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ABSTRACT

This paper proposes a swung-to-cylinder projection mo-
del for mapping a sphere to a plane. It can be used to create
a semi-perspective image from a panoramic image. The mo-
del has two steps. In the first step, the sphere is projected
onto a swung surface constructed by a circular profile and a
rounded rectangular trajectory. In the second step, the pro-
jected image on the swung surface is mapped onto a cylinder
through the perspective projection. We also propose methods
for automatically determining proper parameters for the pro-
jection model based on image content. The proposed model
is simple, efficient and easy to control. Experiments and ana-
lysis demonstrate its effectiveness.

Index Terms— Projection models, swung surfaces.

1. INTRODUCTION

Capturing a scene with a wide field of view from a single vie-
wpoint records rich visual information of the scene. Respon-
ding to the need of taking images with wider fields of view,
there are more and more wide-angle cameras available on the
market, such as GoPro and Ricoh Theta. The recorded in-
formation can be defined with a viewing sphere which stores
the incident radiance at the viewpoint from any incoming di-
rection. For viewing wide-angle images defined on a viewing
sphere, it is often required to map from the viewing sphere
to an image plane. However, it is impossible to map from a
sphere to a plane without introducing distortions. Thus, pro-
jection models have to trade off different types of distortions
and none can avoid all distortions.

For striking a good compromise among distortions,
Chang et al. proposed the swung-to-plane projection mo-
del [1]. It consists of two steps. The first step projects the
viewing sphere onto a swung surface which is constructed
by circling a circular profile around a rounded rectangular
trajectory. The second step maps the projection on the swung
surface onto the image plane through the perspective pro-
jection. Although generating better perspective images from
wide-angle images than previous models, the swung-to-plane
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Fig. 1. Horizontal FOV analysis. We show the maximal
hFOV on the xz plane. (a) Projection to the projection plane
(the purple line) with d > 1 (b) Projection to the projection
plane with 0 < d < 1 (c) Projection to a projection cylinder
(the purple curve).

projection model has a limited hFOV and suffers from se-
rious distortion when viewing with a larger hFOV. Fig. 1
(a)(b) illustrates the maximal hFOV when projecting from a
unit sphere/cylinder/swung surface to a projection plane. The
maximal hFOV reachs 360◦ when d = 1 (d is the distance
between the center of the viewing sphere and the center of
the perspective projection at the second step), but it would
require infinite space. In order to show a scene with the 360◦

hFOV within finite space, we replace the projection plane in
the second step with a projection cylinder (Fig. 1 (c)). The re-
sultant image is obtained by flattening the projection cylinder.
We call it the swung-to-cylinder model. The swung-to-plane
projection can be taken as a special case of the proposed
swung-to-cylinder projection model. The swung-to-cylinder
model is advantageous for viewing panoramas with the 360◦

hFOV and a large vFOV. We also present methods for au-
tomatically optimizing parameters of the projection models
based on image content. We demonstrate that our model gives
more pleasant views for wide-angle and panoramic images.

2. RELATED WORK

For wide-angle images, Zorin and Barr [2] proposed a one-
parameter family of projections that interpolate between the
rectilinear and stereographic projections. Ying and Hu [3]
proposed a unified imaging model for central catadioptric and
fisheye cameras. Sharpless et al. [4] proposed the Pannini
projection for viewing wide-angle perspective images. Some
approaches require user assistance for viewing panoramas and



wide-angle images [5, 6, 7].
For panoramic projections, cylindrical projections [8] are

widely used because of their simplicity and wide hFOV which
meets the need of panoramas. Zelnik-Manor et al. [9] propo-
sed a multi-plane projection as an alternative to the cylindrical
projection. Kopf et al. [10] presented an interactive viewer for
gigapixel panoramas. Our projection model is able to render
the 360◦ hFOV for panoramas, and reduce the amount of dis-
tortion by automatically optimizing parameters.

He et al. [11] proposed a content-aware warping algorithm
that warps the irregular boundary of panoramas to be rectan-
gular. They further extended this method to preserve “geo-
desic” lines [12]. Both Carroll et al.’s [5] and He et al.’s [11]
methods are content-aware local warping, while our method is
a global projection with few parameters that could be estima-
ted from the image content. There exist researches on creating
panoramas from different viewpoints. Agarwala et al. [13]
proposed a system for creating multi-viewpoint panoramas of
street scenes from fisheye videos. Kopf et al. [14] presented a
system for browsing multi-perspective street views. Different
from them, our projection model is designed for generating
an as-perspective-as-possible image from a single viewpoint.

