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Abstract

Object co-segmentation aims to segment the com-
mon objects in images. This paper presents a CNN-
based method that is unsupervised and end-to-end
trainable to better solve this task. Our method
is unsupervised in the sense that it does not re-
quire any training data in the form of object masks
but merely a set of images jointly covering ob-
jects of a specific class. Our method comprises
two collaborative CNN modules, a feature extrac-
tor and a co-attention map generator. The former
module extracts the features of the estimated ob-
jects and backgrounds, and is derived based on the
proposed co-attention loss, which minimizes inter-
image object discrepancy while maximizing intra-
image figure-ground separation. The latter module
is learned to generate co-attention maps by which
the estimated figure-ground segmentation can bet-
ter fit the former module. Besides the co-attention
loss, the mask loss is developed to retain the whole
objects and remove noises. Experiments show that
our method achieves superior results, even outper-
forming the state-of-the-art, supervised methods.

1 Introduction

Object co-segmentation simulates human visual systems to
search for the common objects repetitively appearing in im-
ages. It was introduced in [Rother ef al., 2006] to address the
difficulties of single-image object segmentation. It leverages
not only intra-image appearance but also inter-image object
co-occurrence to compensate for the absence of supervisory
information. As an important component of image analysis,
object co-segmentation is essential to various computer vi-
sion and AI applications, such as image matching [Chen e?
al., 2015], semantic segmentation [Shen er al., 2017], object
skeletonization [Jerripothula er al., 2017] and 3D reconstruc-
tion [Mustafa and Hilton, 2017].

Engineered features, such as SIFT [Lowe, 2004],
HOG [Dalal and Triggs, 2005] and texton [Shotton ef al.,
2009], are widely used in conventional co-segmentation
methods, e.g., [Wang er al., 2017; Joulin ef al., 2012; Lee
et al., 2015; Tao et al., 20171, to cope with intra-class vari-
ations and background clutters. These features are designed

Yen-Yu Lin®

yylin@citi.sinica.edu.tw

Yung-Yu Chuang'*?

2National Taiwan University, Taiwan

cyy @csie.ntu.edu.tw

4D EX

OF g |

Figure 1: (a) The images for co-segmentation. (b) The estimated
object maps by optimizing the co-attention loss. (c) The selected
object proposals by using the mask loss. (d) Our co-segmentation
results by considering the two losses simultaneously.

in advance. They are not optimized for the given images for
co-segmentation, and may lead to sub-optimal performances.
Convolutional neural networks (CNNs) [Krizhevsky er al.,
2012] have demonstrated effectiveness in joint visual feature
extraction and nonlinear classifier learning. Yuan et al. [Yuan
et al., 2017] proposed a CNN-based supervised method,
which learns the mapping between images and the corre-
sponding masks, for object co-segmentation. They achieved
the state-of-the-art results by substituting the features learned
by CNNs for engineered features. However, their method re-
quires additional training data in the form of object masks for
learning the CNN model. As discussed in other applications,
such as semantic segmentation [Hsu e7 al., 2014] or top-down
saliency detection [Hsu er al., 2017], these object masks are
usually manually drawn or delineated by tools with intensive
user interaction. The heavy annotation cost of training data
makes their method less practical. Furthermore, the unsuper-
vised nature of co-segmentation is also violated.

This paper presents an unsupervised CNN-based method
for co-segmentation that makes a good compromise between
the performance and data annotation cost. Specifically, we
aim at co-segmenting images covering objects of a specific
category without additional data annotations. This task is
often referred to as unsupervised co-segmentation in the lit-
erature [Chang ef al., 2011; Rubio et al., 2012; Rubinstein
et al., 2013; Jerripothula et al., 2016; Tao et al., 2017;
Li et al., 2018], though it can be also considered weakly
supervised since we know all images contain objects of the
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same class. In this paper, we follow the previous work [Chang
et al., 2011; Rubio et al., 2012; Rubinstein et al., 2013;
Jerripothula et al., 2016; Tao et al., 2017; Li et al., 2018], and
term this task unsupervised co-segmentation. Our method
does not rely on training data in form of object masks, and
can improve co-segmentation via using the features extracted
by CNNs.

To this end, we develop the co-attention loss to derive a
CNN model by enhancing the similarity among the estimated
objects across images while enforcing the figure-ground dis-
tinctness in each image. Our model comprises two CNN
modules, i.e., a co-attention map generator and a feature
extractor, as shown in Figure 2. The generator compiles a
heat map for the object in each image to estimate its figure-
ground segmentation. The extractor computes the features
of the estimated objects and backgrounds to minimize the
co-attention loss. Through backpropagation, the generator is
learned to compile high-quality object maps with which the
resultant figure-ground segmentation can best optimize the
co-attention loss. In this way, our model is end-to-end train-
able and can carry out unsupervised object co-segmentation.
For further enhancement, we develop the mask loss, which
can refine the yielded object maps by preserving the whole
objects and removing the noises. Figure 1 shows an example
of the co-segmentation results inferred by our method.

