,
but many false alarms occur in Fig. 5(c). From Fig. 5(c) to
Fig. 5(d), the background loss ¢4, is added, and it helps remove
most false alarms. It can be observed that the background
loss, separating background regions from objects, has objects
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TABLE I
THE PERFORMANCES IN PREC@EER (%) OF DIFFERENT APPROACHES,
INCLUDING UNSUPERVISED (US), FULLY SUPERVISED (FS), AND WEAKLY
SUPERVISED (WS) ONES, ON THE GRAZ-02 DATASET. SP AND SM

TABLE II
THE AVERAGE RUN TIME (IN SECONDS) OF THE COMPETING METHODS
AND OUR METHOD ON THE GRAZ-02 DATASET.

REPRESENT THE USE OF SUPERPIXELS AND EXISTING SALIENCY MAPS Method MB [61] MST [62] Patch-CRF [6]  SP-CRF [7]
DURING INFERENCE, RESPECTIVELY. Time (Sec) 0.0263 0.1142 3.0940 302928
Speedup 1151.8% 2653 % 9.8% %
Group Method Setting Bike Car Person Mean ‘Method Examplar [10]  Ours (prior) [37] Exc. BP [51] Ours
MB [61] s S17390 500 48.6 Time (Sec) 2.1470 5.2950 0.0632 0.0151
MST [62] Us 501388 513 467 Speedup 4.1 57 4793 X 2006.1x
WSS [32] WS 64.771.6 640 66.8
HDCT [25] FS 550438 53.0 509
Bottom-up| DRFI [26] FS 51.349.6 59.6 53.5 salient objects of a target category.
Amulet [33] FS 78.575.7 184 715 Instead, fully supervised, top-down methods [6]-[8], [63]-
UCEF [34] FS 70.8 70.7 76.2 72.6 651 1 the discriminative inf tion b . elowi
PICANet [35] FS 797821 850 823 [65] learn e discriminative information by using pixel-wise
C2SNET [36] FS 79.8 80.9 83.0 812 annotated training data, and get much better performance.
ILC [63] ES 719 649 586 65.1 However, collecting such training data is costly. R-ScSPM [9]
SP-Nei. [64] FS 722722 66.1 702 and our method adopt the weakly supervised setting, and can
Shape mask [65] ES 61.8 538 44.1 5321  work with image-wise annotated training sets. Our method
Patch-CRF [6] FS 624600 62.0 613 leverages multiple evidences and integrates them into a CNN-
SP-CRF [7] FS 73.9 68.4 682 70.2 based " hi I h hod
LCCSC [8] ES 762712 64.1 705 ased network architecture. It turnsoout that our metho
Top-down | R-ScSPM [9] FS 776 719 67.0 72.1 outperforms R-ScSPM [9] and our prior work [37] by large
R-ScSPM  [9] WS 67.5 565 57.6 605 margins around 18% and 8.6% in Prec @EER, respectively.
R-ScSPM+ [11] WS - - - 691 The large performance gain of our method over its prior
Ours (prior) [37] WS 789 66.6 64.2 69.9 work [37] reveals that the newly introduced segmentation- and
Ours WS 821785 750 785 bject-proposal-based 1 compensate for the lack of pixel-
R-ScSPM+ [11]|WS+SP+SM|84.1 81.5 81.§ 825 ooject-proposal-based losses compensate for the fack of p

detected more confidently. From Fig. 5(d) to Fig. 5(e), the
added segmentation loss /.., makes the saliency maps much
sharper, since this loss helps preserve the object boundaries
and remove the noise. From Fig. 5(e) to Fig. 5(f), we find
that adopting the loss £, can identify the non-discriminative
object parts, highlight the complete objects, and also further
remove the noise. In the car image of Fig. 5(e), the detection
result is incomplete since some holes are present inside the
car. The unfavorable effect results from picking superpixels
individually. In Fig. 5(f) where the loss regarding object
proposals has been incorporated, it is obvious that the object
can be detected more completely.

