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Abstract. In this paper, we address co-saliency detection in a set of
images jointly covering objects of a specific class by an unsupervised
convolutional neural network (CNN). Our method does not require any
additional training data in the form of object masks. We decompose
co-saliency detection into two sub-tasks, single-image saliency detection
and cross-image co-occurrence region discovery corresponding to two
novel unsupervised losses, the single-image saliency (SIS) loss and the
co-occurrence (COOC) loss. The two losses are modeled on a graphical
model where the former and the latter act as the unary and pairwise
terms, respectively. These two tasks can be jointly optimized for gener-
ating co-saliency maps of high quality. Furthermore, the quality of the
generated co-saliency maps can be enhanced via two extensions: map
sharpening by self-paced learning and boundary preserving by fully con-
nected conditional random fields. Experiments show that our method
achieves superior results, even outperforming many supervised methods.

Keywords: Co-saliency detection, unsupervised learning, convolutional
neural networks, deep learning, graphical model.

1 Introduction

Co-saliency detection refers to searching for visually salient objects repetitively
appearing in multiple given images. For its superior scalability, co-saliency has
been applied to help various applications regarding image content understanding,
such as image/video co-segmentation [1,2,3], object co-localization [4], content-
aware compression [5], etc.

The success of co-saliency detection relies on robust feature representations of
co-salient objects against appearance variations across images. Engineered fea-
tures, such as color histograms, Gabor filtered texture features, and SIFT [6] are
widely used in conventional co-saliency methods [7,8,9,10]. Deep learning (DL)
has recently emerged and demonstrated success in many computer vision ap-
plications. DL-based features have been adopted for co-saliency detection, such
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Fig. 1. Motivation of our method. (a) Our method optimizes an objective function
defined on a graph where single-image saliency (SIS) detection (red edges) and cross-
image co-occurrence (COOC) discovery (blue edges) are considered jointly. (b) The
first row displays the images for co-saliency detection. The following three rows show
the detected saliency maps by using COOC, SIS, and both of them, respectively.

as those extracted from a pre-trained convolutional neural network (CNN) [11]
or from unsupervised semantic feature learning with restricted Boltzmann ma-
chines (RBMs) [12]. However, feature extraction and co-saliency detection are
treated as separate steps in these approaches [7,8,9,10,11,12], leading to subop-
timal performance. In contrast, the supervised methods, by metric learning [13]
or DL [14], enable the integration of feature learning and co-saliency detection.
However, they require additional training data in the form of object masks, of-
ten manually drawn or delineated by tools with intensive user interaction. Such
heavy annotation cost makes these methods less practical as pointed out in other
applications, such as semantic segmentation [15] and saliency detection [16]. Fur-
thermore, their learned models may not perform well for unseen object categories
in testing, since the models do not adapt themselves to unseen categories.

In this work, we address the aforementioned issues by proposing an unsu-
pervised CNN-based method for joint adaptive feature learning and co-saliency
detection for given images, hence making a good compromise between the per-
formance and the annotation requirement. In the proposed method, co-saliency
detection is decomposed into two complementary parts, single-image saliency
detection and cross-image co-occurrence region discovery. The former detects
the saliency object in a single image, which may not repetitively appear across
images. The latter discovers regions repetitively appearing across images, which
may not be visually salient. To this end, we design two novel losses, the single-
image saliency (SIS) loss and the co-occurrence (COOC) loss, to capture the
two different but complementary sources of information. These two losses mea-
sure the quality of the saliency maps by referring to individual images and the
co-occurrence regions for each image pair, respectively. They are further inte-
grated on a graphical model whose unary and pairwise terms correspond to the
proposed SIS and COOC losses respectively, as illustrated in Fig. 1 (a). Through
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optimizing the proposed losses, our approach can generate co-saliency maps of
high quality by integrating SIS and COOC cues, as shown in Fig. 1 (b).