To the best of our knowledge, this work is the first at-
tempt to develop an unsupervised and end-to-end trainable
CNN model for object co-segmentation. Compared with un-
supervised conventional methods [Wang er al., 2017; Joulin
et al., 2012; Lee et al., 2015; Tao et al., 2017] and the su-
pervised CNN-based method [Yuan er al., 2017], our method
can enjoy the boosted performance empowered by deep CNN
features and does not suffer from the high annotation cost in
labeling object masks as training data. Our method is eval-
uated on three benchmarks for co-segmentation, the Internet
dataset [Rubinstein et al., 20131, the iCoseg dataset [Batra et
al., 20101, and the PASCAL-VOC dataset [Faktor and Irani,
2013]. Tt remarkably outperforms the state-of-the-art unsu-
pervised and supervised methods.

2 Related work

The literature related to our work is discussed in this section.

2.1 Object co-segmentation

According to [Tao er al., 2017], conventional researches on
object co-segmentation can be divided into two categories,
namely the graph-based [Chang er al., 2011; Rubio et al.,
2012; Chang and Wang, 2015; Jerripothula et al., 2016;
Quan et al., 2016; Wang et al., 2017; Li et al., 2018] and
the clustering-based [Joulin et al., 2010; Kim et al., 2011;
Joulin et al., 2012; Lee et al., 2015; Tao et al., 2017] meth-
ods. The former methods adopt a structure model to capture
the relationship between instances from different images, and
utilize the information shared cross images to jointly select
the most similar instances as the common objects. The latter
methods assume that the pixels or superpixels in the com-
mon objects can be grouped together well. Thus, they formu-
late co-segmentation as a clustering problem to search for the

common objects. In these graph-based and clustering-based
methods, engineered features, e.g., SIFT, HOG, and texton,
are often used for instance representation. The features are
pre-designed instead of optimized for the input images. In
contrast, our method adaptively learns the CNN features con-
ditional on the given images. It can better cope with the intra-
class variations and background clutters, leading to a higher
performance.

To improve the performance of co-segmentation, Sun and
Ponce [Sun and Ponce, 2016] further explored additional
background images to help detect discriminative object parts.
Yuan et al. [Yuan e al., 2017] recently proposed a method
integrating conditional random fields (CRFs) into CNNs to
jointly learn the features and search the common objects. De-
spite the great performance, their method intensely relies on a
large number of training object masks. It reduces the applica-
bility of their method to unseen images. Instead, the proposed
method does not require additional background images or any
training data but merely a set of images for co-segmentation.
It can adapt itself to any unseen images in an unsupervised
manner. Therefore, the proposed method has better general-
ization than the supervised method [Yuan er al., 2017], and
even outperforms it based on the developed co-attention and
mask losses.

2.2 Unsupervised CNNs for image correspondence

CNNs have been applied in an unsupervised fasion to a
few tasks related to image correspondence, such as optical
flow [Yu et al., 2016; Ren et al., 2017; Meister et al., 2018]
and stereo matching [Godard ef al., 2017; Zhou et al., 2017].
The common goal of these tasks is to find the cross-image
correspondences of all pixels. The input images are typically
adjacent video frames or stereo pairs of the same scene. The
adopted objective functions are often based on brightness and
cycle consistency. Namely, all matched pixels need to have
similar colors or appearances, and the correspondences gen-
erated from different image perspectives should be consistent.
There are three major differences between these tasks and
object co-segmentation. First, co-segmentation often con-
siders objects of the same category, instead of the same in-
stance. Thus, the brightness consistency may not hold. Sec-
ond, co-segmentation identifies the region correspondence of
the common objects, instead of the pixel correspondence of
the whole image. Third, cross-image large displacement of
the common objects may be present in co-segmentation. Lo-
cal search for correspondence detection is no longer applica-
ble. Due to the major differences, these CNN-based methods
for unsupervised image correspondence cannot be straight-
forwardly applied to object co-segmentation.

