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Abstract— Wedding is one of the most important ceremonies
in our lives. It symbolizes the birth and creation of a new family.
In this paper, we present a system for automatically segmenting a
wedding ceremony video into a sequence of recognizable wedding
events, e.g. the couple’s wedding kiss. Our goal is to develop an
automatic tool that helps users to efficiently organize, search,
and retrieve his/her treasured wedding memories. Furthermore,
the obtained event descriptions could benefit and complement
the current research in semantic video understanding. Based
on the knowledge of wedding customs, a set of audiovisual
features, relating to the wedding contexts of speech/music types,
applause activities, picture-taking activities, and leading roles,
are exploited to build statistical models for each wedding event.
Thirteen wedding events are then recognized by a hidden Markov
model, which takes into account both the fitness of observed
features and the temporal rationality of event ordering to
improve the segmentation accuracy. We conducted experiments
on a collection of wedding videos and the promising results
demonstrate the effectiveness of our approach. Comparisons with
conditional random fields show that the proposed approach is
more effective in this application domain.

Index Terms— Home videos, wedding ceremonies, semantic
content analysis, event detection, video segmentation.

I. INTRODUCTION

A wedding ceremony is an occasion that a couple’s families
and friends gather together to celebrate, witness, and usher the
beginning of their marriage. It is a public announcement of the
couple’s transition from two separate lives to a new family
unit. Often, the couples invite some videographers, whether
professional or amateur, to document the wedding as their
treasured memento of the ceremony. In this paper, wedding
videos refer to the raw, unedited footage recorded for wedding.
Since a wedding video usually spans hours, the development
of automatic tools for efficient content classification, indexing,
searching, and retrieval becomes crucial.

In this paper, we focus on the recognition of a wedding’s
group actions, namely wedding events, whereby a wedding
is interpreted as a series of meaningful interactions among
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participants. Based on the knowledge of wedding customs [1],
[2], we define thirteen wedding events, such as the couple’s
wedding vows, ring exchange, and so forth. Our goal is to
automatically segment a wedding video into a sequence of
recognizable wedding events. Without loss of generality, we
focus on one of the most popular wedding styles, the western
wedding, that follows the basic western tradition [1], [2] and
takes place in a church-style venue. Based on our observations,
a wedding video typically consists of four parts: preparation,
guest seating, main ceremony, and reception. For simplicity,
we deal with the third part alone because of its relative
significance. In the rest of this paper the term wedding refers
to the main ceremony.

In the literature, the study of wedding video analysis has
long been ignored. The wedding video is simply to be treated
as one of various content sources in research on home videos
[3], [4], [5]. Although the wedding ceremony video shares
some common properties with other kinds of home videos,
such as frequent poor-quality contents and unintentional cam-
era operations [3], [4], several characteristics make it much
more challenging to be processed and analyzed:

• Restricted spatial information: Since most of the wed-
ding events occur in a single place (e.g. the front of a
church altar) and participants basically stay motionless
during the ceremony, the conventional techniques based
on scene, color, and motion information [3], [4], [6] are
not applicable to pre-partition a wedding video or to
group “similar” shots into basic units for further event
recognition. Likewise, most of the other content-generic
visual features such as texture and edge are not reliable
to be utilized.

• Temporally continuous capture: The extraction of broken
time stamps is a widely used technique for generating
shot candidates or event units of home videos [7], [8].
However, to avoid missing anything important, videog-
raphers usually capture a wedding, especially the main
ceremony, in a temporally continuous manner without any
interruption. As a result, the temporal logs are not useful
for wedding segmentation.

• Implicit event boundary: Although a wedding ceremony
proceeds following a definite schedule, the boundaries
between wedding events are often implicit and unclear.
For example, a groom’s entering to the venue is some-
times overlapped with the start of the bride’s entering.
It is not easy to determine an accurate change point to
separate two events. This phenomenon not only increases
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the difficulty of accurate video segmentation but also adds
uncertainties to annotate the event ground truth.

To recognize the thirteen wedding events, we adopt a set
of audiovisual features, relating to the wedding contexts of
speech/music types, applause activities, picture-taking activ-
ities, and leading roles, as the basic event features to build
our wedding video segmentation framework. Each wedding
event is represented by a set of statistical models in terms of
the extracted features. Since these features are selected based
on the understanding of wedding customs [1], [2], they are
more discriminative in distinguishing wedding events than the
aforecited features, such as motion and textures. To effectively
segment a wedding video, we develop a hidden Markov model
(HMM) [9], in which every hidden state is associated with a
wedding event and a state transition is governed by how likely
two corresponding wedding events take place in succession.
The event sequence is, therefore, automatically determined
by finding the most probable path. In summary, our event
recognition framework not only uses the model similarity
of extracted features, but simultaneously takes the temporal
rationality of event ordering into account.

The main contributions of our work are twofold. First, an
automatic system is proposed and realized for event-based
wedding segmentation. To the best of our knowledge, this
work is the first one to analyze and structure wedding videos
at the semantic-event level. Actually, for any type of home
videos, our work might also be the first one to achieve the
semantic event analysis. The proposed methodology could
be extensively applied to the other kinds of home videos
that possess similar characteristics as wedding, such as the
birthday party and school ceremonies. Second, a taxonomy
is developed to categorize the wedding events, whereby we
adopted a set of carefully selected audiovisual features for
robust event modeling and recognition. The true power of these
features is that they are effective in discriminating various
wedding events but their extractions from videos are as easy
as the conventional ones. Furthermore, the obtained high-level
descriptions could benefit and complement the current research
in semantic video understanding.

The rest of this paper is organized as follows. After a
discussion of related work, Section III presents the taxonomy
of wedding events. The extraction of event features and the
modeling and segmentation of wedding videos are described in
Section IV and Section V, respectively. Section VI depicts the
experimental results, and Section VII presents our concluding
remarks and the directions of future work.

II. RELATED WORK

In this section, we review previous studies on home video
analysis. According to their applications, they are classified
into four major categories: scene-based segmentation, capture-
intent detection, photo-assisted summarization, and highlight
extraction. Meanwhile, their pros and cons as compared with
our approach will be briefly discussed as well.

Scene-based Segmentation. A basic segmentation process
is to cluster relevant shots into groups called scenes. A scene is
defined as a subdivision of a video in which either the physical

setting is fixed, or when it presents a continuous action in
one place [4], [6]. Since the home video content tends to be
close in time, the clustering can be simply confined to adjacent
shots. Gatica-Perez et al. [3] proposed a greedy algorithm
that initially treats each shot as a cluster and successively
merges adjacent ones until a Bayesian criterion is violated.
The merging order is determined by both the visual and the
temporal similarities, such as color, edge, and shot duration.
Zhai et al. [4] located scene boundaries using the optimization
technique – Markov chain Monte Carlo (MCMC). A color-
based similarity matrix is constructed for video shots, from
which the clusters with high intra- and low inter-similarities
are detected as the desired scenes.

Capture-intent Detection. A capture-intent refers to an idea,
a feeling, theme, or message that makes us to capture certain
video segments [5], [10], e.g. a sentimental sunset or baby
laughing. Since the user’s capture-intent is often expressed
through the use of cinematic principles, some researchers ex-
ploit the theory of computational media aesthetics for captur-
ing such intents [11]. Achanta et al. [5] proposed a framework
for modeling the capture-intents of four basic emotions, i.e.
cheer, serenity, gloom, and excitement. An emotion delivery
system is also developed for helping users to enhance the
original or to convey a new emotion to a given home video.
Mei et al. [10] further integrated the knowledge of psychology
to classify the capture-intents into seven categories, such as
close-up view, beautiful scenery, just record, etc. A learning-
based mechanism for classifying the capture-intents is then
presented using two kinds of feature sets: attention-specific
and content-generic features.

Photo-assisted Summarization. Personal photo albums can
be viewed as an excellent abstract of the corresponding home
videos. Both capture most of important moments but photo
albums are relatively concise in presenting the contents. Since
a still image can be applied to search videos, the summariza-
tion task can be casted as the problem of template matching
between these two media. Aner-Wolf et al. [12] targeted on
wedding videos. They represented each shot with one or
several mosaics that are used to be aligned with the wedding
photos. All shots with successful alignments are collected
to generate a summarized wedding video. Similar ideas are
adopted by Takeuchi et al. [13], but they instead estimated
the user’s general preferences on the summarization. On the
other hand, Pan et al. [14] analyzed home videos in a finer
unit called a snippet that corresponds to a meaningful camera
motion pattern, such as a long static followed by a fast zoom.