To the best of our knowledge, our method represents the first unsupervised
CNN model for co-saliency detection. Compared with unsupervised methods in-
cluding those using engineered features [3,7,8,9,10] and those using DL-based
features [11,12], our method achieves better performance by joint adaptive fea-
ture learning and co-saliency detection based on CNNs. Compared with the
supervised method [13,17], our method can reach comparable or even slightly
better performance and does not suffer from the high annotation cost of label-
ing object masks as training data. We comprehensively evaluate our method on
three benchmarks for co-saliency detection, including the MSRC dataset [18],
the iCoseg dataset [19], and the Cosal2015 dataset [12]. The results show that
our approach remarkably outperforms the state-of-the-art unsupervised methods
and even surpasses many supervised DL-based saliency detection methods.

2 Related work

2.1 Single-image saliency detection

Single-image saliency detection is to distinguish salient objects from the back-
ground by either unsupervised [20,21,22,23,24,25] or supervised [26,27,28,29,30]
methods based on color appearance, spatial locations, as well as various supple-
mentary higher-level priors, including objectness. These approaches can handle
well images with single salient objects. However, they may fail when the scenes
are more complex, for example when multiple salient objects are presented with
intra-image variations. By exploiting co-occurrence patterns when common ob-
jects appearing in multiple images, co-saliency detection is expected to perform
better. However, the appearance variations of common objects across images
could also make co-saliency detection a more challenging task.

2.2 Co-saliency detection

Co-saliency detection discovers common and salient objects across multiple im-
ages using different strategies. The co-saliency detection methods have been
developed within the bottom-up frameworks based on different robust features,
including low-level handcrafted features [3,7,8,9,10,17,31,32] and high-level DL-
based semantic features [11,12] to catch intra-image visual stimulus as well
as inter-image repetitiveness. However, there are no features adopted suitable
for all visual variations, and they treat the separate steps of feature extrac-
tion and co-saliency detection, leading to suboptimal performance. Data-driven
methods [13,14,17] directly learn the patterns of co-salient objects to overcome
the limitation of bottom-up methods. For instance, the transfer-learning-based
method [17] uses the object masks to train a stacked denoising autoencoder
(SDAE) to learn the intra-image contrast evidence, and propagate this knowl-
edge to catch inter-image coherent foreground representations. Despite their im-
pressive results, the performance might drop dramatically once the transferred
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knowledge on feature representations is not satisfactory as the separation of
feature extraction and co-saliency detection may potentially impede the per-
formance. Recently, Wei et al . [14] and Han et al . [13] have proposed unified
learning-based methods to learn semantic features and detect co-salient objects
jointly. Despite the improved performance, their methods rely on a large number
of training object masks. It reduces the generalizability of their approaches to
unseen images. However, our method can perform the adaptive and unified learn-
ing for given images in an unsupervised manner, and hence no aforementioned
issues exist in our approach.

2.3 Graphical models with CNNs

Deep learning has demonstrated success in many computer vision applications.
For better preserving spatial consistency, graphical models have been integrated
with CNNs when requiring structured outputs, such as depth estimation [33],
stereo matching [34], semantic segmentation [35,36,37], image denoising, and
optical flow estimation [38]. Although showing promise in preserving spatial
consistency and modeling pairwise relationships, these methods have three major
limitations when extending to co-saliency detection. First, their graphical models
are built on single images, and hence can not be directly applied to co-saliency
detection with multiple images. Second, the pairwise terms in these graphical
models often act as regularization terms to ensure spatial consistency but can not
work alone by themselves. Finally, they require training data to train the model.
For the inter-image graphical models, Hayder et al . [39] and Yuan et al . [40]
respectively integrated fully-connected CRFs into CNNs for object proposal co-
generation and object co-segmentation, where each node is an object proposal.
However, their methods still suffer from the last two limitations. In comparison,
our method integrates the merits from graphical models for co-saliency detection
without aforementioned issues.

3 Our approach

We first describe the proposed formulation for co-saliency detection. Next, we
propose a couple of enhancements by self-paced learning and fully connected con-
ditional random fields. Finally, the optimization process and the implementation
details are provided.