2) Comparison with the state-of-the-art methods: For the
Graz-02 dataset, we compare our proposed method with the
state-of-the-art methods, and report their performances in
TABLE I, where the field setting denotes the supervision con-
dition of training data, including unsupervised (US), weakly
supervised (WS), and fully supervised (FS) settings.

In TABLE I, the bottom-up methods [25], [26], [61],
[62] on Graz-02 identify salient objects without using any
prior information of the target category. Despite the broad
applicability, they do not perform very well for category-
specific saliency detection. The CNN-based methods [33]-
[36] for supervised bottom-up saliency detection use large-
scale training data with annotated object masks, so they often
outperform the conventional bottom-up methods. However, our
method can still achieve the better or comparable performance
without using training data with annotated masks. Compared
to WSS [32] which also uses image-level labeled training data,
our method reaches the much better performance. The main
reason is that WSS [32] is a bottom-up method while our
method handles top-down saliency detection and addresses

wise annotated training data in the weakly supervised setting.
R-ScSPM+ [11] outperforms the proposed method because
it uses two-step post-processing, namely bottom-up saliency
map fusion and multi-scale superpixel-averaging. Under the
same setting where post-processing is turned off, our method
outperforms R-ScSPM+ [11] by a large margin. It is also worth
mentioning that our method even achieves a remarkably better
performance than the state-of-the-art fully supervised methods.
Thus, we believe that the proposed losses could also benefit
the supervised setting and likely advance the methods in this
category.

To gain insight into the quantitative results, Fig. 6 shows
some detected saliency maps by different approaches. The
bottom-up approaches, MB [61] and DRFI [26], tend to
misclassify non-target objects as the salient regions. These
false positives are caused due to the lack of category-specific
information in training data, and are prone to occur in the
regions of high contrast, such as windows, bags, and clothes.
Compared to MB and DRFI, the top-down methods, Patch-
CREF [6] and SP-CRF [7], can yield more satisfactory saliency
maps. However, they still have a few limitations. First, the
adopted engineered features are less discriminative. Thus,
there are still a few false positives. Second, their features are
extracted from a patch [6] or a superpixel [7] to reduce the
complexity. The resultant feature maps cannot preserve the
fine structures in the images very well, and may have the
unfavorable block effect.

In our prior work [37], though a postprocessing for en-
forcing spatial coherence is employed to make the generated
saliency maps smooth and remove the false negatives, it some-
times results in over-smooth saliency maps. In the proposed
method, the postprocessing is replaced with the segmentation
and object proposal information. As can be seen in Fig. 6, our
method does not suffer from the aforementioned issues. It can
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Fig. 6. The saliency maps detected by our approach and the competing approaches on the Graz-02 dataset. In the six examples (rows), the target categories
are bike in the first two rows, car in the middle two rows, and person in the last two rows.

better preserve the object boundaries than the prior work [37]
and produce saliency maps of higher quality.

By replacing the time-consuming postprocessing with the
integrated CNN training with the proposed segmentation and
object proposal losses, the proposed method outperforms the
competing methods not only on results but also on the running
time. We compare the running time of different methods,
including the real-time bottom-up methods [61], [62], non
CNN-based top-down methods [6], [7], CNN-based top-down
methods [10], [37], and top-down neural attention [51]. Note
that extracting superpixels and object proposals is not required
for our method during inference. TABLE II reports the average
running time of these competing methods and our method
for predicting the saliency map of an image in the Graz-02
dataset. He et al. [10] only released the test code trained on
PASCAL VOC-12, so the performance of their method on the
Graz-02 dataset is unknown and is not reported in TABLE I.

Nevertheless, we compare our method with their method in
terms of running time, as shown in TABLE II. The main
computation of our method lies in executing the map generator,
FCN. Note that we conducted the experiments on images of
resolution 384 x 384 on NVIDIA GTX Titan. The lower image
resolution and the faster GPU card make our running time less
than that of FCN reported in [53].

The proposed method is faster because of some nice prop-
erties. First, our method employs a CNN model, and doesn’t
require to extract potentially costly hand-crafted features from
images. For example, it is faster than the methods [6], [7]
becasue they spend lots of computation on extracting SIFT or
objectness scores. Second, compared with other CNN-based
methods, our method performs saliency detection with just one
forward pass, namely applying the learned map generator to
an input image. In contrast, the sliding window method [10]
requires multiple forward passes and extra computation for
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TABLE III
PREC@EER (%) oN PASCAL VOC-07.