Highlight Extraction. Highlights are the video segments
with relatively higher semantic or perceptual attractions to
users. Since it is still not possible to understand video se-
mantics with the current computing technologies, detection
of human attention provides an alternative way for detecting
perceptual highlights [15], [16]. Hua et al. [17] proposed a
home video editing system, in which attention-based highlight
segments are selected to be aligned with a given piece of
incidental music to generate an edited highlight video. Mean-
while, a set of professional editing rules is utilized to optimize
the editing quality, e.g. motion activity should match with
music tempo. Abowd et al. [18] presented a semi-automatic
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TABLE I
TAXONOMY OF WEDDING EVENTS

Code Event Definition
ME Main Group Entering† Members of the main group walking down the aisle.
GE Groom Entering Groom (with the best man) walking down the aisle.
BE Bride Entering Bride (with her father) walking down the aisle.
CS Choir Singing Choir (with participants) singing hymns.
OP Officiant Presenting Officiants giving presentations, e.g. invocation, benediction, and homily.
WV Wedding Vows Couple exchanging wedding vows.
RE Ring Exchange Couple exchanging wedding rings.
BU Bridal Unveiling Groom unveiling his bride’s veil.
MS Marriage License Signing Couple (with officiants) signing the marriage license.
WK Wedding Kiss Groom kissing his bride.
AP Appreciation Couple thanking to certain people, e.g. their parents or all participants.
ED Ending Couple (followed by the main group) walking back down the aisle.
OT Others Any events not belonging to the above, e.g. lighting a unity candle.

† The main group indicates all persons, except the ones in GE and BE, who are invited to walk down the aisle, e.g.
flower girls, ring bearers, groomsmen, bridesmaids, honorary attendants, officiants, etc.

Fig. 1. Sample key-frames of the thirteen wedding events.

approach for highlight browsing. Home videos need to be
manually annotated with a predefined tag hierarchy that helps
to group together the highlight segments with similar semantic
meanings, e.g. all clips of the child’s birthday wishing.

Some observations are made from the above discussions.
First, the so-called event is a more semantic unit for video
segmentation as compared with the conventional ones such as
frames, subshots, shots, and scenes [19], [20]. It represents a
single human activity during a period of time. However, stud-
ies on semantic event analysis of home media are extremely
rare as compared with the other kinds of content sources
such as sports [19]. Second, the analysis of home media are
mostly from the perspective of a viewer or a videographer but
not the media owner or event participants. Helping them to
explicitly identify what had happened in a video often seems
more crucial than simply indicating where would be more
significant. These observations motivate our development of
a comprehensive scheme for event-based video analysis and
segmentation.

III. WEDDING EVENT TAXONOMY

According to the western tradition [1], [2], a wedding cer-
emony, whether religious or secular, begins when an assigned
attendant (such as an officiant or bride’s mother) is entering
down the aisle and ends while the couple is walking out
of the wedding venue. The mid-process may vary depending

on countries, religions, local customs, and the wishes of the
couple, but the basic elements that constitute the western
weddings are almost the same [1], [2]. Therefore, we define
thirteen wedding events as listed in Table I. They are carefully
specified to be mutually exclusive and collectively exhaustive
[21]. The corresponding sample key-frames for these events
are illustrated in Figure 1.

In addition to the traditions, the common perception of the
relative event importance is also taken into account in the
development of our taxonomy for further applications such
as highlight extraction or video summarization. For example,
the three entering events (ME, GE, BE) are traditionally to be
viewed as a unity called a processional [1], [2], but they should
be explicitly separated because the couple’s arriving is gener-
ally much more exciting than others. By contrast, we classify
all of the officiants’ formal presentations like invocation and
benediction into a single wedding event (OP), because they
are often invariable in form and the verbal expressions are
basically predictable, often not beyond the scope of invoking
God’s blessing upon the marriage or inspiring the attendants’
religious spirits. It is evident that they are not as important as
compared to other events.

Furthermore, as shown in Table I, the taxonomy roughly
follows the procession of a wedding ceremony, i.e. from the
ME event to the ED event. However, it should be noted that the
actual event ordering is based on each couple’s own wedding



4

TABLE II
THE TENDENCY OF WEDDING EVENTS IN THEIR BEHAVIOR OF

SPEECH/MUSIC TYPES, APPLAUSE ACTIVITIES, PICTURE-TAKING

ACTIVITIES, AND LEADING ROLES (FROM THE SECOND TO THE FIFTH

COLUMNS, RESPECTIVELY).∗

S/Ma App.b Pic.c Leading Rolesd

ME – N L+ main group
GE – N – groom, (best man)
BE M – H+ bride, (bride’s father)
CS M – L− choir, (wedding participants)
OP S N – officiants
WV S N H− bride, groom, officiants
RE S N H− bride, groom, officiants
BU S – H− bride, groom
MS – N – bride, groom, (officiants)
WK – Y H+ bride, groom
AP – Y – bride, groom, (wedding participants)
ED M Y H− bride, groom, (main group)
OT – – – –
∗ “–” in the blanks means no obvious tendency.
a S: speech events, M: music events.
b Y: applause events, N: non-applause events.
c L−, L+, H−, H+: events with the activity of picture-taking from
low to high.
d People in parentheses are optional.

program and certain events could be repeated or removed in
the ceremony. For example, the OP and the CS events are
often interweaved with other ones. In addition, a simplified
ceremony could only contain four events of WV, RE, MS, and
WK.

IV. EVENT FEATURES DEVELOPMENT AND EXTRACTION

Effective event modeling is built on top of reliable event
features. The understanding of wedding customs [1], [2] gives
valuable insights to the process of feature exploration. Several
key observations, which are found to be useful in discriminat-
ing the wedding events, are first presented in Section IV-A.
In Section IV-B, guided by these findings, we develop cor-
responding audiovisual features, including four audio features
and two visual features. They are collected together as event
features for later event modeling.

A. Key Observations

According to the western traditions [1], [2], wedding events
are observed to behave differently in four main aspects:
speech/music types, applause activities, picture-taking activ-
ities, and leading roles. In the following, we explain in detail
for each of the key observations and then give corresponding
guidance on the development of relevant event features.

1) Speech/Music Types: Traditionally, some wedding
events contain purely speech and others are accompanied with
music [2]. For example, in the OP and the WV events, all
participants keep quiet to listen to an officiant or the couple
speaking. In the CS and the BE events, a choir is singing
with piano accompaniment or the selected background music
(e.g. Mozart’s Wedding March) is played during the event. The
tendency of wedding events in speech/music types is shown
in Table II. Obviously, the discrimination between speech

TABLE III
EXAMPLES OF FLASH DISTRIBUTIONS OF FOUR SUCCESSIVE WEDDING

EVENTS IN A CEREMONY.∗

1. OP 2. WV 3. RE 4. WK

674 (sec) 234 (sec) 142 (sec) 12 (sec)
19 (times) 55 (times) 8 (times) 73 (times)

0.0282 (Hz) 0.2350 (Hz) 0.0563 (Hz) 6.0833 (Hz)
∗ The third to the fifth rows are the durations, flash numbers (manually
counted), and flash densities of the corresponding wedding events,
respectively.

and music types from recorded audio plays a key role in
wedding event recognition. However, because the quality of
the recorded audio is generally poor and often interfered with
environmental sound and background noise, the selected audio
features related to the speech/music discrimination have to be
robust enough to survive such a low-SNR audio input.

2) Applause Activities: Applause is usually expected from
wedding attendants as the expression of approval or admiration
at certain moments during the ceremony. For example, in the
WK and the ED events, the couple routinely receives a burst
of applause at the moments when they are kissing or walking
back down the aisle. By contrast, in the OP and the WV
events, wedding attendants rarely applaud in order to keep
the solemnity and avoid interfering with the ongoing wedding
speech. Thus, effective applause detection is beneficial to the
recognition of wedding events, cf. Table II. Note that, for
our applications, the applause especially refers to the ones
created by a group of people rather than by an individual.
Specifically, the applause is generated by the group act of
hands clapping and naturally the group members tend to clap
at slightly different rates. This phenomenon makes the sound
of applause difficult to be analyzed without the use of prior
knowledge [22], [23]. Therefore, a common technique is to
exploit the physical properties of applause [23], [24] to identify
its appearance in the audio track of wedding videos.

3) Picture-taking Activities: Wedding attendants, especially
the couple’s family members and close friends, often take
pictures during the ceremony, and the number of pictures taken
roughly represents the relative importance of a wedding event.
Table II illustrates a relative comparison for the generally
observed frequency of taking pictures during various wedding
events. Since the occurrence of camera flashes correlates
closely with the activity of picture-taking [25], the estimation
of flash density could be an effective visual cue for wedding
event discrimination. Table III shows an example of flash
distributions for four successive wedding events in a ceremony.
We observed high variations in flash distributions among
events. For example, the WK event is merely 12 seconds long,
but there are 73 flashes. Its density reaches six times per
second, on average. By contrast, the OP event is of relatively
less importance to the audiences, as described in Section III,
and it contains a small number of flashes even if it lasts for a
much longer duration.
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Fig. 2. Example of a music signal with (a) its spectrogram using short-time
Fourier transform and (b) its corresponding line map.