2.3 Weakly supervised semantic segmentation

Weakly supervised semantic segmentation (WSS)
[Kolesnikov and Lampert, 2016; Chaudhry er al., 2017,
Jin et al., 2017; Shimoda and Yanai, 2016; Hou et al., 2017;
Wei et al., 2017b; Roy and Todorovic, 2017] aims to reduce
the annotation cost of semantic segmentation. Methods of
this category usually train their models by using training
data with image-level labels, instead of pixel-level masks.
There are at least two major differences between WSS and
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Figure 2: The overview of our method. Our network architecture is composed of two collaborative CNN modules, a map generator g and a
feature extractor f, which are derived by the co-attention loss £ and the mask loss £, .

co-segmentation. First, WSS typically consists of the training
and testing phases. It requires weakly annotated training
data to learn the model, and applies the learned model to
test images. Co-segmentation is carried out by discovering
objects commonly appearing in multiple images in a single
phase. Second, WSS works with training images of multiple
known categories, and requires that the categories of testing
images are covered by those of training images. On the
contrary, co-segmentation usually works on multiple images
of a single, unknown category.

3 The proposed method

Our method is introduced in this section. First, the pro-
posed formulation for co-segmentation is given. Then, the
developed loss functions and the optimization process are de-
scribed. Finally, some implementation details are provided.

3.1 Proposed formulation

Given a set of N images, {I,,})_,, commonly covering ob-
jects of the same category, our goal is to segment the common
objects. Figure 2 illustrates the proposed method for a quick
overview. Our network architecture is composed of two col-
laborative CNN modules, i.e., the co-attention map generator
g and the semantic feature extractor f. Two loss functions,
including the co-attention loss ¢. and the mask loss ¢,,, are
developed to derive the network.

The generator ¢ is a fully convolutional network
(FCN) [Long e al., 2015]. For each image I,,, the genera-
tor estimates its co-attention map, S, = g(I,,), which high-
lights the common object in [,,. With S,,, the estimated ob-
ject image I2 and background image I? of I,, are available.
The extractor f can be one of the pre-trained CNN models
for image classification, such as AlexNet [Krizhevsky ef al.,
2012] or VGG-16 [Simonyan and Zisserman, 2015], with the
softmax layer removed. It computes the semantic features of
the estimated object and background images, i.e., f(I2) and
f(I%). We treat the inputs to the last fully connected layer of
f as the extracted features.

The co-attention loss /.. is introduced to enhance both inter-
image object similarity and intra-image figure-ground dis-
tinctness. The mask loss refines the co-attention maps by re-
ferring to the selected object proposals. It makes the maps

retain the whole objects while removes the noises. According
to our empirical studies, we pre-train the extractor f and fix
it during training, although fine-tuning is possible. Suppose
the generator g is parametrized by w. The proposed unsuper-
vised loss function for learning g is defined by

Uw) = Le({In} 721 W)+ Z

ne{l,...,N}

gm(-[nv Mn;W), (D

where A is a constant for weighting losses. M, is the se-
lected object proposal for I,,. For the sake of clearness, the
optimization of Eq. (1), the loss £., and the loss ¢,,, will be
detailed in the following subsections.

From co-attention to co-segmentation. By applying the
learned generator g to all images, the corresponding co-
attention maps are obtained.  Following [Yuan er al.,
2017], we generate the co-segmentation results via dense
CRFs [Kriihenbiihl and Koltun, 2011] where the unary and
the pairwise terms are set to referring to the co-attention maps
and bilateral filtering, respectively.

3.2 Co-attention loss /..

The co-attention loss ¢, guides the training of the generator g
by referring to the object and background features computed
by extractor f. This loss is designed based on the two crite-
ria used in unsupervised object co-segmentation, namely high
inter-image object similarity and high intra-image figure-
ground distinctness.

As shown in Figure 2, the generator g produces the co-
attention map .S,, for each image I,,. Sigmoid function serves
as the activation function in the last layer of g. Hence, the
co-attention value at every pixel k, S,,(k), ranges between 0
and 1. With S, the masked object and background images
of I,, are respectively obtained as follows:

I = @(S,, I,) and IY = ®(1 — S,, I,,), 2)

where ® is the operator of element-wise multiplication. Im-
ages I2 and I® highlight the estimated object and background
of I,,, respectively.

The extractor f is applied to images {12, I} N_, for com-

puting the features {f(12), f(I)}_,. With these features,



the co-attention loss is then defined by
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where p;; can be considered as a score estimating two men-
tioned criteria of object co-segmentation, and it is defined by
the following equations,

py = ) 4
" exp(—dj'j) + exp(—d;;) ’

1
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Eq. (5) and Eq. (6) respectively measure the inter-image ob-
ject distance and intra-image figure-ground discrepancy for
an image pair I; and I;. Constant c is the dimension of the
extracted features. The co-attention loss in Eq. (3) is defined
over all image pairs. By minimizing this loss, the generator g
will produce the co-attention maps in which low inter-image
object distances and high intra-image figure-ground discrep-
ancies can be observed. The co-attention loss is the primary
part of the objective function. To the best of our knowledge,
it has not been explored and is novel in the literature.