3.1 The proposed formulation

Given a set of N images {In}Nn=1, co-saliency detection aims to detect the salient
objects of a category commonly present in these images. We accomplish the task
by decomposing it into two sub-tasks, single-image saliency detection and cross-
image co-occurrence discovery. The former detects the salient regions in a single
image, without considering whether the detected regions are commonly present
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Fig. 2. Overview of our approach to co-saliency detection. It optimizes an objective
function defined on a graph by learning two collaborative FCN models gs and gc which
respectively generates single-image saliency maps and cross-image co-occurrence maps.

across images. The latter discovers the regions repetitively occurring across im-
ages, while disregarding whether the discovered regions stand out visually. Co-
saliency detection, finding the salient co-occurrence regions, can then be carried
out by performing and integrating the two tasks on a graph whose two types
of edges respectively correspond to the two tasks, as shown in Fig. 1 (a). The
proposed objective function on the graph is defined by

E(w) =

N∑
n=1

ψs(In;w) +

N∑
n=1

∑
m 6=n

ψc(In, Im;w), (1)

where the unary term ψs(In;w) focuses on saliency detection for the image
In, the pairwise term ψc(In, Im;w) accounts for co-occurrence discovery for the
image pair (In, Im), and w is the set of model parameters.

As shown in Fig. 2, we learn two fully convolutional network (FCN) [41]
models, gs and gc, to optimize the unary term ψs and the pairwise term ψc in
Eq. (1), respectively. For image In, FCN gs investigates intra-image clues and
generates its saliency map Ssn. In contrast, FCN gc discovers cross-image evidence
and produces its co-occurrence map Scn, where the repetitively occurring regions
are highlighted. The resultant co-saliency map, highlighting the co-occurrence
and salient regions, is yielded by Sn = gs(In) ⊗ gc(In) = Ssn ⊗ Scn, where ⊗
denotes the element-wise multiplication operator.

Let ws and wc denote the learnable parameter sets of FCNs gs and gc,
respectively. We learn gs and gc jointly by optimizing E(w=ws∪wc) in Eq. (1).
The unary term ψs and the pairwise term ψc in Eq. (1) are described below.

3.2 Unary term ψs

This term aims to identify the salient regions in a single image. It guides the
training of FCN gs, which produces saliency map Ssn for image In, i.e., Ssn =
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gs(In). Inspired by Zhang et al . [42], we apply an existing unsupervised method
for saliency detection to image In, and use its output saliency map S̃n as the
desired target for learning FCN gs. In this work, we adopt MILP [25] to generate
S̃n. Specifically, the unary term ψs(In;ws) applied to image In is defined by

ψs(In;ws) =
∑
i∈In

Rn(i)|Ssn(i)− S̃n(i)|2, (2)

where i is the index of the pixels in In, Ssn(i) and S̃n(i) are respectively the
saliency values of maps Ssn and S̃n at pixel i, and Rn(i) represents the importance
of pixel i. Pixels in map S̃n can be divided into the salient and non-salient groups
by using the mean value of S̃n as the threshold. Rn(i) is introduced here to deal
with the potential size unbalance between the two groups. Let δ be ratio of salient
pixels over the whole image In. Rn(i) takes the value 1− δ if pixel i belongs to
the salient group, and δ otherwise. In this way, the salient and non-salient groups
contribute equally in Eq. (2).

3.3 Pairwise term ψc

The pairwise term ψc seeks the regions simultaneously appearing across images.
It serves as the objective to learn FCN gc. The regions should look similar across
images but distinctive from surrounding non-detected regions. Thus, two criteria
are jointly considered in the design of ψc, including 1) high cross-image similarity
between the detected co-occurrence regions and 2) high intra-image distinctness
between the detected co-occurrence regions and the rest of the image. The second
criterion is auxiliary but crucial to avoid trivial solutions.

As shown in Fig. 2, FCN gc produces the co-occurrence map Scn for image
In, i.e., Scn = gc(In). The sigmoid function is used as the activation function in
the last layer of gc. Thus, the value of the co-occurrence map at each pixel i,
Scn(i), is between 0 and 1. With Scn, image In is decomposed into two masked
images,

Ion = Scn ⊗ In and Ibn = (1− Scn)⊗ In, (3)

where ⊗ denotes element-wise multiplication. The masked image Ion keeps the
detected co-occurrence regions of In, while image Ibn contains the rest.