4) Leading Roles: As shown in Table II, the leading roles
involved in various wedding events are different. For example,
groom and the best man are the main characters in the GE
event; the groom, his bride, and officiants are the main focuses
in the RE event. The main characters’ occurrence pattern
gives a visual hint for the event category. A naı̈ve solution
would be to recognize all roles in videos. This is, however,
not a trivial task with today’s technology. Fortunately, there
are some simple tricks to detect the bride, inarguably the
most important focus of a wedding. According to the western
tradition [1], [2], the bride invariably wears a white gown and
veil as a symbol of purity but the other female roles have
flexibility in their dress color. Therefore, it is more reliable to
represent the bride’s appearance assuming she wears white.

B. Selected Features for Event Modeling

Based on the observations of Section IV-A, four kinds of
audiovisual features, related to the scopes of speech/music
discrimination, applause detection, flash detection, and bride
indication, are developed as basic features for event modeling.
In the following, we detail the development for each adopted
event feature and give their definitions in mathematical forms.

1) Event Features Related to Speech/Music Discrimination:
As mentioned in Section IV-A.1, the audio recordings of wed-
dings are often with poor quality. Thus, the selected audio fea-
tures have to be discriminative enough between speech/music
types for the given low-SNR inputs. However, in the literature,
most studies address the speech/music discrimination problem
only for clean data or with the assumption of known noise
types [22], [26]. To identify the audio features that are resistant
to noises, we first collect a comprehensive set of candidate
features from the previous work [22], [26], [27] and determine
the more reliable ones using feature selection algorithms [28],
[29].

Initially, tens of audio features are collected to form a
candidate set, including the short-time energy, energy cross-
ing, band energy ratio, root mean square (RMS), normalized
RMS variance, zero crossing (ZC), joint RMS/ZC, bandwidth,
silent interval frequency, mel-frequency cepstral coefficients
(MFCCs), frequency centroid, maximal mean frequency, har-
monic degree, music component ratio, and so forth [22], [26],
[27]. Each of the collected audio features is assessed by
information theoretical measures [28], [29], so as to estimate

its discriminability between the speech and the music types. At
the end, three of them are chosen for their stable performances
under various noise types. They are the one-third energy
crossing (OEC), the silent interval frequency (SIF), and the
music component ratio (MCR), as detailed below. Note that,
for extracting the audio features, the audio track of a wedding
video is converted to 44,100-Hz mono-channel format first.
For simplicity, let x(n) be a discrete-time audio signal with
time index n and N denotes the total number of samples in
the interval from which features are extracted.

• One-third Energy Crossing (OEC). One of the char-
acteristics of a speech signal is that the corresponding
amplitude has more obvious variations than that of the
music. Given a fixed threshold δ, the number of audio
energy waveform’s crossings over δ is often higher in
a speech than that in a music. For each audio track,
we empirically set δ to one-third of the whole range of
its average amplitude. Therefore, OEC is defined as a
measurement of the audio’s energy-spectral content as
follows:

OEC � 1
2
·

N∑
n=2

|signδ(x
2(n)) − signδ(x

2(n − 1))| (1)

where

signδ(a) =

⎧⎨
⎩

1, a > δ
0, a = δ.
−1, a < δ

(2)

As suggested by previous work [27], [30], the audio
track is uniformly segmented into non-overlapping 1-
second audio frames. For each audio frame, one feature
value is computed in every 20-ms interval and these 50
short-time feature values are averaged to generate the
representative OEC feature for that 1-second frame. The
same mechanism is used in SIF extraction, as described
next.

• Silent Interval Frequency (SIF). Since a speech signal is
a concatenation of a series of syllables, it contains more
pronouncing pauses than a music signal does. Therefore,
SIF is defined to measure the silent intervals of an audio
signal as follows [27]:

SIF � I((ZC = 0) or (E < θl) or
(E < 0.1Emax and E < θh)) (3)

where I(·) is the indicator function, E is RMS of the
signal amplitude, and Emax is the maximum RMS value
of the whole audio track. To be precise,

E =

√√√√ N∑
n=1

x2(n) (4)

and

ZC � 1
2
·

N∑
n=2

|sign0(x(n)) − sign0(x(n − 1))|. (5)

In addition, the two thresholds θl and θh are empirically
set to 0.5 and 2, respectively. As described in OEC
extraction, we compute a representative SIF feature for
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Fig. 3. Classification results of the audio types of speech (the left subplot)
and music (the right subplot) on three audio datasets of (a) Internet radio,
(b) Internet radio with added white noises (5 dB), and (c) audio tracks from
home videos, using a multi-class SVM classifier built upon the three audio
features proposed in Section IV-B.1.

each 1-second audio frame by taking average of 50 short-
time SIF values.

• Music Component Ratio (MCR). Harmonicity is the
most prominent characteristic of a music signal. A music
signal often contains spectral peaks at certain frequency
levels and the peaks last for a period of time. This can be
observed from the “horizontal lines” in the spectrogram
of a music signal, as shown in Figure 2. MCR is then
defined as the average horizontal line number of an audio
spectrogram within a second, and the line extraction
algorithm is as follows:

1) Segment the given audio track into 40-ms audio
frames with a 10-ms overlap between two succes-
sive frames.

2) Compute the spectrogram (Figure 2(a)) of the audio
frames using short-time Fourier transform.

3) Convert the spectrogram to a corresponding gray-
level image by taking the absolute values of the
Fourier coefficients.

4) Construct a line map (Figure 2(b)) from the image
using the Sobel operation [31], and a 7-order median
filter is applied to remove outliers along each row
of the map.

5) Identify all horizontal lines in the line map using
the Hough transform [31].

6) For each 1-second frame, calculate the line number
from every 4-pixel-wide windows with 2-pixel ad-
vance in the line map, and take the average of the
line numbers as the final MCR value.

As a result, we use OEC, SIF, and MCR to practically
realize a multi-class SVM classifier for speech/music dis-
crimination [32]. The classifier has been evaluated on three
small audio datasets, each containing approximately three-hour
sources. The first dataset is collected from Internet radio and
the second is obtained by adding 5 dB white noises to the
first one. In addition, we constitute the third one from audio
tracks of two kinds of home videos, i.e. the wedding and
the birthday party. Here, sound of birthday party is included
because its audio contents have higher variations and contain

1

0.8

(dB)
20

0.6

0 4

0

-20
0.4

0.2

0

-40

60 0-60
(kHz)0         2   4          6       8        10 (kHz)

(a) (b)
0         2   4          6       8        10

Fig. 4. Examples of (a) two power spectrums of a wedding audio from
consecutive time instances, one with applause (the top solid curve) and another
without applause (the bottom dotted curve), and (b) a sigmoidal filter function.

more diversified sound effects. For example, some of the
birthday parties are taken place at a quiet home, and others
are in a very noisy environment, such as the restaurants with
crowd laughing, talking, and cheering. Then, a fivefold cross-
validation experiment [9] is conducted for the classifier on
each of the datasets and the results measured by average
precisions and recalls are illustrated in Figure 3. The clas-
sification performance shows that the proposed audio features
discriminate music/speech quite well even for the audio with
a substantial amount of noises.

2) Event Features Related to Applause Detection: The
same feature selection mechanisms, as described in the pre-
vious section, are applied to identify the noise-resistant audio
features for detecting the presence of applause in low-SNR
audio recordings. However, based on our experiments, the
audio features in the previous section generally do not perform
very well. Instead, a specific audio feature is developed for
applause detection. This feature exploits the physical proper-
ties of applause, indicated in Section IV-A.2: when applause
is coming up in the audio signal, a significant increase in
magnitude can be observed over the whole power spectrum
[23], [24]. An example is illustrated in Figure 4(a). For
comparison, two power spectrums taken from consecutive time
instances of a wedding audio are depicted in the same figure.
The spectrum with applause (the top solid curve) is around
20 dB larger in magnitude than the one without applause (the
bottom dotted curve) for almost all frequencies. To capture the
global variations of audio magnitudes, an audio feature of the
weighted short-time energy (WSE) is employed.

