
LIGHT FIELD IMAGE EDITING BY 4D PATCH SYNTHESIS

Ke-Wei Chen Ming-Hsu Chang Yung-Yu Chuang

National Taiwan University

ABSTRACT

This paper presents a patch-based synthesis framework for
lightfield image editing. The core of the proposed method
builds upon a patch-based optimization approach. The main
contribution of the paper is to extend the versatile patch-based
image editing framework to 4D lightfield images and enable
many editing applications for them. Specifically, the paper
introduces a novel 4D lightfield patch consistency measure
for avoiding synthesis of inconsistent patches into the edited
lightfield images. Combining with a joint 4D patch search,
our method is able to maintain the correlation among views
and render a consistent interpretation of the scene. The pro-
posed method offers patch-based solutions to a wide variety
of lightfield image editing problems, including inpainting, re-
targeting and reshuffling.

Index Terms— Lightfield images, image editing, patch
synthesis.

1. INTRODUCTION

Lightfield cameras have gained a lot of attention recently be-
cause several commercial ones hit the market such as Lytro
and Pelican. They capture ligthfield images with different
principles including camera arrays (e.g., Pelican) and mi-
crolens arrays (e.g., Lytro). A lightfield image records a por-
tion of the 4D lightfield function of the captured scene. Thus,
it reveals more information than traditional 2D images. With
the richer recorded information, several novel applications be-
yond what traditional cameras can provide are enabled, such
as image refocusing and view interpolation.

As lightfield cameras are becoming popular, manipulating
lightfield images could become an important demand. Al-
though lightfield images can essentially be taken as multiple
images captured at different views, these images have tightly
coupled relationships and independent editing of views can
not maintain such relationships. Therefore, editing lightfield
images poses two main challenges than editing conventional
images. Firstly, the editing results should maintain a consis-
tent scene interpretation, which requires that the correspond-
ing points in different views are adjusted jointly. Secondly,
objects with different depths should be handled separately
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so that they do not affect each other, implying the needs for
depth-aware processing.

Since lightfield images are just emerging, there are only
few exiting methods for lightfield image editing. All of these
methods focus on solving a single editing problem such as in-
painting and labeling. This paper extends the versatile patch-
based image editing framework from 2D images to 4D light-
field images. The patch-based methods have been proved
useful in many editing problems, such as retargeting, inpaint-
ing and rearrangement. They have been even implemented in
Adobe Photoshop. By extending the versatile editing frame-
work to lightfield images, our method enables a rich set of
editing operations to the domain of lightfield images.

2. RELATED WORK

Image editing. Patch-based methods have been widely ap-
plied to several image editing problems. Criminisi et al. pro-
posed a patch-based method for image inpainting [1] and it
can be taken as one of the early example for patch-based im-
age editing. Simakov et al. proposed the bidirectional sim-
ilarity [2] to measure the distance between two images and
used it in several applications including summarizing and re-
targeting images. Our method is built upon this measure but
extends it to 4D domain. Pritch et al. proposed the shift-
map method [3]. The method finds an optimal shift for each
pixel so that the shift-map is a rearrangement of the input
image for the target editing. Each shift vector is mapped to
a label; based on these labels, the image editing problem is
transformed into a graph labeling problem. PatchMatch [4]
is an efficient randomized algorithm to accelerate the process
of finding the most similar patch. The algorithm first ran-
domly initializes the nearest neighbor field, and then propa-
gates good shifts to adjacent pixels. Good matches can also
be generated by randomly choosing candidates with shifts
at multiple scales. It has been used in several applications
such as the recent image melding [5]. Our approach also uses
PatchMatch for optimization, but extends it to 4D patches and
augments a new distance function taking depth into account.
Stereoscopic image editing. Stereoscopic images can be
taken as the 3D counterpart of the traditional 2D images.
Their editing also receives certain amount of attention re-
cently. Stereoscopic image inpainting techniques have been
proposed by Wang et al. [6] and Morse et al. [7]. Warping-