To measure the similarity between images, we employ a feature extractor f
to compute the features of a given image. In this work, the extractor f can be
a pre-trained CNN model for image classification, e.g., AlexNet [43] or VGG-
19 [44], with the softmax function and the last fully connected layer removed.
We apply the extractor f to all masked images {Ion, Ibn}Nn=1 and obtain their
features {f(Ion) ∈ Rc, f(Ibn) ∈ Rc}Nn=1, where c is the feature dimension. With
these extracted features, the pairwise term ψc(In, Im;wc) applied the image pair
In and Im is defined by

ψc(In, Im;wc) = − log(pnm), (4)
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where pnm is the score estimating the quality of the detected co-occurrence
regions in In and Im. The score pnm is defined below,

pnm =
exp(−d+nm)

exp(−d+nm) + exp(−d−nm)
, where (5)

d+nm =
1

c
‖f(Ion)− f(Iom)‖2 and (6)

d−nm =
1

2c
‖f(Ion)− f(Ibn)‖2 +

1

2c
‖f(Iom)− f(Ibm)‖2. (7)

Eq. (6) measures the inter-image distance between the detected co-occurrence
regions in images In and Im (criterion 1). Eq. (7) evaluates the intra-image
distance between the detected co-occurrence regions and the rest of the image
(criterion 2). By minimizing the pairwise term ψc(In, Im;wc) in Eq. (4) for each
image pair (In, Im), the resultant FCN gc will produce the co-occurrence maps
where the inter-image distances between the detected co-occurrence regions are
minimized while the intra-image distances between the detected co-occurrence
regions and the rest of the images are maximized. After learning FCNs gs and gc
jointly through the unary and pairwise terms in Eq. (1), the resultant co-saliency
map Sn of a given image In is produced via Sn = gs(In)⊗ gc(In).

Note that the pairwise term in Eq. (4) is defined by referring to the co-
occurrence maps produced by FCN gc, i.e., Scn and Scm. In practice, we found
that the performance of co-saliency detection can be further improved if co-
saliency maps Sn and Sm are also taking into account in the pairwise term. In
our implementation, we extend the pairwise term in Eq. (4) to

ψc(In, Im;wc) = −λc log(pnm)− λc̃ log(p̃nm), (8)

where like pnm, p̃nm is computed in the same way but by referring to co-saliency
maps Sn and Sm. Constants λc and λc̃ are used in Eq. (8) for weighting the corre-
sponding terms. In the following, we will show that the quality of the co-saliency
maps can be further improved via two extensions, including map enhancement
by self-paced learning and postprocessing by fully connected conditional random
fields (or DenseCRFs) [45].

3.4 Co-saliency map enhancement

The self-paced learning with CNNs is proposed to make salience map sharper.
Then, fully connected conditional random fields are adopted to preserve co-
salient objects’ boundaries. The details of these two extensions are given below.
Co-saliency map enhancement by self-paced learning. The co-saliency
maps obtained by optimizing Eq. (1) are sometimes over smooth, because both
FCNs gs and gc do not take into account the information regarding object
boundaries. To address this issue, we oversegment each image In into super-
pixels Qn = {qkn}Kk=1, where qkn is the kth superpixel and K is the number of
superpixels. Pixels in a superpixel tend to belong to either a salient object or
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the background all together. This property can be leveraged to propagate infor-
mation from pixels of high confidence to those of low confidence within the same
superpixel. We divide superpixels into three groups, i.e., Qn = On∪Bn∪Tn. The
first two groups, On and Bn, contain superpixels that likely belong to the object
and the background, respectively. The third group Tn covers the rest. Given the
co-saliency map Sn, the three groups are yielded by

qkn ∈


On, if µkn > µn + σn,

Bn, if µkn < µn − 0.25 ∗ σn,
Tn, otherwise,

for k = 1, 2, ...,K, (9)

where µkn is the mean saliency value of superpixel qkn, while µn and σn are the
mean and the standard deviation of {µkn}Kk=1. In addition, we follow the back-
ground seed sampling strategy used in previous work [20,46], and add superpixels
on the image boundary to the set Bn. Superpixels in On and Bn are confident
to be assigned to either the salient regions or the background. Those in Tn are
ambiguous, so they are not taken into account here. With On and Bn of image
In, another FCN ge for co-saliency map enhancement is trained by optimizing

ψe(In;we) = wo
∑
q∈On

∑
i∈q
|Sen(i)− 1|2 + wb

∑
q∈Bn

∑
i∈q
|Sen(i)− 0|2, (10)

where map Sen = ge(In) is generated by FCN ge, and i the index of pixels in In.