• Weighted Short-time Energy (WSE). The feature value
of weighted short-time energy is defined as the weighted
sum over the spectrum power (in decibels) of an audio
signal at a given time as follows:

WSE � 1
WSEmax

∫ ωs

0

W (ω) · 10 log(|SF (ω)|2 + 1)dω

(6)
where SF (ω) is the short-time Fourier transform coef-
ficient of the frequency component ω, and W (ω) is the
corresponding weighting function. In addition, ωs denotes
the sampling frequency and WSEmax is the maximum
WSE in the audio track as a normalization factor. The
calculation of WSE is special in that the spectrum power
is in a logarithmic unit of decibels. Summation in the
decibel domain is the same as multiplication in the energy
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Fig. 5. Precision-recall curves of the applause detection results using two
different thresholds. (See Section IV-B.2 for details.)

domain. The logarithmic nature leads that a large WSE
value comes from a global trend of high power over the
whole spectrum but not few dominant frequencies. Fur-
thermore, since human speech is commonly observed in a
wedding and the speech signals are bandlimited to around
3.2 kHz [26], W (ω) is chosen to be a sigmoidal function
(cf. Figure 4(b)) in order to suppress the contributions
from low frequencies. Specifically,

W (ω) =
1

1 + e−ω1(ω−ω2)
, (7)

where ω1 and ω2 are control parameters and are respec-
tively set to 2.5 (kHz) and 5.0 (kHz). As mentioned in
Section IV-B.1, the input audio track is first segmented
into non-overlapping 1-second audio frames. For each
audio frame, one feature value is computed for every
50-ms interval with a 10-ms overlap. A median filter
is then applied to diminish possible noises. Instead of
aggregation, based on our experiments, the maximum of
these 25 feature values is selected as the representative
WSE feature for that 1-second frame.

To verify the capability of WSE, a simple trial is conducted
to detect the applause presented in audio recordings using two
different thresholds: Tmax and Tmean. That is, given a series
of WSE values, we compute two thresholds by individually
multiplying the maximum value and their mean to a numerical
factor between [0,1]. Then applause can be located at the
positions with higher WSE values than the chosen threshold.
Figure 5 illustrates the precision-recall curves of the average
detection results on 15 audio tracks from a set of collected
home videos, including wedding and birthday parties. The
inclusion of birthday parties is for the same reason as described
in Section IV-B.1. Overall, the performance is well acceptable
and it shows that WSE can capture applause effectively even
for noisy home video recordings.

3) Event Features Related to Flash Detection: Flashes of
picture-taking can be detected from abrupt and short increases
of the global intensity in a video frame. A visual feature of
the flash density, as suggested in Section IV-A.3, can then be
defined in the following.

• Flash Density (FLD). In home videos, the durations
of observed flashes are seldom longer than two video

(a) Video frame ft. (b) The thresholded image.t
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(c) The bridal white map with projection histograms.
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Fig. 6. Examples of (a) a video frame with (b) the thresholded image and
(c) the bridal white map with projection histograms.
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Fig. 7. Precision-recall curves of the bride indication results. (See Section IV-
B.4 for details.)

frames. In every 1-second interval, we compute a feature
value of the flash density as follows:

FLD �
M−1∑
t=2

I((f̂ I
t − f̂ I

t−1 ≥ ε) and (f̂ I
t − f̂ I

t+1 ≥ ε))

(8)
where M , f̂ I

t are respectively the total number of video
frames and the value of average intensity of the frame ft,
and the threshold ε = 5 was suggested by previous work
[25] for flash detection.

To get more insight into the feature of FLD, we apply
the flash detection algorithm to one wedding video used in
later experiments, i.e. the Clip-A in Table V. In terms of flash
numbers, 457 flashes are correctly detected among the 482 true
ones, and there are 17 false positives. The detecting precision
and recall are 94.81% and 96.41%, respectively. The detecting
performance shows that flashes can be robustly captured with
our feature.

4) Event Features Related to Bride Indication: As men-
tioned in Section IV-A.4, the bride is an important leading
role in wedding events and her appearance can be detected by
the color of “bridal white”. However, due to various lighting
conditions, the determination of real bridal white is extremely
difficult and often needs a laborious training process similar



8

OEC OEC

SIF SIF

MCR

WSE

MCR

WSE

FLD

WSE

FLD

WSE

BWR BWR

(a) The RE feature models. (b) The WK feature models.

Fig. 8. Examples of wedding event models of (a) the RE event and (b) the WK event.

to that of the skin color detection [33]. Instead, our current
implementation approximates bridal white map for each video
frame, whereby a corresponding visual feature, bridal white
ratio (BWR), can then be defined. The bridal white map is
generated using the following procedure:

1) Convert a video frame ft to the HSI color space [31],
in which the values are within the range of [0,255].

2) Set empirically two thresholds φI
t and φS

t for the inten-
sity and the saturation respectively for the bridal white:

φI
t = min (240, f̂ I

t + 80) and φS
t = 75. (9)

3) Construct a thresholded image Γ̄t from the video frame
using the above two thresholds, cf. Figure 6(b). The
thresholded image is defined as

Γ̄t(p) =
{

1, if f I
t (p) ≥ φI

t and fS
t (p) < φS

t

0, otherwise
(10)

where p is a pixel, and f I
t (p) and fS

t (p) denote p’s
intensity and saturation values, respectively.

4) Obtain a bridal white map Γt (cf. Figure 6(c)) by
removing outliers of Γ̄t using a morphological closing
(i.e., erosion followed by dilation) [31]. That is

Γt = Γ̄t ◦ Se (11)

where Se is a disk structuring element whose radius is
5-pixel wide and ◦ denotes the closing operation.

After constructing the bridal white map, the feature, bridal
white ratio, is then defined as follows:

• Bridal White Ratio (BWR). To obtain BWR, the tech-
nique of histogram projection [34] is applied to improve
the reliability of Γt. Specifically, based on the observation
that the bride roughly appears in the shape of a white
vertical bar (cf. Figure 6(a)), we add a spatial constraint
that the white distribution in the vertical direction should
be wider than that in the horizontal one. Therefore, we

project the bridal white map along the x and the y direc-
tions to construct two 1-D histograms (cf. Figure 6(c)),
from which the isolated component with the maximum
white ratio is individually selected. For example, in
Figure 6(c), there are three isolated components in the
horizontal histogram but only one in the vertical one.
We compute standard deviations, sx

t and sy
t , of the white

distributions for the maximum components along both
axes. In every 1-second interval, a feature value of BWR
is defined as

BWR � 1
M

M∑
t=1

Φ(Γt) · I(sx
t < sy

t ) (12)

where Φ(Γt) returns the white ratio of Γt in terms of
white pixel number with respect to the map size. Note
that we use the average white percentage to avoid making
the hard-decision on whether the bride is present in video
frames or not.

For understanding its performance, a simple trial is carried
out for the bride indication by making binary decisions (i.e.
presence or absence) on the basis of the obtained BWR
values. Given a predefined threshold, a higher BWR value
corresponds to the bride’s presence, otherwise her absence.
Figure 7 illustrates precision-recall curves of the detecting
results for a wedding video, i.e. the Clip-A in Table V. The
“hard-decision” performance is promising and we believe that
the resulted “soft-decision” BWR is helpful for our modeling
task.

V. WEDDING MODELING

The objective of wedding modeling is to estimate the
event sequencing of a wedding video. At each time instance,
extracted event features are exploited to recognize the wedding
events. In addition, a wedding video is a kind of sequential
data. The occurrence of a wedding event highly depends on
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TABLE IV
AN EVEN TRANSITION MODEL OF THE WEDDING EVENTS.

ME GE BE CS OP WV RE BU MS WK AP ED OT
ME 0.80 0.11 0.09
GE 0.12 0.80 0.08
BE 0.80 0.04 0.16
CS 0.80 0.16 0.01 0.03
OP 0.07 0.80 0.03 0.01 0.01 0.02 0.02 0.04
WV 0.80 0.13 0.03 0.03
RE 0.03 0.80 0.13 0.03
BU 0.80 0.20
MS 0.07 0.80 0.07 0.07
WK 0.03 0.11 0.03 0.80 0.03
AP 0.12 0.04 0.80 0.04
ED 1.00
OT 0.05 0.14 0.02 0.80

the category of its preceding neighbors. Thus, in wedding
modeling, it needs not only to consider how likely the acquired
features match an event candidate but also the temporal
rationality whether the candidate is appropriate to follow the
existing sequence immediately. Therefore, we use an effective
learning tool, the hidden Markov model (HMM), to describe
the spatio-temporal relations of events within a wedding video
[9]. In Sections V-A and V-B, we first build statistical models
for feature similarity and temporal ordering for each of the
wedding events. Section V-C then devises an integrated HMM
framework for both the event-based analysis and the wedding
segmentation.