3.3 Mask loss 4,

Using the co-attention loss alone may lead to two problems.
First, the resultant co-attention maps tend to highlight only
the discriminative object parts, instead of the whole objects.
It is not surprising, since segmenting only the discriminative
parts gives even lower co-attention loss. Second, some noises,
false positives here, are present in the co-attention maps.

The two problems can be alleviated by taking into account
single-image objectness. To this end, we can compile a pool
of object proposals, O, for each image I,,, by using an un-
supervised, off-the-shelf approach, e.g., [Krihenbiihl and
Koltun, 2014]. These proposals are designed to cover ob-
jects completely. We can pick object proposals highly con-
sistent with co-attention maps, and use them in order to regu-
larize co-segmentation. Unfortunately, the co-attention maps
{S,} at the early training stage are too unstable to pick sat-
isfactory proposals. Thus, we adopt a two-stage strategy to
optimize Eq. (1). At the first stage, the mask loss is turned
off. After a few epochs, the resultant co-attention maps {5, }
become stable enough to pick the proposals {M,}, where

M, = argminpeo, ||Sn, — O||?. At the second stage, the
mask loss £,,, in Eq. (1) is turned on and it is defined by

bl M) = r 57 (881 (8) + (1 = )Mo () log(S0 (1)
ke
- (B(L = N (k) + (1 = B)(1 — M (k) log(1 — S (K)),
@)

where M,, = argminpeo, ||S, — O||?, B is a constant, K
is the index set of pixels, and |KC| is the number of pixels.
The mask loss in Eq. (7) is in the form of cross entropy, and
enforces the co-attention map S,, to be consistent with the

weighted combination of the pre-picked M,, and the currently
selected M,,.

The idea behind the mask loss is intuitive: The object pro-
posal, covering the discriminative parts detected by .S,,, likely
covers the non-discriminative parts at the same time. This
property is leveraged to enforce the generator g to highlight
the non-discriminative parts along with the discovered dis-
criminant parts. The loss also reduces false positives because
it can suppress the unfavorable high co-attention values in the
background. The mask loss is inspired by the bootstrapping
loss in [Reed et al., 2015], but with the difference that the es-
timated co-attention maps {S,, } are updated in turn with the
selected proposals instead of a hard threshold 0.5. 3 is set as
0.95 following [Reed er al., 2015].

Object mask refinement. An object proposal is designed
to cover one single object. For an image where multiple ob-
jects are present, the aforementioned mask loss may lead to
an unfavorable circumstance. Namely only one single object
is detected. Thus, we develop a scheme to generate an object
mask M,, by an iterative refinement procedure where multiple
object proposals may be iteratively merged into M,,. Let O},
denote the selected proposal for image I,, at the tth iteration.
At the first iteration, we pick the proposal O} from O,, that
best matches the co-attention map .S,,. The object mask M,
is initially set to O}. Other proposals overlapping O are re-
moved from O,,. The co-attention values in .S,, are set to zero
if the values are less than the average value of O}. At the
following iteration ¢, we pick proposal O}, that best matches
the updated S,,, and merge it into M,,. Then the proposal
pool O,, and the co-attention map S,, are similarly updated.
The procedure is repeated until .S,, becomes a zero matrix or
no proposals remain in O,,. This iterative scheme allows the
object mask M,, to cover multiple non-overlapping and high-
quality object proposals. The updated M, is then substituted
for the original M, in Eq. (7).

The mask loss is auxiliary. It is similar to that in [Dai e7 al.,
2015], but has two major differences. First, we dynamically
refine object proposals to better cover the detected salient ob-
jects. Second, we adopt the bootstrapping method via Eq. (7)
to alleviate the unfavorable effect caused by the selected pro-
posals of low quality.

3.4 Optimization process

The objective function in Eq. (1) is differentiable and convex.
We choose ADAM [Kingma and Ba, 2014] as the optimiza-
tion solver for its rapid convergence. In each epoch, we per-
form forward propagation and get the updated co-attention
maps {5, }. Then, the most consistent object masks {M,, }
are generated based on the proposed object mask generation
scheme. Once the object masks {M,,})_, are determined,
the objective function in Eq. (1) can be optimized by us-
ing ADAM. The gradients of each loss function with respect
to the optimization variables can be derived straightforward.
Therefore, we omit their derivation here.

Our method is end-to-end trainable. Feature extractor can
be updated via back propagation. We keep it fixed because,
for co-segmentation, there are often not sufficient images for



Table 1: The performance of object co-segmentation on the Internet
dataset. The bold and underlined numbers indicate the best and the
second best results, respectively. * means the supervised method.

Table 2: The performance of object co-segmentation on the iCoseg
dataset. The bold and underlined numbers indicate the best and the
second best results, respectively. * means the supervised method.

Airplane Car Horse Avg.