based methods have been used frequently for stereoscopic
image editing, such as disparity remapping [8] and retarget-
ing [9, 10]. On the other hand, patch-based methods have not
been used until very recently when Luo et al. extended Patch-
Match to stereoscopic image editing [11].
Lightfield image editing. Lightfield images have received a
lot of attention recently because of commercialization of sev-
eral lightfield cameras such as Lytro and Pelican. Most of
these cameras emphasize the application of refocusing. Nev-
ertheless, lightfield images have more applications such as
image segmentation and view interpolation. Wanner et al.
proposed a method for depth estimation from lightfield im-
ages using a variational framework and the epipolar image
plane [12]. They also applied the variational framework
to multi-label segmentation of 4D lightfield images [13].
Kim et al. proposed a method for reconstructing depth maps
of a complex scene from a 3D lightfield [14]. They uti-
lized coherence in the 3D lightfield to estimate depth maps.
Some applied the refocusing property in lightfields to im-
prove saliency detection [15]. They made use of the focal
stack from lightfields to get a better saliency map. In addition
to applications using lightfield images, their editing has also
been noticed although only recently. Birklbauer et al. per-
formed lightfield image retargeting based on the seam carving
approach [16]. Our method extends the versatile patch-based
editing framework to the domain of lightfield images and en-
ables several interesting editing operations for them.

3. 4D PATCH SYNTHESIS FOR LIGHT FIELDS

Depending on the camera used for capturing lightfield im-
ages, a lightfield image can be represented with several differ-
ent forms. A rendering process is often required for obtaining
the images for a specific application, such as refocusing. For
dealing with different types of lightfield images, the first step
of our algorithm is to render a multiview image with n ×m
all-in-focus images from the raw lightfield image data. Fig-
ure 1 shows an example of a multiview image. We denote
a 4D lightfield image as L(u, v, x, y), where 1 ≤ u ≤ n,
1 ≤ v ≤ m, 1 ≤ x ≤ w, 1 ≤ y ≤ h, u and v are view
indices, x and y specify a spatial location, n × m is the an-
gular resolution and x × y is the spatial resolution. With the
multiview representation, the lightfield image can also be rep-
resented by a set of images, {Iuv|1 ≤ u ≤ n, 1 ≤ v ≤ m} in
which Iuv(x, y) = L(u, v, x, y) .

3.1. Depth maps

In addition to color data, the lightfield data also contain depth
data implicitly. Such depth data often provide useful auxiliary
information for image editing. Thus, we estimate the depth
map Duv for each view (u, v) from the input lightfield L. We
estimate the depth using an approach based on the epipolar
image plane (EPI) [14]. The lightfield data is 4D and there
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Fig. 1: The multiview representation of a lightfield image.
(u, v) is the view index and (x, y) denotes the spatial location
within a view.

are several ways to take 2D slices from them. For example,
the multiview image Iuv(x, y) is formed through taking the
x−y slice by fixing the view index (u, v). One can obtain
the horizontal EPI Evy(u, x) by fixing v and y and taking the
u−x slice of the 4D lightfield data. Similarly, the vertical
EPI Eux(v, y) is obtained by fixing u and x and taking the
v−y slice. The EPI images better reveal the depth structure of
the scene; the corresponding pixels in different views jointly
form a line of the same color in the EPI image and the depth
is related to the slope of the line.

For a given lightfield index p = (ũ, ṽ, x̃, ỹ) and its ra-
diance r̃ = L(ũ, ṽ, x̃, ỹ), we estimate its depth using the fol-
lowing procedure. For a hypothesized depth d, we obtain a set
of radiance samples Γ(p, d) from the horizontal and vertical
EPI images as

Γ(p, d) ={Eṽỹ(ũ, x̃+ (u− ũ)d)|u = 1..n} (1)
∪ {Eũx̃(ṽ, ỹ + (v − ṽ)d)|v = 1..m},

in which we find the corresponding pixels in different views
by tracing the line formed by the hypothesized depth d. With
the color constancy assumption, if the depth estimate d is cor-
rect, the sampled radiance values should be consistent to r̃.
Thus, we measure the goodness of a depth estimate d by

∆(p, d) =
1

|Γ(p, d)|
∑

γ∈Γ(p,d)

ψ(‖γ − r̃‖), (2)

where the kernel function ψ remaps the difference between



(a) user-specified region (b) transferred region

Fig. 2: Region transfer. In (a), the user specifies a region to
be removed (the blue region) in one view. The region is auto-
matically transferred to other views. (b) shows the transferred
region for another view. The green quadrangle indicates the
transferred bounding box.

two colors and we used the same function as Kim et al. [14]:

ψ(x) =

{
1− (x/h)2 if (x/h)2 < 1
0 otherwise, (3)

in which we set h = 0.02. The depth for the given index p is
chosen as the one with the best score as

D(p) = arg min
d

∆(p, d). (4)

We do not incorporate any regularization term in depth esti-
mation because we have many views for the data term and
the depth obtained this way is already sufficient to our ap-
plication. Note that the estimated depth is propagated to all
corresponding pixels in other views rather than estimated in-
dependently. Figure 3(a) shows the estimated depth maps for
a couple of views for the lightfield image shown in Figure 1.