Method Setting | Avg. | A.P. Bike. Bird Boat Bottle. Bus Car Cat Chair Cow D.T. Dog Horse M.B. P.S. PP. Sheep Sofa Train TV
Patch-CRF [6] FS |16.2(152 390 94 57 34 220305 158 57 80 11.1 128 109 23.7 42.0 2.0 202 104 247 105
LCCSC [8] FS [234]13.3 332 221 112 86 335372 143 39 223 23.0 149 250 30.6 389 164 363 183 29.2 363
R-ScSPM [9] WS |18.6(41.0 19.5 99 102 1.5 273 34.0 147 14.1 212 99 75 148 309 364 88 185 7.1 315 13.6
Ours (prior) [37]| WS [23.5(28.3 23.7 51.7 7.8 0.0 185 39.1 33.7 14 183 11.6 247 247 350 623 11.4 358 23 118 283
Ours WS [27.5]28.8 322 59.2 11.0 0.0 31.0 45.1 469 0.6 232 19.5 21.6 34.0 49.2 450 223 300 14 224 257
SP-CRF [7] FS* 14191494 46.6 33.7 60.9 26.1 51.8 35.1 649 21.1 34.8 43.7 35.1 414 714 32.6 42.0 425 13.8 63.8 27.8
Ours WS* |47.2(542 549 67.7 17.6 0.0 68.0 57.8 90.0 10.7 38.0 38.7 64.1 634 814 209 294 775 10.8 63.2 35.6

TABLE IV

PREC@EER (%) oON PASCAL VOC-12. * INDICATES BOTTOM-UP SALIENCY METHODS. SP AND SM REPRESENT THE USE OF SUPERPIXELS AND
EXISTING SALIENCY MAPS DURING INFERENCE, RESPECTIVELY.

Method Setting | Avg.| A.P. Bike. Bird Boat Bottle. Bus Car Cat Chair Cow D.T. Dog Horse M.B. P.S. P.P. Sheep Sofa Train TV
WSS [32] WS* 51.2[65.6 40.0 51.0 482 355 69.4 450 69.0 254 69.1 35.0 66.1 69.5 652 433 247 68.6 358 68.7 294
Amulet [33] FS* 60.4|87.0 34.8 69.0 58.0 36.1 85.7 52.8 78.7 22.3 83.9 35.1 78.5 80.8 71.7 57.8 252 83.8 432 82.0 42.2
UCF [34] FS* 58.7(83.0 35.1 69.2 584 382 803 52.6 74.0 23.1 83.7 33.3 763 783 70.1 56.2 26.5 789 439 79.0 34.9
PiCANet [35] FS* 62.9(81.2 40.8 73.4 69.1 399 86.8 55.1 81.4 22.5 86.3 359 80.8 81.0 73.4 609 22.6 89.3 483 81.4 48.6
C2SNET [36] FS* 62.7|84.8 373 73.6 69.1 39.6 86.0 53.7 81.5 25.6 83.2 36.5 80.6 824 74.1 562 26.6 87.0 47.6 82.6 45.6
R-ScSPM+ [11] [WS+SP+SM | 61.4[71.2 223 749 399 525 82.7 589 834 27.1 81.1 49.3 824 779 742 69.8 319 814 49.8 632 533
Patch-CRF [6] FS 156147 28.1 98 6.1 22 241302173 62 7.6 103 11.5 125 24.1 36.7 2.2 204 123 26.1 10.2
SP-CRF [7] FS 40.4146.5 45.0 33.1 60.2 258 48.4 314 64.4 19.8 32.2 44.7 30.1 41.8 72.1 33.0 40.5 38.6 122 64.6 23.6
Examplar [10] FS 56.2|55.9 379 45.6 438 47.3 83.6 57.8 69.4 227 68.5 37.1 72.8 63.7 69.0 57.5 439 66.6 383 751 56.7
GMP [43] WS 48.1148.9 429 379 47.1 314 684 39.9 662 27.2 54.0 38.3 485 56.5 70.1 432 42.6 522 34.8 68.1 434
Exc. BP [51] WS 45.3150.7 32.5 484 302 36.8 59.3 36.6 544 21.6 57.6 404 59.0 47.5 614 48.4 28.7 575 358 48.7 515
R-ScSPM+ [11] WS 502 - - - - - - - - - - - - - - - - - - - -
Ours (prior) [37] WS 50.064.5 46.7 50.2 29.6 0.0 753 60.1 73.4 16.0 39.5 40.9 81.8 59.9 72.5 72.0 37.6 589 453 435 329
Ours WS 56.8|71.6 47.7 64.6 324 0.0 77.8 69.4 81.9 19.5 489 39.9 76.8 71.3 75.0 87.4 420 758 67.8 54.0 32.1