Method P Jg|lP g|P J|P g

[Joulin er al., 2012] 47.5 0.12(59.2 0.35|64.2 0.30|56.97 0.243
[Rubinstein er al., 2013] |88.0 0.56|85.4 0.64|82.8 0.52|82.73 0.427
[Chen et al., 2014] 90.2 0.40|87.6 0.65|89.3 0.58|89.03 0.543
[Chang and Wang, 2015] [72.6 0.27|75.9 0.36|79.7 0.36|76.07 0.330
[Lee er al., 2015] 52.8 0.36|64.7 0.42|70.1 0.39|62.53 0.392
[Jerripothula e al., 20161 [90.5 0.61|88.0 0.71|88.3 0.61[88.93 0.643
[Quan er al., 2016] 91.0 0.56|88.5 0.67|89.3 0.58|89.60 0.603
[Hati er al., 2016] 77.7 0.33]62.1 0.43(73.8 0.20|71.20 0.320
[Tao et al., 2017] 79.8 0.43|84.8 0.66(85.7 0.55|83.43 0.547
[Sun and Ponce, 2016] 88.6 0.36|87.0 0.73|87.6 0.55|87.73 0.547
[Jerripothula ez al., 20171|81.8 0.48|84.7 0.69|81.3 0.50|82.60 0.556
w0 £y, 93.6 0.66(91.4 0.79(87.6 0.59|90.86 0.678
Ours 94.2 0.67|93.0 0.82(89.7 0.6192.29 0.698
[Yuan er al., 2017]* 92.6 0.66[90.4 0.72(90.2 0.65|91.07 0.677

Figure 3: The co-segmentation results generated by our approach
on the Internet dataset. In the three examples (rows), the common
object categories are airplane, car, and horse, respectively.

stable update. In addition, object proposals are dynamically
refined to better cover common objects.

3.5 Implementation details

The proposed method is implemented based on
MatConvNet [Vedaldi and Lenc, 2015]. The same
network architecture is used in all the experiments. ResNet-
50 [He er al., 2016] is adopted as the feature extractor
f» because AlexNet [Krizhevsky er al,, 2012] and VGG-
16/19 [Simonyan and Zisserman, 2015] sometimes lead
to the problem of gradient vanishing in our cases. The
feature extractor f is the off-the-shelf model pre-trained
on ImageNet [Deng er al., 2009]. Tt is fixed during the
optimization process. We have tried to fine-tune f based on
the co-attention loss. The performance is not improved due
to the limited number of images for co-segmentation. Thus,
the feature extractor f remains fixed in the experiments. The
features extracted by f are set to the inputs to the last fully
connected layer of f. The feature dimension, i.e., ¢ in Eq. (5)
and Eq. (0), is set to 2,048.

The generator g is developed based on the VGG-16 [Si-
monyan and Zisserman, 2015] setting of FCN [Long er al.,
2015]. We replace the activation function softmax in the last
layer with the sigmoid function. The output of the sigmoid
function serves as the co-attention map. The learning rate is
set to 1076 and kept fixed during optimization. As mentioned
previously, the generator is learned in a two-stage manner. At
the first stage, we optimize the objective in Eq. (1) with the
mask loss £,,, removed for 20 epochs. After the first stage, the
co-attention maps {Sn} become stable enough to pick plau-

Method][Rubinstein et al., 2013] [Faktor and Irani, 2013] [erripothula ef al., 2016] [Quan et al., 2016]
P 89.9 92.8 91.8 93.3
J 0.69 0.73 0.72 0.76
Method [Tao et al., 20171 [Wang et al., 20171 Ours [Yuan et al., 20171
P 93.8 96.5
J 0.74 0.77 0.84 0.82

sible {M,, }. At the second stage, the mask loss ¢, is turned
on and the objective in Eq. (1) is optimized for 40 epochs.
Therefore, the total number of epoches is 60. The batch size,
weight decay, and momentum are set to 5, 0.0005, and 0.9, re-
spectively. All images for co-segmentation are resized to the
resolution 384 x 384 in advance, since the feature extractor
f is applied to only images of the same size. Then, we re-
size the generated co-segmentation results into their original
sizes for performance measure. The parameter A in Eq. (1) is
empirically set and fixed to 9 in all experiments.

For generating the pool of object proposals {O,,} used for
object mask update, we adopt the fast object proposal genera-
tion algorithm, geodesic object proposal (GOP) [Krihenbiihl
and Koltun, 2014]. Following the unsupervised setting in this
work, the unsupervised setting of GOP is adopted. The num-
ber of the generated proposals for an image typically ranges
from 200 to 1,100.