3.2. Bidirectional similarity

Similar to other patch-based image editing algorithms, our
lightfield image editing framework is based on the bidirec-
tional similarity proposed by Simakov et al. [2], but we ex-
tend it to 4D patches from 2D ones. Given two images S and
T, the bidirectional similarity measures their similarity by the
following equation:

D(S,T) = Dcompleteness(S,T) +Dcoherence(S,T). (5)

The first term Dcompleteness requires that patches in the
source image S are preserved in the target image T as much
as possible so that T faithfully represents S. It can be defined
as the following:

Dcompleteness(S,T) =
1

N(S)

∑
P⊂S

min
Q⊂T

Ψ(P,Q), (6)

(a) (b) (c)

Fig. 3: An example of lightfield image completion. The top
row is the view (1, 1) and the bottom row is the view (1, 5). In
(a), we show the estimated depth maps. (b) shows the synthe-
sized results if each view is synthesized independently. No-
tice that the inpainted regions on the pear at different views
are not consistent. (c) demonstrates the results of our method
which synthesizes views jointly.

where N(S) is the number of patches in the image S and
Ψ(P,Q) measures the distance between two patches P and
Q. For 2D images, the distance is usually defined as the sum
of square distances of the intensity values. The second term
encourages each patch in the target image T has a similar
counterpart in the source image S so that the visual coherence
is retained and the target image has a similar appearance as the
source. It is defined as

Dcoherence(S,T) =
1

N(T)

∑
Q⊂T

min
P⊂S

Ψ(Q,P ), (7)

The bidirectional similarity can be used in several applica-
tions. For image summarization, given the source image S,
one could simply find T which minimizes the metric, i.e.,
T = arg minTD(S,T). The optimization problem can be
solved by PatchMatch efficiently [4]. For other editing appli-
cations, various constraints could be added into the optimiza-
tion to meet the requirements of the target application.

3.3. 4D patch synthesis for lightfield

When handling lightfield images, the source S and the tar-
get T in Equation (5) are 4D hyper-volumes rather than 2D
rectangles. In addition, the PatchMatch algorithm needs to be
extended to 4D patches. In our current implementation, we
use 3×3× 7×7 as the size of 4D patches. Overall, we have
made the following major modifications so that the idea of
patch synthesis can be applied to lightfield image editing.



Distance function. In addition to color similarity, we also
want to maintain similarity of the depth structure. Thus, we
measure the distance between two patches based on both their
color and depth values. The distance function Ψ is then de-
fined as

Ψ(P,Q) =
∑
p,q

‖L(p)− L(q)‖2 (8)

+ λ
∑
p,q

|D(p)−D(q)|2,

where p and q are a pair of corresponding positions in 4D
patch P and patch Q; λ balances between the importance of
both color and depth consistency and we empirically set λ =
0.2 in our experiments. With the new distance, our method
also pays attention to depth structure when searching for the
best matching patches, making the method more depth-aware.
Patch consistency. In addition to the completeness and co-
herence terms, we add a patch consistency into the energy
function in Equation (5). This term is designed to measure
whether a patch is consistent among views. Note that, in ad-
dition to colors, our synthesis procedure also produces the
depth value for each pixel in every view in the same way we
synthesize colors. Thus, a 4D patch is a 4D sub-volume in the
u−v−x−y space and for each point in the patch, we have
its R, G, B and D values. For each point p = (ũ, ṽ, x̃, ỹ) in
the patch Q, we have its color r̃ = L(ũ, ṽ, x̃, ỹ) and depth
d̃ = D(ũ, ṽ, x̃, ỹ). According to the depth value d̃, we can
find its corresponding pixels in other views and collect them
into the following set of colors, Γ:

Γ(ũ, ṽ, x̃, ỹ) ={Eṽỹ(ũ, x̃+ kd̃)|k ∈ {−1,+1}} (9)

∪ {Eũx̃(ṽ, ỹ + kd̃)|k ∈ {−1,+1}}.
Note that k ranges from -1 to +1 because of the patch size we
used is 3×3×7×7. If the patch is consistent, then the set of
color samples must be consistent to r̃. Thus, the consistency
of a 4D patch Q can be measured as

Consistency(Q) =
∑
p∈Q

∑
γ∈Γ(p)

ψ(γ − L(p)), (10)

and the consistency of a lightfield image is defined as

Dconsistency(T) =
∑
Q∈T

Consistency(Q). (11)

With this term, for our applications, given the source light-
field image S, we find the target lightfield image T which op-
timizes the following energy with additional constraints spe-
cific to the target application:

arg min
T
Dcompleteness(S,T) +Dcoherence(S,T) (12)

+Dconsistency(T).