Constants wo = |Bn|
|On|+|Bn| and wb = |On|

|On|+|Bn| are the weights used to balance

the contributions of On and Bn, where |On| and |Bn| are the numbers of pixels
in On and Bn, respectively.

The term in Eq. (10) enhances the consensus within superpixels of high
confidence. If it is turned on, the objective is extended from that in Eq. (1) to

E(w) =

N∑
n=1

ψs(In;ws) + λeψe(In;we) +

N−1∑
n=1

N∑
m=n+1

ψc(In, Im;wc), (11)

where λe is a weight, and w = ws ∪ we ∪ wc is the union of the learnable
parameter sets of FCNs gs, ge, and gc. After optimizing the objective function
in Eq. (11), the co-saliency map Sn of image In is generated by Sn = gs(In) ⊗
ge(In)⊗ gc(In) = Ssn ⊗ Sen ⊗ Scn.
Postprocessing using DenseCRFs. The co-saliency maps obtained by opti-
mizing the objective in Eq. (11) can be further improved by enforcing spatial
coherence and preserving object boundaries. To this end, we follow previous
work [47,28] and adopt DenseCRFs [45] to postprocess the co-saliency map Sn
of a given image In. We use the DenseCRFs code implemented by Li and Yu [47]
in this work.

3.5 Optimization

To reduce memory consumption and speed up the training, the proposed method
is optimized by using a two-stage procedure. At the first stage, we respectively
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learn FCNs gs and gc by using the objective functions in Eq. (2) and Eq. (4)
with all images for 20 epochs. The co-saliency maps {Sn = gs(In)⊗ gc(In)}Nn=1

become stable enough. Thus, we divide the superpixels of each image into three
groups via Eq. (9). FCN ge is then trained with the objective in Eq. (10) with
all images for 20 epochs. At the second stage, we turn on all the three terms
in Eq. (11) where the extended pairwise term in Eq. (8) is adopted. The three
FCNs, gs, ge, and gc, are optimized jointly for 20 epochs. Note that at the second
stage, we optimize only the parameters in the last two convolutional layers and
the skip connections of each FCN model.

The objectives in Eq. (1) and Eq. (11) are defined on a fully-connected graph.
It is difficult to directly optimize either objective with all images at the same
time due to the limited memory size. Thereby, we adopt the piecewise training
scheme [48]. Namely, we consider only the sub-graph yielded by a subset of im-
ages at each time. The learning rate is set to 10−6 at the first stage and is reduced
to 10−8 at the second stage. The weight decay and momentum are set to 0.0005
and 0.9, respectively. The objective function in Eq. (11) is differentiable. We
choose ADAM [49] as the optimization solver for its rapid convergence. The gra-
dients with respect to the optimization variables can be derived straightforward,
so we omit their derivation here.

3.6 Implementation details

The proposed method is implemented using MatConvNet [50]. The same network
architecture is used in all the experiments. ResNet-50 [51] is adopted as the fea-
ture extractor f for the pairwise term, because AlexNet [43] and VGG-16/19 [44]
sometimes lead to the problem of vanishing gradients in our application. The
feature extractor f is pre-trained on ImageNet [52] and fixed during the opti-
mization process. The features extracted by f are the inputs to the last fully
connected layer of f . The feature dimension, i.e., c in Eq. (6) and Eq. (7), is set to
2,048. All FCNs, including gs, ge and gc, are developed based on the VGG-16 [44]
setting of FCN [41]. We replace the activation function softmax in the last layer
with the sigmoid function. SLIC [53] is adopted to generate superpixels because
of its computational efficiency, better compactness and regularity. The models
pre-trained on the ImageNet [54] dataset for classification are required. Follow-
ing previous co-saliency detection methods [11,12], we determine the values of
hyperparameters empirically and keep them fixed in all the experiments.