Before proceeding, note that we uniformly divide the wed-
ding video into a sequence of 1-second units. The main
reason for this uniform pre-segmentation is that we can not
use conventional video units, such as shots, as the basic
analysis units. This is because shots of a wedding video
can’t be reliably obtained using conventional techniques as
mentioned in Section I. In addition, uniform segmentation
makes online processing possible. For convenience, let E
denotes an index set [35] of the wedding events, where
the indexing consists of a bijective mapping from the event
set ES = {ME, GE, . . . , OT} to a set of natural num-
bers, i.e. E = {1, 2, . . . , |ES |}. Similarly, F is an index
set corresponding to the collection of event features FS =
{OEC, SIF, MCR, WSE, FLD, BWR}. For the t-th video unit,
let et ∈ E be the corresponding state variable that indicates
the occurrence of a specific wedding event, and let xt =
(x1

t , . . . , x
|F |
t ) be the feature vector associated with the specific

event features xj
t , j ∈ F .

A. Wedding Event Modeling

For each of the wedding events, a statistical feature model is
constructed for each of the adopted event features. Specifically,
a feature model is a probability distribution describing the
likelihood of feature values. The use of statistical histograms
[31] is a naı̈ve approach, but their discrete nature often
causes unwanted discontinuity in results, especially when a
feature value locates near the boundaries of histogram bins.
Instead, we accumulate the probability by regarding each
feature sample as a Gaussian centered at the sample. Assume
that, for the i-th event, we have N samples for the j-th

feature {xj
1, . . . , x

j
N} extracted from the training clips. The

distribution pi,j of the j-th feature for the i-th event can then
be obtained as

pi,j(x) =
1
N

N∑
n=1

1
λj

√
2π

e−(x−xj
n)2/2(λj)

2
, ∀i ∈ E, ∀j ∈ F,

(13)
where

∫ ∞
x=−∞ pi,j(x)dx = 1 and λj is a confidence parameter

specifying how we trust the extracted values of the j-th feature.
That is, if the extracted feature samples are more accurate and
reliable, we can set λj to a smaller value.

Since the feature models are used for discriminating the
wedding events, the divergence among feature models of
different wedding events should be as large as possible.
Quantitatively, the divergence of two probability distributions
p and q can be defined by the symmetric Kullback-Leibler
(SKL) distance [28]:

DSKL(p,q) =
1
2

∫
y

[
p(y) log

p(y)
q(y)

+ q(y) log
q(y)
p(y)

]
dy

(14)
For the j-th feature, the confidence parameter λj is chosen
to maximize the sum of divergences among the same kind of
feature models. That is,

λj = arg max
λ

∑
i,k∈E, i<k

DSKL(pi,j , pk,j) (15)

To find the optimal λj , we use exhausted search and empir-
ically set a search range (e.g. [0, 1]) with a desired precision
(e.g. 0.05). The optimal confidence parameters we found are
λOEC = 0.005, λSIF = 0.015, λMCR = 0.5, λWSE =
0.0025, and λBWR = 0.01. It is worthy to notice that FLD
is an exception because its values are discrete. As a result,
we manually set λFLD = 0 and apply a 9-point normalized
filter to the sample sequences of FLD feature values as an
alternative to the Gaussian-based smoothing.

Therefore, given a video unit (e.g. the t-th one), we can
compute the probability that we observe xt given that this
video unit belongs to the i-th wedding event:

p(xt|et = i) =
|F |∏
j=1

pi,j(x
j
t ) (16)

Note that, in practice, we compute the log-likelihood by taking
logarithm of the expression, and thus obtain a contributive
weight κj to the j-th feature model, where

∑
j κj = 1. In

our experiments, we used a fixed set of weights, i.e. κOEC =
0.25, κSIF = 0.2, κMCR = 0.1, κWSE = 0.1, κFLD =
0.1, and κBWR = 0.25. They are automatically specified by
optimizing the recognition accuracy of wedding events through
a cross-validation process (cf. Section VI) that is iteratively
repeated among training clips. An interesting phenomenon is
that the audio-based event features take as high as two-thirds
of the weights. This implies that audio information seems more
crucial for the wedding analysis.

Overall, the proposed event modeling has the following
advantages. First, it has good tolerance to inaccuracy and
uncertainty of the extracted event features. The Gaussian
component helps to reduce and diversify the influence of an



10

inaccurate feature value. Second, it avoids the artifacts due
to quantization errors in the constructed feature models. The
distribution of feature values can be faithfully represented
without approximation. Figure 8 gives examples of feature
statistical models for two wedding events, RE and WK.

B. Event Transition Modeling

The event transition model (ETM) is constructed to describe
the probability that a wedding event is immediately followed
by another in a wedding ceremony. In other words, it evaluates
whether a temporal transition is to be allowed between each
pair of the wedding events. Therefore, ETM can be defined
by an |E| × |E| matrix A as follows:

Ai,k = Pr(et = k|et−1 = i), ∀i, k ∈ E (17)

where Ai,k is the entry of the i-th row and the k-th column
of A, and t − 1, t are two successive time instances in units
of seconds. Since all possible transitions are enumerated in A,
the marginal probability along each row is unity, that is

|E|∑
k=1

Ai,k = 1, ∀i ∈ E. (18)

In fact, given a training set of wedding videos with the
event ground truth, we can tabulate an approximation of ETM,
namely Ã. However, the obtained probability distributions are
often extremely biased. That is, most of the probabilities are
prone to centralize on the diagonal entries, i.e. Ãi,i. This
phenomenon is due to the fact that transitions are counted in
seconds. For example, assuming that we have two successive
events which are both 100 seconds long, only one event
transition will be accounted during this 200-second period.
Therefore, for each row of Ã (e.g. the i-th one), we exploit a
regularization to balance the probabilities as follows:

Ai,k =
{

γiÃi,k , i = k

(1 − γiÃi,i)/(1 − Ãi,i) · Ãi,k , i �= k
, ∀k ∈ E

(19)
where γi is the regularization factor in the range of [0, 1].
To be precise, we shift some of the diagonal probabilities to
the off-diagonal ones but keep their relative ratios unchanged.
Empirically, all of the diagonal entries are regularized to take
approximately 80% probabilities along each row, i.e. Ai,i ≈
0.8, after regularization.

Table IV shows the ETM we learnt from training videos, in
which the blank entries represent zero probabilities. Sparsity
of the ETM shows that few types of event transitions are
allowed. It also demonstrates the occurrence of wedding events
has a strong temporal correlation. This fact helps to reduce
the computation cost and to increase the reliability of the
determined event sequencing.

C. Wedding Segmentation Using HMM

HMM is a specific instance of state space models, in which
the concept of hidden states is introduced to recognize the
temporal pattern of a Markov process [9]. Since the sequence
of wedding events can be viewed as a first-order Markov data,
as shown in Section V-B, we exploit an HMM framework

1e 1e1,1A 1e1,1A …

2e 2e 2e …

3e 3e 3e
3,3A 3,3A

…

t = 1 2 3t =     1                          2                          3    …

Fig. 9. A simplified example of the HMM for wedding segmentation. (See
Subsection V-C for details.)

for segmenting wedding videos, in which the wedding event
statistical models (Section V-A) and the event transition model
(Section V-B) are integrated together.

Specifically, given an input wedding video V , it is first
partitioned into N 1-second video units, V = {v1, . . . ,vN}.
For each video unit vt, t ∈ {1, . . . , N}, we have a set of
|F | event features associated with it, i.e. xt = (x1

t , . . . , x
|F |
t ).

Collecting all the observations X = {x1, . . . ,xN}, our goal
is to find the most probable event sequencing S for V ,
where S = {e1, . . . , eN}. Therefore, we develop a left-
to-right HMM with |E| states {ei|i ∈ E}, in which each
state corresponds to one of the adopted event categories. The
HMM is governed by a set of parameters, θ = {π, A, φ},
where π, A, and φ are the initial state probabilities, the
state transition probabilities, and the emission probabilities,
respectively [9]. Figure 9 illustrates a trellis representation of
a simplified HMM with only three states. Clearly, φ and A
have been explicitly described by the wedding event models
and the event transition model, respectively. Without loss of
generality, π is presumed to be a uniform distribution, i.e.
p(e1 = i|π) = 1/|E|, ∀i ∈ E. Accordingly, our goal for
finding the optimal sequencing S can be formulated as

S = argmax
s

Pr(X, S|θ)

= argmax
s

p(e1|π)

[
N∏

t=2

p(et|et−1, A)

]
N∏

t=2

p(xt|et, φ)

= argmax
s

p(e1|π)

[
N∏

t=2

Aet−1,et

]
N∏

t=2

|F |∏
j=1

pet,j(x
j
t ) (20)

where the second and the third terms are derived from
Eqns. (16) and (17), respectively. Because the HMM trellis
is equivalent to a directed tree (as shown in Figure 9), the
solution of S can be efficiently obtained using the Viterbi
algorithm [9].