4 Experimental results

In this section, we evaluate the proposed method and com-
pare it with existing methods on three benchmarks for ob-
ject co-segmentation, including the Internet dataset [Rubin-
stein et al., 2013], the iCoseg dataset [Batra er al., 2010], and
the PASCAL-VOC dataset [Faktor and Irani, 2013]. These
datasets are composed of real-world images with large intra-
class variations, occlusions and background clutters. They
have been widely adopted to evaluate many existing methods
for object co-segmentation, such as [Jerripothula ez al., 2016;
Wang et al., 2017; Yuan et al., 2017].

4.1 Datasets and evaluation metrics

The three used datasets and the adopted evaluation metrics
are briefly described as follows:

The Internet dataset. This dataset introduced in [Rubin-
stein er al., 2013] contains images of three object categories
including airplane, car and horse. Thousands of images in
this dataset were collected from the Internet. Following the
same setting of the previous work [Rubinstein er al., 2013;
Yuan et al., 2017; Tao et al., 20171, we use the same subset of
the Internet dataset where 100 images per class are available.

The iCoseg dataset. There are 38 categories in the iCoseg
dataset [Batra er al., 2010] with total 643 images. Each cat-
egory consists of several images, and these images contain
either the same or different object instances of that category.
Large variations of viewpoints and deformations are present
in this dataset.



Table 3: The performance of object co-segmentation on the PASCAL-VOC dataset under Jaccard index and Precision. The class-wise results
are measured in Jaccard index. The bold and underlined numbers indicate the best and the second best results, respectively.

Method

Avg. P|Avg. J|A.P. Bike. Bird Boat Bottle. Bus Car Cat Chair Cow D.T. Dog Horse M.B. P.S. PP. Sheep Sofa Train TV

[
[
[Quan et al., 2016] 89.0 | 0.52
[
[
[

[Faktor and Trani, 2013] | 84.0 | 0.46 [0.65 0.14 0.49 0.47 0.44 0.61 0.55 0.49 0.20 0.59 0.22 0.39 0.52 0.51 0.31 0.27 0.51 0.32 0.55 0.35
Lee et al., 2015] 69.8 | 0.33 |0.50 0.15 0.29 0.37 0.27 0.55 0.35 0.34 0.13 0.40 0.10 0.37 0.49 044 0.24 0.21 0.51 0.3 0.42 0.16

Chang and Wang, 20151 | 82.4 | 0.29 |0.48 0.09 0.32 0.32 0.21 0.34 0.42 0.35 0.13 0.50 0.06 0.22 0.37 0.39 0.19 0.17 0.41 0.21 041 0.18
Hati et al., 2016] 725 | 0.25 |0.44 0.13 0.26 0.31 0.28 0.33 0.26 0.29 0.14 0.24 0.11 0.27 0.23 0.22 0.18 0.17 0.33 0.27 0.26 0.25

Jerripothula er al., 2016]| 852 | 0.45 |0.64 0.20 0.54 0.48 0.42 0.64 0.55 0.57 0.21 0.61 0.19 0.49 0.57 0.50 0.34 0.28 0.53 0.39 0.56 0.38
Jerripothula et al., 2017]| 80.1 0.40 |0.53 0.14 047 043 042 0.62 0.50 0.49 0.20 0.56 0.13 0.38 0.50 0.45 0.29 0.26 0.40 0.37 0.51 0.37
[Wang er al., 2017] 843 | 0.52 |0.75 0.26 0.53 0.59 0.51 0.70 0.59 0.70 0.35 0.63 0.26 0.56 0.63 059 0.35 0.28 0.67 0.52 0.52 0.48

Ours 91.0 | 0.60 [0.77 0.27 0.70 0.61 0.58 0.79 0.76 0.79 0.29 0.75 0.28 0.63 0.66 0.65 0.37 0.42 0.75 0.67 0.68 0.51

Figure 4: The co-segmentation results generated by our approach on
the iCoseg dataset. In the six examples (rows), the common object
categories are Stonehenge, pyramids, pandas, kite-kitekid, and track
and field, respectively.

The PASCAL-VOC dataset. This dataset was collected by
Faktor and Irani [Faktor and Irani, 2013]. It contains total
1,037 images of 20 object classes from PASCAL-VOC 2010
dataset. The PASCAL-VOC dataset is more challenging and
difficult than the Internet dataset due to extremely large intra-
class variability and subtle figure-ground discrimination. In
addition, some object categories have only a few images.