4 Experimental results

In this section, we first describe the datasets and evaluation metrics. Next, we
compare our method with a set of state-of-the-art methods. Finally, we investi-
gate contributions of different components by reporting ablation studies.
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Fig. 3. Comparison with the state-of-the-art methods with the same setting in terms
of PR curves on three benchmark datasets. The numbers in parentheses are AP values.

4.1 Datasets and evaluation metrics

Datasets. We evaluated the proposed approach on three public benchmark
datasets: iCoseg [19], MSRC [18] and Cosal2015 [12]. iCoseg consists of 38 groups
of total 643 images, and each group has 4 ∼ 42 images. The images of iCoseg
contain single or multiple similar objects in various poses and sizes with complex
backgrounds. MSRC contains 7 groups of total 240 images, and each group has
30 ∼ 53 images. Compared to iCoseg, objects in MSRC exhibit greater appear-
ance variation. Cosal2015 is a more recent and more challenging dataset than the
other two. It has 50 groups and a total of 2015 images. Each group contains 26
to 52 images, with various poses and sizes, appearance variations and even more
complex backgrounds. Because the images of iCoseg and Cosal2015 have larger
sizes than the ones of MSRC, different batch sizes and resolutions were used.
The batch size is 3 and the resolution is 512 × 512 for iCoseg and Cosal2015,
while the batch size is 5 and the resolution is 320× 320 for MSRC.
Evaluation metrics. To evaluate the performance of co-saliency detection,
we consider three metrics, average precision (AP), F-measure (Fβ), and struc-
ture measure (Sα). AP is computed from the area under the Precision-Recall
(PR) curve, which is produced by binarizing saliency maps with every integer
threshold in the range of [0, 255]. F-measure denotes the harmonic mean of the
precision and recall values obtained by a self-adaptive threshold T = µ + σ,
where µ and σ are respectively the mean and standard deviation of the saliency
map. With the precision and recall values, the F-measure is computed by Fβ =
(1+β2)×precision×recall
β2×precision+recall , where β2 = 0.3 to emphasize more on recall as suggested

in previous work [11,12,56]. The structure measure (Sα) [57] is adopted to eval-
uate the spatial structure similarities of saliency maps based on both region-
aware structural similarity Sr and object-aware structural similarity So, defined
as Sα = α ∗ Sr + (1− α) ∗ So, where α = 0.5 following [57].

4.2 Comparison with state-of-the-art methods

To have a thorough comparison with state-of-the-art methods, we divide them
into four groups, i.e., the unsupervised saliency [20,22,23,24,25,42] and co-
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Table 1. The performance of co-saliency detection on three benchmark datasets. SI
and CS denote the single-image saliency and co-saliency methods, respectively. US and
S indicate the unsupervised and supervised methods, respectively. The numbers in red
and green respectively indicate the best and the second best results of the unsupervised
co-saliency methods (CS+US), the group which the proposed method belongs to.

Method Setting
MSRC iCoseg Cosal2015

AP Fβ Sα AP Fβ Sα AP Fβ Sα
DIM [17] CS+S - - - 0.8773 0.7918 0.7583 - - -
UMLBF [13] CS+S 0.9160 0.8410 - - - - 0.8210 0.7120 -

CBCS [7] CS+US 0.7034 0.5910 0.4801 0.7972 0.7408 0.6580 0.5863 0.5579 0.5439
SACS [31] CS+US 0.8602 0.7877 0.7074 0.8400 0.7973 0.7523 0.7077 0.6923 0.6938
CSHS [8] CS+US 0.7834 0.7118 0.6661 0.8454 0.7549 0.7502 0.6198 0.6181 0.5909
ESMG [32] CS+US 0.6659 0.6245 0.5804 0.8347 0.7766 0.7677 0.5133 0.5114 0.5446
CSSCF [3] CS+US 0.8604 0.8005 0.7383 0.8400 0.7811 0.7404 0.7075 0.6815 0.6710
CoDW [12] CS+US 0.8435 0.7724 0.7129 0.8766 0.7985 0.7500 0.7438 0.7046 0.6473
SP-MIL [11] CS+US 0.8974 0.8029 0.7687 0.8749 0.8143 0.7715 - - -
MVSRC [55] CS+US 0.8530 0.7840 - 0.8680 0.8100 - - - -
Ours CS+US 0.9226 0.8404 0.7948 0.9112 0.8497 0.8200 0.8149 0.7580 0.7506