After labeling each 1-second unit of the input video, the
temporal extent of a detected wedding event, or called an
event segment, is defined by collecting successive video units
with the same event labeling. Finally, a smoothing scheme is
applied to reduce possible labeling errors. Since, in general,
a wedding event lasts for at least tens of seconds, we remove
the short ones (less than 10 seconds in duration) by merging it
into its neighbors. If its proceeding and succeeding neighbors
belong to different event categories, it is merged into the left
one; otherwise, all the three events are merged into one event.
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TABLE V
THE COLLECTION OF SIX WEDDING VIDEOS USED IN OUR EXPERIMENTS.

Clip A B C D E F

Duration 2215 (sec) 410 (sec) 4122 (sec) 3790 (sec) 1062 (sec) 1350 (sec)
Event # 17 8 35 23 15 14

TABLE VI
THE STATISTICS OF MEANS μ AND VARIANCES σ2 OF EVENT DURATION FOR EACH OF THE EVENT CATEGORIES IN OUR VIDEO COLLECTION (UNIT:

SECONDS).

Event ME GE BE CS OP WV RE BU MS WK AP ED OT
(a) from all event samples

μi 92.00 42.33 114.00 139.90 130.91 163.33 135.50 47.33 166.00 11.60 68.33 75.20 149.08
σi 38.11 36.25 67.73 104.62 182.28 61.71 13.20 6.66 62.60 1.14 6.66 13.48 67.13

(b) from half of the event samples with shorter durations
μ̃i 45.33 19.00 37.00 56.64 54.24 88.50 111.67 38.67 132.50 10.00 61.33 51.33 97.63
σ̃i 15.95 5.57 1.41 32.08 32.16 26.16 23.63 8.39 33.23 1.00 5.51 24.01 40.17

TABLE VII
THE RECOGNITION RESULTS OF ALL WEDDING EVENTS (UNIT: SECONDS).

Events ME GE BE CS OP WV RE BU MS WK AP ED OT RR(%)
ME 547 0 32 0 0 0 0 0 0 0 0 0 0 94.47
GE 25 99 18 0 0 0 0 0 0 0 0 0 0 69.72
BE 80 0 350 0 0 0 0 0 0 0 0 0 0 81.40
CS 0 0 0 2320 93 0 0 0 0 42 64 0 154 86.79
OP 1 0 5 212 3622 145 459 4 0 2 28 8 156 78.03
WV 0 0 0 43 77 602 73 0 0 0 0 0 0 75.72
RE 0 0 0 0 55 152 442 6 0 0 0 0 0 67.48
BU 0 0 0 0 0 0 0 183 0 2 0 0 0 98.92
MS 0 0 0 9 113 0 0 0 143 0 0 0 0 53.96
WK 0 0 0 0 0 0 0 0 0 87 0 0 0 100.00
AP 30 0 0 23 2 0 0 0 0 0 164 0 2 74.21
ED 0 0 0 0 3 0 0 0 0 0 0 427 0 99.30
OT 0 0 0 586 509 130 96 17 0 0 48 0 436 23.93

RP(%) 80.09 100.00 86.42 72.66 80.96 58.50 41.31 87.14 100.00 65.41 53.95 98.16 58.29

VI. EXPERIMENTAL RESULTS

This section first presents experimental results for the evalu-
ation of the proposed framework in wedding event recognition
(Section VI-A) and wedding ceremony video segmentation
(Section VI-B). This, we show comparisons with another
well-known algorithm, linear-chain conditional random fields
(LCRF), and an extension of our system to a practical scenario
in Sections VI-C and VI-D, respectively.

In our experiments, we used a total of six wedding video
clips. Each of them contains a complete recording of a
wedding ceremony. Three observers (none of the clip owners)
collaboratively annotated the event ground truth. Table V
summarizes the statistics of the videos used in the experiments
and also reports durations and numbers of the annotated events
for all six videos. Our experiments were performed using a
leave-one-out cross-validation strategy, in which models were
trained from five clips and tested on the remaining one, and
the whole training-testing procedure was iterated six times. In
addition, our current system is programmed using Matlab 7.2

without code optimization, and running on a machine with
Intel P4 3.0 GHz CPU, 1.0 GB memory, and MS Windows
XP Professional x32 Edition. Based on the experiments below
in Section VI-A, the average testing time for a clip is about 15
times longer than its original video length, and the extraction
of audiovisual features accounts for around 96% of the time.

A. Event Recognition Analysis

Table VII summarizes the event recognition results in unit
of seconds, presented in the form of a confusion matrix
[30], where the leftmost column represents the actual event
categories while the top-most row indicates the resultant ones
recognized by the HMM framework. The confusion matrix is
accumulated from results of all clips in the collection. The
recognition precision (RP) and the recognition recall (RR) for
each of the event categories are reported in Table VII. As
described in Section I, since the actual boundaries between
wedding events are not always precise, the recognition result
of a video unit is claimed to be correct if it hits the ground truth
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TABLE VIII
THE RECOGNITION RESULTS SOLELY BASED ON THE FEATURE SIMILARITY OF WEDDING EVENTS WITHOUT EXPLOITING THE EVENT TRANSITION

MODELING.

Events ME GE BE CS OP WV RE BU MS WK AP ED OT
(a) using audio features only
RP(%) 34.54 30.14 42.57 78.39 69.81 0 0 71.55 0 12.09 0 34.80 69.32
RR(%) 87.39 59.86 87.21 64.46 88.49 0 0 44.86 0 96.55 0 80.93 13.89
(b) using visual features only
RP(%) 20.30 12.58 30.64 47.10 62.68 36.61 0 20.40 0 4.32 0 16.59 45.49
RR(%) 87.74 66.20 29.07 45.23 14.81 8.43 0 44.32 0 87.36 0 74.65 11.91
(c) using audiovisual features all
RP(%) 44.12 21.62 55.13 75.04 76.01 81.48 0 28.72 0 14.38 0 38.52 71.51
RR(%) 93.96 69.72 73.72 73.55 91.29 5.53 0 45.95 0 100.00 0 83.49 21.08

within a tolerant range. Instead of setting a universal range
value, we adopt a dynamic setting scheme based on the recog-
nized event categories because the event durations vary greatly
among different wedding events as shown in Table VI(a).
Initially, for each event category, all of the event samples
are sorted by duration in descending order. We then compute
a truncated mean μ̃i of the event duration (Table VI(b)) by
ignoring the samples of the first half (i.e. the longer ones in
the top half), and the range value is set to min (0.2μ̃i, ξ),
where we set ξ = 10 so that the tolerant ranges vary according
to event categories but do not exceed 10 seconds. Here, we
use a truncated mean but not the standard mean because of
its better statistical reliability. That is, for most of the event
categories, a large variance is observed with durations of all
of the event samples, as shown in Table VI(a). By contrast,
as shown in Table VI(b), the truncated variances are generally
much smaller than the standard ones in Table VI(a), which
implies that durations of the shorter samples would be more
consistent. More importantly, by ignoring the longer samples,
a smaller tolerant range can be naturally obtained to enforce
a stricter standard for recognition hits.

Overall, as shown in Table VII, large amounts of the
detected wedding events reach over 70% in both RP and RR
values. Some of them even achieve the level of 85%, such as
BU and ED events. Several observations could be made from
this table: 1) A few recognition errors are associated with CS
and OP events, especially the later one. This phenomenon
is usually unavoidable because a wedding event, such as
OP or MS, is sometimes arranged to be accompanied with
choirs singing and the whole ceremony is generally hosted by
wedding officiants who often give some short presentations
within a wedding event. They also cause severe degradations
in RP values for both RE and AP events. 2) The confusion
matrix is sparse and the recognition errors show grouping
effects. That is, the wedding events of a similar group are
prone to be mis-classified to each other, e.g. the set of the
entering events (ME, GE, BE) and the set of the couple’s
committing events (WV, RE). From Table IV, we can find that
the events of each event set correspond to the ones that are
more probable to occur in succession. Thus, the recognition
errors partially come from the implicit event boundaries. 3)
The RR value of OT event is relatively low. This is due to the
fact that OT event is inherently varied in forms. For example, it

could be ‘reading of poetry’ or ‘lighting of the unity candle’.
Compared with other kinds of wedding events, OT event is
the most difficult one to be modeled. Moreover, it severely
influences the overall recognition performance by spreading
out the recognition errors over various event categories.