Evaluation metrics. Two widely used measures, precision
(P) and Jaccard index (J), are adopted to evaluate the per-
formance of object co-segmentation. Precision measures the
percentage of correctly segmented pixels including both ob-
ject and background pixels. Jaccard index is the ratio of the
intersection area of the detected objects and the ground truth
to their union area. The background pixels are taken into ac-
count in precision, so the images with larger background ar-
eas tend to have a higher performance in precision. Therefore,
precision may not very faithfully reflect the quality of object
co-segmentation results. Compared with precision, Jaccard
index is considered more reliable to measure the quality of
results. It provides more appropriate evaluation as it only fo-
cuses on objects.
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Figure 5: The co-segment results generated by our approach on the
PASCAL-VOC dataset. From the first row to the last row, the classes
are bird, bus, cat, cow, dog, sheep, sofa, and train, respectively.

4.2 Comparison with co-segmentation methods

We compare the proposed method with the state-of-the-art
methods on the Internet, iCoseg, and PASCAL-VOC datasets,
and report their performances in Table 1, Table 2, and Ta-
ble 3, respectively. All methods in Table 1, Table 2, and Ta-
ble 3 are unsupervised except for the supervised CNN-based
method [Yuan er al., 2017]. Our method achieves the state-
of-the-art performance on the three datasets under both eval-
uation metrics.

On the Internet dataset, our method outperforms the state-
of-the-art unsupervised method [Jerripothula ez al., 2016] by
a margin around 5% in J and the supervised method [Yuan
et al., 2017] by a margin around 2% in Table 1. On the
iCoseg dataset, our method performs favorably against the
state-of-the-art unsupervised method [Wang er al., 2017] by
a margin around 7% in J and the supervised method [Yuan
et al., 2017] by a margin around 2% in Table 2. The results
demonstrate that the proposed method can effectively utilize
the information shared between common objects in different
images without using complex graphical structures and opti-
mization algorithms, or additional training data in the form
of object masks. The effectiveness of our method mainly
results from two properties. First, the co-attention loss en-
ables CNNs to adaptively learn the robust features for un-
seen images, and discover the common regions. Second, the



mask loss helps CNNs discover the whole objects and remove
noises. Figure 3 and Figure 4 show some co-segmentation re-
sults on the Internet and iCoseg datasets, respectively. Our
method can generate promising object segments under dif-
ferent types of intra-class variations, such as colors, sharps,
views and background clutters, in the Internet and iCoseg
datasets, resepctively.

In Table 3, our proposed method also outperforms the
best competing method [Wang er al., 2017] by a large mar-
gin around 8% in J. Although the PASCAL-VOC dataset
has higher variations than the Internet and iCoseg datasets,
high performance gains over the competing methods can
be obtained by our method. The results indicate that our
method adapts itself well to unseen images with large vari-
ations. Some examples of the co-segmentation results on the
PASCAL-VOC dataset are shown in Figure 5. Compared
with the Internet dataset in Figure 3 and the iCoseg dataset
Figure 4, images on this dataset contain higher intra-class
variations and subtle figure-ground differences. Our method
can infer the common object segments of high quality. For
example, the birds in the first row are of dissimilar colors
and have subtle figure-ground difference. It is difficult for
hand-crafted features to handle this case well. Nevertheless,
our method gets the promising segmentation results owe to
its ability of adaptive feature learning. Although our method
does not adopt multi-scale learning which may make the run-
ning time longer and consume more memory, it still finds ob-
jects of different scales, such as those of object classes bus,
dog, sofa, and train, because CNNs can tolerate scale varia-
tions to some extent.

Ablation studies. In Table 1, w/o ¢, indicates the variant
of our method where the mask loss 4,,, is turned off, i.e.,
A = 01in Eq. (1). A performance drop about 2% is observed,
but it still outperforms the state-of-the-arts. Therefore, the ef-
fectiveness of our method is mainly attributed to the proposed
co-attention loss, instead of the mask loss with its adopted
object proposals. We visualize the effect of using the mask
loss in Figure 6. When the mask loss is turned off, the co-
attention maps have many false positives and do not sharply
cover the common objects. These co-attention maps result in
the sub-optimal co-segmentation results. With the mask loss,
the generator can highlight whole objects and suppress co-
attention values in the background. Therefore, the attention
maps result in much better co-segmentation results.

Our method employs dense CRFs [Krihenbiihl and
Koltun, 2011] for post-processing and generating the co-
segmentation results. To measure the effect of using dense
CRFs in our method, we evaluate the performance of
our method by replacing dense CRFs with Otsu’s method
and GrabCut [Rother et al, 2004] for post-processing.
Otsu’method and GrabCut were adopted as the post-
processing step to generate the co-segmentation results in pre-
vious work [Jerripothula er al., 2016; Faktor and Trani, 2013;
Quan et al., 2016]. The results in Table 4 demonstrate that
our method works well with each of the three schemes for
post-processing.