LEGS [26] SI+S 0.8479 0.7701 0.6997 0.7924 0.7473 0.7529 0.7339 0.6926 0.7068
DCL [47] SI+S 0.9065 0.8259 0.7742 0.9003 0.8444 0.8606 0.7815 0.7386 0.7591
DSS [28] SI+S 0.8700 0.8313 0.7435 0.8802 0.8386 0.8483 0.7745 0.7509 0.7579
UCF [29] SI+S 0.9217 0.8114 0.8175 0.9292 0.8261 0.8754 0.8081 0.7194 0.7790
Amulet [30] SI+S 0.9219 0.8159 0.8162 0.9395 0.8381 0.8937 0.8201 0.7384 0.7856

GMR [20] SI+US 0.8092 0.7460 0.6547 0.7990 0.7805 0.7068 0.6649 0.6605 0.6599
GP [22] SI+US 0.8200 0.7422 0.6844 0.7821 0.7495 0.7198 0.6847 0.6576 0.6714
MB+ [23] SI+US 0.8367 0.7817 0.7200 0.7868 0.7706 0.7272 0.6710 0.6689 0.6724
MST [24] SI+US 0.8057 0.7491 0.6460 0.8019 0.7659 0.7292 0.7096 0.6669 0.6676
MILP [25] SI+US 0.8334 0.7776 0.6871 0.8182 0.7883 0.7514 0.6797 0.6734 0.6752
SVFSal [42] SI+US 0.8669 0.7934 0.7688 0.8376 0.8056 0.8271 0.7468 0.7120 0.7604

saliency [3,7,8,11,12,31,32,55] detection methods as well as supervised saliency
[26,47,28,29,30,58] and co-saliency [13,17] detection methods. The overall per-
formance statistics are compared in Table 1 and Fig. 3. Please note that all
compared supervised single-image saliency detection methods are CNN-based.
Among unsupervised single-image saliency methods, SVFSal [42] is CNN-based.
When available, we used the publicly released source code with default parame-
ters provided by the authors to reproduce the experimental results. For methods
without releasing source code, we either evaluated metrics on their pre-generated
co-saliency maps (SP-MIL [11], CoDW [12] and DIM [17]), or directly copied the
numbers reported in their papers (UMLBF [13] and MVSRC [55]).

From Table 1, our method outperforms all methods with the same unsu-
pervised co-saliency detection setting by a significant margin. Most approaches
of this category take feature extraction and co-salient object detection as sep-
arating steps. Our approach excels them by performing these steps simultane-
ously and adopting CNN models. Comparing with the group of the supervised
co-saliency method, UMLBF [13] and DIM [17], our method yields comparable or
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banana apple babycrib bird

Fig. 4. Example saliency maps generated by our method and some state-of-the-art
methods. From the top to the bottom, they are the given images, ours, CSSCF [3],
CoDW [12], MILP [25], SVFSal [42], UCF [29] and Amulet [30].

even slightly better performance without expensive object annotations. Although
both with the unsupervised setting, by taking advantage of additional informa-
tion within an image set, our method clearly outperforms the group of unsuper-
vised single-image saliency detection methods. It’s worth mentioning that our
method also outperforms the unsupervised CNN-based single-saliency method,
SVFSal [42] that requires saliency proposal fusion for generating high-quality
pseudo ground-truth as training data. In general, the supervised CNN-based
single-image saliency methods perform the best among four groups of methods
as they better utilize the object annotations. Even so, our method still outper-
forms many of the methods in this group by exploiting cross-image referenc-
ing and adaptive feature learning. From the PR curves in Fig. 3, the proposed
method outperforms the state-of-the-arts by a large margin.