As a comparison with the HMM-based modeling, we also
perform event recognition solely based on the maximum
similarity of audiovisual features among the wedding events
without exploiting the temporal relation of event transitions.
Table VIII shows the results when using (a) the four audio
features only, (b) the two visual features only, and (c) all
six audiovisual features. Generally, the use of both audio
and visual features together outperforms the use of either
unimodal features alone. The adopted event features from both
modalities could complement each other in the recognition
task. However, the results in Table VIII(c) are still not as good
as those in Table VII, in which event transition modeling is
augmented. This shows evidences to support the effectiveness
of the HMM framework.

B. Video Segmentation Analysis

In this section, we further evaluate the segmentation per-
formance of our approach. Since, in practice, the temporal
extent of a wedding event is perceived as a whole by users,
the segmentation results are compared at the ‘event’ level but
not at the ‘second’ level. We follow a similar idea exploited
in the longest common substring problems [36]. That is, we
represent a wedding video as a symbol string where the
alphabet consists of the event codes given in Table I. Note that
the symbol string is generated in unit of detected events, and
each symbol corresponds to an event segment of the wedding
video. Therefore, for each of the tested wedding clips, the
segmentation performance is measured by the number of the
required edit operations (substitution, insertion, and deletion)
for transforming the reference string corresponding to the
ground truth into the string corresponding to the recognition
result. Figure 10 shows an example of transforming strings.
The less the edit operations are needed, the better the seg-
mented videos match with the ground truth.

Table IX shows the statistics. We claim an event segment
as correct if it hits the ground truth in more than 80%
of its duration. The segmentation precision (SP) and the
segmentation recall (SR) of a resultant video are then defined
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OP WV OP RE CSWK(a)
video

time

OP OT OP

i ti b tit tid l ti

(b) REWV CS

insertion substitutiondeletion

Fig. 10. Edit operations for transforming (a) a reference event string to (b)
the one for comparison.

as follows:

SP =
Corrects

Corrects + Substitutions + Insertions
· 100%, (21)

SR =
Corrects

Corrects + Substitutions + Deletions
· 100%. (22)

In addition, the F-measure, SF = 2 · SP · SR/(SP + SR), is
provided as a metric for evaluating the integral performance.

From Table IX, we can see that SR values generally achieve
80% high, i.e. most of the event segments are correctly
identified. A low value of Clip-B comes mostly from its
small number of events as shown in Table V. By contrast,
the overall SP values are relatively low, at the level of 60%.
Compared with the ground truth, a large amount of redundant
events are erroneously “inserted” in the segmentation results
by our approach. These are mainly caused by the following
two reasons. First, the erroneous events are generated in a one-
to-many pattern. A single event that has been deleted from the
ground truth usually turns into a series of successive erroneous
ones in the resultant event sequence. This phenomenon is
partly relating to the use of our HMM modeling. For example,
consider an event subsequence of the ground truth, WK-CS-
ED. If CS is not detected and the direct transition from
WK to ED is not allowed (i.e. the transition probability
equals zero), the HMM framework would be forced to go
through a longer path of erroneous events to connect WK
and ED, such as WK-OT-MS-ED. Also, when a succession
of two events has never been observed in the training data,
its zero transitive probability could cause the same problem.
Second, the erroneous events are prone to exist around an
event boundary of the ground truth. The same phenomenon
has been observed from the recognition errors, as reported in
Section VI-A.

Since the erroneous events are “mutated” from parts of
the original event segments, in general, they have a shorter
duration as compared with the same kind of wedding events.
Therefore, we use a duration-based filtering scheme to identify
and correct the abnormal ones. Specifically, for each of the
event categories, we exploit the truncated models (Section VI-
A and Table VI(b)) to determine a lower bound of the
reasonable event duration, i.e. Ωi = μ̃i−αiσ̃i, where a rational
scalar αi is empirically set within the range of [1.5, 2]. If
an event segment is recognized as the i-th event category
and its duration is less than Ωi, we merge it into its left
neighbor in our current implementation. Table X summarizes
the segmentation results after applying the duration-based
filtering. Compared with Table IX, the number of inserted

TABLE IX
THE SEGMENTATION RESULTS WITHOUT DURATION-BASED FILTERING

(UNIT: EVENT SEGMENTS).

Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)
A 16 1 10 0 59.26 94.12 72.73
B 5 1 0 2 83.33 62.50 71.43
C 28 2 19 5 57.14 80.00 66.67
D 22 1 18 0 53.66 95.65 68.75
E 12 0 6 3 66.67 80.00 72.73
F 12 1 9 1 54.55 85.71 66.67

Avg. 62.44 83.00 71.27

TABLE X
THE SEGMENTATION RESULTS WITH DURATION-BASED FILTERING (UNIT:

EVENT SEGMENTS).

Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)
A 16 1 5 0 72.73 94.12 82.05
B 5 1 0 2 83.33 62.50 71.43
C 27 1 10 7 71.05 77.14 73.97
D 21 1 12 1 61.76 91.30 73.68
E 12 0 3 3 80.00 80.00 80.00
F 11 0 6 3 64.71 78.57 70.97

Avg. 72.26 80.61 76.21

erroneous events is effectively reduced and on average a 10%
improvement is obtained for SP values. This improvement is
accompanied by a slight decrease in SR values because some
correct events would be filtered out at the same time.

Overall, as shown in Table X, the performance of our system
is satisfactory. It achieves the level of 70% in terms of the
SF metrics. Furthermore, with the assist of the duration-based
filter, the tendencies of both SP and SR behaviors are much
more balanced and consistent. The statistical results may not
be comprehensive but it is encouraging. It gives us support
and confidence that, as long as we capture well the content
characteristics, it is possible to conduct high-level semantic
analysis of home videos through the use of generic and easily
extracted audiovisual features. That is also an advantage of the
proposed framework, making it plausible for real applications.

C. Performance Comparisons with LCRF Models

To further evaluate the validity of HMM approach, we
compare the performance of HMM with that of the linear-
chain conditional random fields (LCRF) [37], [38]. LCRF
is a well-known probabilistic framework for labeling and
segmenting sequence data. In the terminology of statisti-
cal relational learning, HMM and LCRF are known as a
generative-discriminative pair [38], in the sense that HMM
measures the joint probability of sequential observations and
the corresponding label sequences but LCRF is to estimate
the conditional probability of associated label sequences given
the observations. Therefore, LCRF is also believed to be
superior to HMM in representing long-range dependencies of
the observations [37], [38].

As a comparison to HMM framework (cf. Section V-C), in
LCRF modeling the goal to find the optimal sequence S given
observations X is differently formulated as

S = arg max
s

Pr(S|X, θ
′
) (23)
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TABLE XI
THE PERCENTAGE OF TOTAL EVENT DURATION FOR EACH OF THE EVENT CATEGORIES IN OUR VIDEO COLLECTION

Event ME GE BE CS OP WV RE BU MS WK AP ED OT
4.45% 1.09% 3.30% 20.53% 35.87% 6.11% 5.03% 1.42% 2.04% 0.67% 2.19% 3.30% 14.00% 100%

TABLE XII
LCRF RECOGNITION RESULTS OF ALL WEDDING EVENTS (UNIT: SECONDS).

Events ME GE BE CS OP WV RE BU MS WK AP ED OT RR(%)
ME 394 0 30 155 0 0 0 0 0 0 0 0 0 68.05
GE 0 99 18 25 0 0 0 0 0 0 0 0 0 69.72
BE 51 0 339 16 0 0 0 0 0 0 0 0 24 78.84
CS 0 0 0 2221 164 0 0 36 0 12 0 4 236 83.09
OP 0 0 0 403 3967 0 0 0 0 6 0 2 261 85.51
WV 0 0 0 0 356 283 37 0 0 0 95 0 24 35.60
RE 0 0 0 0 270 0 300 0 0 0 85 0 0 45.80
BU 0 0 0 0 11 0 20 58 0 0 9 18 69 31.35
MS 0 0 0 0 17 0 0 0 137 0 0 0 111 51.70
WK 0 0 0 0 39 0 0 5 0 19 0 11 13 21.84
AP 17 0 0 66 0 0 0 0 0 0 48 0 90 21.72
ED 0 0 0 0 0 0 0 0 83 26 0 289 32 67.21
OT 0 0 0 545 749 0 0 0 0 8 56 118 346 18.99

RP(%) 85.28 100.00 87.60 64.73 71.18 100.00 84.03 58.59 62.27 26.76 16.38 65.38 28.69

where θ
′

denotes the model parameters. A quasi-Newton
method (i.e. BFGS [38]) is then adopted to optimize the
estimation of θ

′
from the training data. Following the same

experimental procedures described in Sections VI-A and VI-B,
both the event recognition and the video segmentation results
of the LCRF model are summarized in Tables XII, XIII, and
XIV.