the gradients via back-propagation [51]. Third, our method
does not need any optimization or postprocessing process in
the test stage. On the contrary, our prior work [37] computes
the edge probability to enhance map smoothness and preserve
object boundaries in saliency detection, greatly degrading the
efficiency. Like other CNN-based methods, our method can
be dramatically accelerated by GPU parallel computing. Thus,
the running time of our method is even less than that of the
real-time bottom-up methods [61], [62].

C. Results on the PASCAL VOC-07 and VOC-12 datasets

In the following, we compare our method with the state-
of-the-art methods on the PASCAL VOC-07 and PASCAL
VOC-12 datasets. The same procedure as that in Graz-02
is adopted for tuning the parameters. The parameter values
are set and fixed for each dataset. The performances of
different approaches on PASCAL VOC-07 and VOC-12 are
reported in TABLE III and TABLE 1V, respectively. In both
tables, the supervision condition of training data, the average
performance, and the performance on each category are given
for each method.

We first discuss the results on PASCAL VOC-12. The com-
peting methods include five CNN-based bottom-up saliency
detection methods [32]-[36], two top-down saliency detection
methods [6], [7], the state-of-the-art method [10], a method
based on object localization [43], a method based on neural
attention [51], and our prior work [37]. The competing meth-
ods [10], [32], [37], [43], [51] are also based on CNNs. The
competing methods [6], [7], [10], [33]-[36] adopt the fully
supervised (FS) setting, while the others [32], [37], [43], [51]
adopt the weakly supervised (WS) one.

In TABLE IV, our proposed method performs favorably
against all competing methods. The WS localization meth-
ods [43], [51] aim at object localization, and often detect
merely the discriminative object parts rather the whole objects.
Our method instead can identify the full extent of the target
objects and preserve the object boundaries. The performance
gains of our method over the two methods [43], [51] are
significant, around 8.7% and 11.5% respectively. The WS
bottom-up saliency method [32] detects only the most salient
objects instead of all salient objects, so it performs worse
especially when multiple salient objects are present. The per-
formance gain of using our method, about 5.6%, is significant.
Owing to post-processing, R-ScSPM+ [11] achieves better
performance than our method. Nevertheless, under the setting
where no post-processing steps are used, our method can
outperform R-ScSPM+ [11]. Although adopting the weakly
supervised setting, our method even achieves a slightly better
performance than the state-of-the-art FS method [10]. The
encouraging result implies that integrating the information
of segmentation and object proposals into learning the two
CNN modules in our method can compensate for the lack of
the fully labeled training data. Our method falls behind the
fully supervised bottom-up methods [33]-[36], but these fully
supervised methods require training data with annotated object
masks. Instead, our method uses training data with image-level
labels, and thus the annotation cost is greatly reduced.

On the PASCAL VOC-07 dataset, we compare our method
with the state of the arts, including the FS methods [6]—[8]
and the WS methods [9], [37]. The results are shown in TA-
BLE III. Note that our method is evaluated with two different
experimental settings, one for the comparison with the method
in [7] and the other for other methods: * in field setting of
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Fig. 7. The saliency maps detected by different approaches on the PASCAL VOC-12 dataset. For top to bottom, the target object categories are airplane,

bicycle, bird, bus, car, cat, horse, and motorbike, respectively.