Fig. 4 shows example saliency maps produced by our method and some
state-of-the-art methods, including unsupervised co-saliency detection methods
(CSSCF [3], CoDW [12]), unsupervised single-image saliency methods (MILP [25] and
SVFSal [42]), and supervised CNN-based methods (UCF [29] and Amulet [30]).
Without referring to other images in the given image set, single-image saliency
methods could detect the visually salient objects that do not repetitively appear
in other images, such as the orange and the apple in the second image of the
banana set or the woman in the first image of the babycrib set. Co-saliency detec-
tion methods perform better in this regard. The competing co-saliency methods,
CSSCF [3] and CoDW [12], cannot perform well for images with low figure-ground
discrepancies or highly-textured backgrounds, such as the second and third im-
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Fig. 5. Ablation studies on three benchmarks. The top row plots the PR curves, while
the bottom row shows the performance in Fβ and Sα.

ages of the babycrib set or the first and second images of the bird set. The
major drawback of their approaches is to treat feature extraction as a separate
step. Thus, they cannot find the most discriminative features across images.
Our method addresses the problem by performing adaptive feature learning and
co-saliency detection jointly.

4.3 Ablation studies

We have performed ablation studies to investigate the contributions of individual
components, gc, gs, ge and DenseCRFs. Fig. 5 reports the results with different
metrics. +D denotes the results refined by DenseCRFs. For both AP and Fβ ,
the integration of gc and gs outperforms either alone. It is not the case for Sα
measuring the structure of the detected objects. It will be explained later. Both
self-paced learning and DenseCRFs further improve the results.

Fig. 6 gives example co-saliency maps for ablation studies. They demonstrate
that gc and gs can be complementary to each other. Taking the butterfly set as an
example, gs highlights both butterflies and flowers in the first, third and fourth
images. After integrating the co-occurrence information discovered by gc, the
flowers are mostly removed and lightened in gc+gs. As mentioned above, gc+gs
could perform worse in terms of Sα. It is because gc tends to have less certainty,
particularly inside objects or ambiguous background regions, as illustrated in
the second row of Fig. 6. Thus, gc+gs usually generates fuzzier maps than gs
alone. For example, the cattle have lower saliency values in gc+gs (the fourth
row of Fig. 6) than gs (the third row of Fig. 6). By propagating information from
regions with high confidence, ge improves the certainty of the results of gc+gs.
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cattle woman soccer butterfly

Fig. 6. Example co-saliency maps generated by combinations of different components.
From the top to the bottom, they are the given images, gc, gs, gc+gs, gc+gs+ge and
gc+gs+ge+D, respectively.

Although with less gain in AP and Fβ , it brings large improvement in Sα since
objects are more highlighted and the backgrounds are further lightened as shown
in the fifth row of Fig. 6. Finally, the DenseCRF enhances spatial coherence and
boundary preservation, thus improving both quantitative and qualitative results.

5 Conclusions

In this paper, we have presented an unsupervised method for co-saliency detec-
tion using CNNs. To the best of our knowledge, it is the first one to address this
problem with an unsupervised CNN. Our method decomposes the problem into
two sub-tasks, single-image saliency detection and cross-image co-occurrence re-
gion discovery, by modeling the corresponding novel losses: single-image saliency
(SIS) loss and co-occurrence (COOC) loss. The graphical model is adopted to
integrate these two losses with unary and pairwise terms corresponding to the
SIS and COOC losses, respectively. By optimizing the energy function associ-
ated with the graph, two networks are learnt jointly. The quality of co-saliency
maps is further improved by self-paced learning and postprocessing by Dense-
CRFs. Experiments on three challenging benchmarks show that the proposed
method outperforms the state-of-the-art unsupervised methods. In the future,
we plan to generalize our method to other applications, such as semantic corre-
spondence [59], image co-localization [14] and object co-segmentation [60] that
also require learning among multiple images.
Acknowledgments. This work was supported in part by Ministry of Science
and Technology (MOST) under grant 105-2221-E-001-030-MY2 and MOST Joint
Research Center for AI Technology and All Vista Healthcare under grant 107-
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#1553281 from the National Science Foundation.
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