In Table XII, some observations can be made: 1) As
compared with the results of HMM in Table VII, LCRF
performs much worse in RR values than RP values. A half
of the RR values is below the 50% level and some are even
down to the level of 20%, such as WK, AP, and OT events.
Also, the events with low RR values often have relatively
lower RP values. This phenomenon might partly come from
two reasons. One is the inherent event properties and the
other is the unbalanced amount of training samples. For
example, as shown in Table XI, the summed percentage of
total event duration for these low-RR events is less than that of
a single OP event in our video collection. By contrast, HMM’s
performance (in both the RP and RR values) is more consistent
and stable, as discussed in Section VI-A. It seems that HMM
approach could be more robust for unbalanced classification.
2) The low RR values are inappropriate for real applications.
For example, the events of WV, RE, BU, and WK are arguably
the most important moments in a wedding ceremony and
also the most frequent pieces users would like to review in
wedding videos [1]. However, a large number of those events
are not detected by the LCRF model, cf. Table XII. It is
especially worthy to note that WK event has both its RP and
RR values at the level of merely 20%. By contrast, HMM
approach performs better in the RR values, e.g. both BU and
WK events are higher than 95%, although the corresponding
RP values are comparably lower. From the user’s perspective,
they would more like to see “fakes” rather than totally miss
anything important. 3) Similar to HMM results, OT event is

still a main culprit for bad recognition performance and the
performance is even worse for LCRF model. Specifically, not
only the OT event tends to be incorrectly detected as the other
event categories, but also events from the other categories are
prone to be recognized as OT. In Table XII, the effects can be
observed from the widespread errors associated with the OT
event.

Tables XIII and XIV give the video segmentation results
of LCRF model, with and without duration-based filtering.
From Table XIII, we can see that most SR values are only
around 60% and 70% levels. In comparison with HMM
results (cf. Table IX), the degradation is due to that more
ground-truth events were not detected. On the other hand, an
interesting thing is the burst increase in number of deletions
after duration-based filtering, as shown in Table XIV. For
example, the deletions for clip C rise to near three times as the
original. Based on our observations, it is also caused by the low
RRs as described above. This fact makes the detected duration
of events tend to be shorter than their actual lengths in the
ground truth. The “abnormality” then raises their possibilities
to be removed during the filtering. In brief, comparing HMM
approach to the LCRF model, the HMM framework is more
effective in the recognition of wedding events, especially the
highlights such as WK. More importantly, in terms of duration,
HMM approach would be more accurate to include complete
contents in the detected events.

D. Extension to the Scenario with Known Event Ordering
In this section, we investigate an extension of our work

to the scenario when the actual event ordering of a wedding
video is available. The investigation is conducted for two
purposes. First, by reducing the temporal uncertainty, it is
more reliable for us to examine the true capability of the
proposed audiovisual features in discriminating various wed-
ding events. Second, the scenario creates an opportunity for
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TABLE XIII
LCRF SEGMENTATION RESULTS WITHOUT DURATION-BASED FILTERING

(UNIT: EVENT SEGMENTS).

Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)
A 16 1 11 0 57.14 94.12 71.11
B 5 1 0 2 83.33 62.50 71.43
C 26 3 17 6 56.52 74.29 64.20
D 20 0 16 3 55.56 86.96 67.80
E 10 1 2 4 76.92 66.67 71.43
F 11 0 15 3 42.31 78.57 55.00

Avg. 61.93 77.19 68.72

TABLE XIV
LCRF SEGMENTATION RESULTS WITH DURATION-BASED FILTERING

(UNIT: EVENT SEGMENTS).

Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)
A 13 0 2 4 86.67 76.47 81.25
B 3 1 0 4 75.00 37.50 50.00
C 17 2 5 16 70.83 48.57 57.63
D 16 0 4 7 80.00 69.57 74.42
E 10 0 1 5 90.91 66.67 76.93
F 9 0 4 5 69.23 64.29 66.67

Avg. 78.77 60.51 68.44

users to interact with our system so as to possibly improve the
segmentation accuracy. For example, the ordering information
can be obtained by manual input from users or semi-automatic
transcription from the couple’s wedding programs [2], such as
the one shown in Figure 11(a).

Under the assumption of known event ordering, our original
task is in some sense converted into the type of change-point
problem [4], [36]. That is, the problem is to determine the set
of boundaries where event transitions happen. Therefore, in-
stead of using the proposed HMM framework, a modified state
space model is built for each wedding video, in which each
state corresponds to one of the known events and the states are
arranged in the form of a Markov chain according to the given
event ordering, as illustrated in Figures 11(a) and (b). Note
that the directed edges are simply used to indicate allowable
transitions between states but not assigned with any transition
weights in order to account for the contributions from the wed-
ding event models alone. The most probable event sequence is
then computed by exploiting dynamic programming [9], [36],
and the event boundaries can be automatically located at the
points of transition among different states.

Table XV summarizes the segmentation results, in which
“Detects” are defined as the number of detected event seg-
ments and “Corrects” (cf. Section VI-B) indicate the number
of correct ones among “Detects”. The statistics of precision
(P), recall (R), and F-measure (F) are also reported in this
table. As a reference, Table XVI shows the second-based
recognition ratio for each of the testing clips. The overall per-
formance is satisfactory. Both the precisions and recalls reach a
high level of more than 80%. The results are very encouraging.
It not only demonstrates the effectiveness of our audiovisual
features but also implies that the minor requirement of user
intervention could greatly improve performance for practical
applications.

Mary Pink and John Blue
Community Church, January 17, 2008 1. CS

Opening Song: “Deep Peace”        Wedding Choir
Sermon                                          Officiant
Exchange of Vows and Ring        Mary & John

h f h U dl & h

2. OP
3. WV
4. RE

wedding program

Lighting of the Unity Candle       Mary & John
Blessing                                         Officiant

5. OT
6. OP

event ordering
(a)

CS OP RE

(b)

OPOTWV

Fig. 11. (a) A sample wedding program accompanied with the transcribed
event ordering, and (b) the state diagram in form of a Markov chain built
according to the above event ordering.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed and realized a system
for event-based wedding video analysis and segmentation.
According to the wedding customs, we developed a taxonomy
for classifying wedding events, whereby a set of discriminative
audiovisual event features are exploited for robust event mod-
eling. Combined with a hidden Markov model, the resulted
system shows good performance on event recognition and
video segmentation for wedding videos. Thus, it can help users
to access, organize, and retrieve his/her treasured contents
in an automatic and more efficient way. To the best of our
knowledge, this work is the first one to analyze and structure
wedding videos on the basis of semantic events. Actually, it
might also be the first one for semantic event analysis on any
domain of home videos.

Many aspects of our approach can be improved, as detailed
below.

1) It is possible to explore more semantic features for event
recognition. For example, speaker change detection or
identification would be helpful in discriminating the
events with dense speech, such as WV and RE events.

2) The modeling mechanisms could be improved. For ex-
ample, on one hand, advanced fusion schemes of the fea-
ture models can be adopted. One example is hierarchical
classification that combines homogeneous features as
mid-level concepts and then builds event models on top
of these concepts [39], [40]. In addition, the cultural
differences would be taken into account, such as the
variety of speech characteristics (e.g. phonies) between
eastern and western languages in the selection of audio
features. On the other hand, the development of a
time-variant event transition model could produce more
reasonable event sequences. Moreover, there are other
modeling tools worthy of further study for the wedding
analysis, such as higher-order HMM, Bayesian network,
finite state machine, their combinations, and so forth.
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TABLE XV
SEGMENTATION RESULTS IN THE CASE WHEN EVENT ORDERINGS ARE

AVAILABLE (UNIT: EVENT SEGMENTS).

Clip Det. Corr. P(%) R(%) F(%)
A 17 16 94.12 94.12 94.12
B 6 5 83.33 62.50 71.43
C 30 28 93.33 80.00 86.15
D 23 23 100.00 100.00 100.00
E 12 12 100.00 80.00 88.89
F 14 11 78.57 78.57 78.57

Avg. 91.56 82.53 86.81

TABLE XVI
THE SECOND-BASED RECOGNITION RATE OF WEDDING EVENTS FOR ALL

CLIPS IN OUR VIDEO COLLECTION.

Clip A B C D E F
92.55% 86.30% 72.32% 97.66% 73.63% 71.63%

3) Other extensions of our work are to be investigated.
For example, sometimes, multiple recordings of the
same wedding ceremony are available from participants.
The joint analysis would benefit the detection task of
semantic events and enable more creative applications.

4) More extensive and thorough evaluation of our system
is a must. Moreover, since home videos are private data
and usually hard to be acquired, it is beneficial to have
a common database and relevant evaluation benchmarks
for wedding videos.

In the future, we will continue our investigation in these
directions.
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