4D PatchMatch. For the optimization, the PatchMatch al-
gorithm needs to be extended to 4D. Specifically, during
the propagation and search phase, we consider 4D neighbors
rather than 2D neighbors.

4. APPLICATIONS

In this section, we show a few lightfield image editing ap-
plications using the 4D patch synthesis framework described
in Section 3, including completion, retargeting and reshuf-
fling. The lightfield images were captured using a Lytro cam-
era except for the bug example in Figure 1 which is from HCI
lightfield repository. The lightfield images are of 7 × 7 an-
gular resolution and 512 × 512 spatial resolution. With our
current unoptimized implementation, the editing process in
general took tens of minutes. The PatchMatch process is the
most time-consuming part and it can be greatly accelerated by
porting to GPUs.
Completion. For lightfield image completion, given an in-
put lightfield image S, the user first specifies a region to be
removed in one of the input views, say (ũ, ṽ). Our method
automatically transfers the specified region to other views.
Then, it removes the specified and transferred regions from
all views and fills in the holes due to content removal.

Denote the removal region specified by the user as Ωũṽ .
The first step is to transfer the region from the view (ũ, ṽ)
to all other views. For this purpose, we first detect SIFT
features [17] within the bounding box of Ωũṽ for the view
Iũṽ . The set of detected features is denoted as Fũṽ . We
then detect SIFT features Fuv for all views. To transfer Ωũṽ
from the view (ũ, ṽ) to another view (u, v), we match fea-
tures between Fũṽ and Fuv . The matching is robustified by
RANSAC. From the matched features, we find a homography
matrix Huv . By multiplying the region Ωũṽ with Huv , we
obtain the transferred region Ωuv for the view (u, v). This
simple approach works well because the views in a lightfield
image are usually very close. Figure 2 shows an example of
region transfer.

In the application of image completion, we do not need
the completeness term and only include the coherence and
consistency terms. The target lightfield image T is initialized
as the input S excluding the parts covered by the holes Ωuv .
For pixels in those parts, they are initialized as random colors.
Figure 3 gives the completion results at views (1, 1) and (1, 5)
for the example in Figure 2. Figure 3(b) gives the results using
independent view synthesis. Notice that the inpainted regions
on the pear are not consistent among views. It is clear that
the consistency among views is not maintained this way. Fig-
ure 3(c) gives the results with the proposed method and the
view consistency is maintained much better. Figure 4 shows
another example of lightfield image completion.
Retargeting. The image retargeting operation changes the
size of the input image while preserving its content and per-
ception as much as possible. Given the source image S, we
initialize the target image T with the target size. We then use
Equation (12) as the energy function to solve for T. To avoid
being trapped at local optimum, we adapted a coarse-to-fine
strategy for this application. We built Gaussian image pyra-
mids for all images in S and T. Starting from the coarsest



level, we resize the image at the current level and use the re-
sult to initialize the image at the next level until reaching the
finest level. Figure 5 gives an example of lightfield image
retargeting in which we reduced the width by 15%.
Reshuffling. In this application, the user first specifies how to
rearrange the layout of the image and the system synthesizes
images to minimize Equation (12) while satisfying the spec-
ified constraints. The coarse-to-fine strategy is also adapted
in this application. Figure 6 shows two examples of light-
field image reshuffling. In the first example, we duplicated
the lamppost. In the second example, we added a penthouse
on the roof.

5. CONCLUSIONS

We have presented a lightfield patch-based synthesis frame-
work which handles the corresponding information in all
views and jointly synthesizes contents with a consistent scene
interpretation. The combination of the patch consistency met-
ric and the joint 4D patch search contributes to the realism and
consistency of the synthesized lightfield images and plausibil-
ity of their scene interpretation. The method has potential to
be useful for many lightfield editing processing applications
as demonstrated in the experiments.
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input view (3, 3) synthesized view (3, 3) synthesized view (7, 3) synthesized view (3, 7)

Fig. 4: The results of lightfield image completion.

input view (3, 3) synthesized view (3, 3) synthesized view (7, 3) synthesized view (3, 7)

Fig. 5: The results of lightfield image retargeting.

input view (4, 4) synthesized view (4, 4) synthesized view (7, 4) synthesized view (4, 7)

Fig. 6: The results of lightfield image reshuffling. In the first example (top row), we duplicate the lamppost in the input. In the
second example (bottom role), we modify the structure of the house by adding another penthouse.