TABLE III indicates the former setting where the zero-valued
saliency maps are manually assigned to images where no target
object is present. In both settings, our method outperforms
all other methods. The results demonstrate the effectiveness
of our method. In TABLE III and TABLE IV, our method
provides significant gains over our prior work [37], because
it further considers two reliable cues, i.e., the segmentation-
based loss and the proposal-based loss. The former helps
preserve the object boundaries and exclude noise, while the
latter can discover more non-discriminative object parts and
reduce false negatives. As we will show in the following, the
two visual cues help generate saliency maps of higher quality,

and are essential to the performance improvement.

Fig. 7 shows the detected saliency maps on PASCAL VOC-
12 for visually comparing different approaches to saliency
detection. It can be observed that there are some limitations
of the FS top-down method [10] and the WS top-down
method [51]. First, the saliency maps generated by the two
approaches are too coarse to preserve the object boundaries.
Second, only the object parts rather than the whole objects are
discovered. This phenomenon is evident in the third, fourth,
sixth, seventh and eighth examples (rows). Third, when there
exist more than one object, the two approaches sometimes
fail to detect all the objects, e.g., the results in the third,
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Fig. 8. Some failure cases of our approach. The cases in the first row come from Graz-02, and the rest come from PASCAL VOC-12. In the first row, the
first, third, and fifth images are the background images from the categories bike, car, and person, respectively, and their corresponding saliency maps are
shown in the second, fourth and sixth images, respectively. The proposed method generates false positives because the background contains similar features
to the target object. In the last three rows, the target objects are from the categories bird, car, and cat, respectively. Again, errors occur due to similar features

between the object and the background.

fifth and eighth rows. Although the FS method [10] achieves
the performance comparable to ours, it tends to produce
coarse saliency maps and can’t preserve object boundaries.
Compared to our prior work [37], the proposed method gives
less false positives and better boundary preservation, which
can be attributed to the newly added segmentation-based loss
function. In addition, our method can pick and leverage object
proposals so that the whole salient objects are highlighted
more sharply and uniformly. It is also worth mentioning that
our method can perform well in the challenging cases such
as small objects in the first row, multiple objects in the third,
fifth, and eighth rows, objects of complex shapes in the second
row, and objects with large intra-object variations in the fourth
TOW.

D. Failure cases

We show some failure cases of our approach in Fig. 8.
Most failure cases are caused by the high similarity between
target objects and the background, including objects of non-
target categories. In the first row, the motorbikes in the first
image have the appearance similar to bikes, so they are
detected as salient. In the third image, the windows of the
buildings look like those of cars. Our approach does not
explore contextual information and leads to false detection.
In the last case, clothes and jackets are usually present with
persons. When they are present alone, false alarms occur. In
the second row, the high similarity between target objects
(birds) and background (trees) causes the false negatives in the
first example and the false positives in the last two examples.
In the third row, common object parts shared across categories,
i.e., the tires of buses, cars, and motorbikes, result in false
positives. In the last row, multiple object categories having

similar appearance, namely cats and dogs here, lead to false
alarms.

V. CONCLUSIONS

We have presented a novel approach that carries out top-
down saliency detection in a weakly supervised manner. Our
approach is composed of two CNN modules, i.e., an image-
level classifier and a pixel-level saliency map generator. During
training, the knowledge of the class labels is propagated
from the classifier to guide the training of the generator.
The training process is further regularized by leveraging other
evidences available in weakly supervised learning, including
the background prior, superpixel-based smoothing, and object-
like proposal selection, with which the unfavorable effect of
overfitting can be alleviated. We comprehensively analyze the
effect of introducing each adopted loss function, and show
that these loss functions are useful and are not sensitive to
the parameters. The experimental results on three benchmarks
for saliency detection, including the Graz-02, PASCAL VOC-
07, and PASCAL VOC-12 datasets, demonstrate that our
method remarkably outperforms the existing weakly super-
vised methods and even achieves better results than the state-
of-the-art fully supervised methods. In the future, we plan to
generalize this approach to deal with multi-label cases so that
it can be applied to other target-oriented tasks such as object
localization or semantic segmentation.
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