In addition, our method can run with reasonable efficiency.
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Figure 6: The effect of using the mask loss ¢,,,. The co-segmentation
results on two object classes, including airplane (top) and horse
(bottom). For each class, the first row shows four images and the
corresponding estimated object masks, i.e., M, in Eq. (7). When
the mask loss ¢, is turned off, the second row gives the co-attention
maps and the corresponding co-segmentation results. When the
mask loss ¢, is turned on, the co-attention maps and the correspond-
ing co-segmentation results displayed in the third row become better.

Table 4: The performance of our approach with three different
schemes for post-processing.

Internet iCoseg PASCAL-VOC
Method P P g | P g
Otsu’s method | 91.17  0.680 | 96.53  0.837 | 90.1 0.58
GrabCut 91.60  0.692 | 9635 0.835 | 90.6 0.61
dense CRFs 92.29  0.698 | 96.46 0.835 | 91.0 0.60

Given 100 images for co-segmentation, model training and
object mask refinement in each of 60 epochs take about 20
and 6 seconds, respectively, on an NVIDIA Titan X graphics
card. Namely, it takes about 1,560 seconds to estimate the
co-segmentation results of 100 images, and the average time
per image is 15.6 seconds.

4.3 Comparison with WSS methods

The setting of weakly supervised semantic segmentation
(WSS) is similar to that of co-segmentation in the sense
that images of specific categories are given for segmentation.
Therefore, we compare our method with three state-of-the-
art WSS methods, including [Kolesnikov and Lampert, 2016;
Jin et al., 2017; Chaudhry et al., 2017] in Table 5. Note
that we follow the previous methods for co-segmentation, i.e.,
those in Table 3, and use the PASCAL-VOC dataset collected
in [Faktor and Irani, 2013] as the test bed, instead of the stan-
dard PASCAL-VOC 2012 dataset [Everingham et al., 20151,
for evaluating the performance of object co-segmentation. In
Table 5, our method outperforms the methods in [Kolesnikov
and Lampert, 2016; Jin et al., 2017] and achieves a similar
performance to that in [Chaudhry er al., 2017]. Neverthe-
less, our method has two advantages over these WSS meth-
ods. First, our method does not require a training phase and
does not rely on any background information. Second, our
method can be applied to images of an arbitrary and unknown
category. On the contrary, the models learned by WSS meth-
ods can segment only objects whose categories are covered in
the training data.



Table 5: The comparison of our method and three WSS methods on the PASCAL-VOC dataset under Jaccard index and Precision. The
class-wise results are measured in Jaccard index. The bold and underlined numbers indicate the best and the second best results, respectively.

Method Avg. P|Avg. J.|AP. Bike. Bird Boat Bottle. Bus Car Cat Chair Cow D.T. Dog Horse M.B. P.S. P.P. Sheep Sofa Train TV
[Kolesnikov and Lampert, 2016]] 904 | 0.57 [0.68 0.28 0.61 0.41 0.62 0.79 0.67 0.71 0.32 0.67 0.31 0.65 0.60 0.66 0.53 0.44 0.68 0.65 0.49 0.57
[in e al., 2017] 89.0 | 0.56 [0.71 0.29 0.60 0.55 0.57 0.74 0.71 0.76 0.21 0.80 0.15 0.72 0.74 0.66 0.52 0.44 0.80 0.41 0.49 043
[Chaudhry et al., 2017] 92.0 | 0.59 [0.78 0.29 0.64 0.63 0.59 0.82 0.74 0.68 0.31 0.75 0.21 0.63 0.67 0.66 0.49 0.34 0.74 0.62 0.70 0.53
Ours 91.0 | 0.60 [0.77 0.27 0.70 0.61 0.58 0.79 0.76 0.79 0.29 0.75 0.28 0.63 0.66 0.65 0.37 0.42 0.75 0.67 0.68 0.51

5 Conclusions

In this paper, we presented an unsupervised approach for
object co-segmentation task with CNNs, and to best of our
knowledge, we are the first one to solve this task with an un-
supervised CNNs. The proposed CNN architecture is com-
posed of two CNN modules, a feature extractor and a co-
attention map generator, along with two unsupervised losses,
a co-attention loss and a mask loss. During the optimization
process, the similarity of estimated objects and background is
calculated in the co-attention loss, and the information can be
propagated to guide the optimization of the generator. Thus,
the co-attention loss can enable the generator to produce maps
correctly localizing the common objects. The optimization
is further regularized by the mask loss. The mask loss can
regularize the generator to remove false negatives and pos-
itives on objects and background, respectively. The experi-
mental results on three challenging benchmarks are promis-
ing, and the proposed method outperforms the existing state-
of-the-art unsupervised and supervised methods. In the fu-
ture, we will generalize our approach to other tasks which
also require multiple images as inputs, such as semantic cor-
respondence [Hsu er al., 2015], scene co-parsing [Zhong et
al., 2016] or image co-localization [Wei ef al., 2017al.
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