3. THE PROJECTION MODEL

3.1. The swung-to-cylinder projection model

The proposed swung-to-cylinder projection model maps from
a viewing sphere to the projection cylinder as illustrated in
Fig. 2. Given a point p on the sphere (the orange surface),
the first step projects p onto a point p̄ on a swung surface
S (the blue surface) through a line emanating from the cen-
ter of the sphere. This step is exactly the same as the first
step in the swung-to-plane projection [1]. By construction,
the 3D Euclidean coordinate x̄p of point p̄ is (x̄p, ȳp, z̄p) =
(r̄p sinφp cos θp, r̄p sinφp sin θp, r̄p cosφp).

In the second step, p̄ on the swung surface S is projected
onto a point p̂ on the projection cylinder (the purple surface)
through a line emanating from the center of projection c. As
shown in Fig. 2(b), c is set to lie on the negative z axis with
coordinate xc = (0, 0,−d). The projection cylinder has a
radius R and is centered at the point e with the coordinate
xe =(0, 0, 1−R). The projection cylinder intersects with the
surface S at the point (0, 0, 1). We characterize the projection
cylinder by its curvature κ = 1/R. The point p̂ is the inter-
section between the projection cylinder and a line formed by
c and p̄ (the red line shown in Fig. 2(b)). By expressing p̂ as
a point on the cylinder and as a point on the line respectively,
we have the following equations

x̂p = xc + αp(x̄p − xc), (1)

x̂p = xe + [R sinβp, hp, R cosβp]T , (2)

where x̂p is the Euclidean coordinate of p̂; αp is the parame-
ter on the line; (βp, hp) is the coordinate on the projection
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Fig. 2. The two steps in the swung-to-cylinder model.

cylinder. x̂p can be derived by solving Equation (1) and (2).
The formulae of αp, βp and hp are as follows

αp =
−bpt+

√
x̄2p(R2 − t2) + b2pR

2

x̄2p + b2p
, (3)

βp = tan−1
(

αpx̄p
αpbp + t

)
, (4)

hp = αpȳp, (5)

where bp = z̄p+d and t=R−d−1. The formula of x̂p can
be obtained by substituting Equation (3) into Equation (1).
After projections, the projection cylinder is flattened as the
image plane. Thus, the 3D coordinate of p̂ is mapped to a 2D
coordinate (up, vp) on the image plane. Based on the formula
in Equation (2), the 2D coordinate of p̂ can be written as

(up, vp) = (Rβp, hp). (6)

To sum up, with Equation (3), (4), (5) and (6), one can relate
the 3D spherical coordinate (1, θp, φp) of a point p on the vie-
wing sphere with the 2D coordinate (up, vp) of its projection
on the image plane.

3.2. Comparisons with previous models

There are several parameters in the swung-to-cylinder pro-
jection model: d, κ and R(θ), which are respectively the cen-
ter of projection in the second step, the curvature of the pro-
jection cylinder and the trajectory curve of the swung surface.
When the rounded rectangle is chosen as the trajectory curve,
R(θ) is represented by two parameters, l and h, the roundness
and the aspect ratio of the rounded rectangle. By setting κ=0,
the swung-to-cylinder projection model reduces to the swung-
to-plane projection model. The swung-to-cylinder projection
model further unifies the following models: the cylindrical
projection, Kopf’s one-parameter family of projections [10],
and the Pannini projections [4] as summarized in Table 1.

We analyze the distortions of the central cylindrical pro-
jection, the stereographic Pannini projection, Kopf et al.’s mo-
del and our swung-to-cylinder projection using Tissot’s indi-
catrix [15] as shown in the left column of Fig. 3. For the
cylindrical projection, the shape and area distortions are ag-
gravated as the vertical FOV increases. The stereographic



Table 1. Summary of different projection models. Our
swung-to-cylinder projection model unifies these projections.

d κ R(θ)

Cylindrical [0, 1] 1
√

1 + tan2(θ)
−Central Cylindrical 0 1 n/a
Kopf et al. [10] 0 [0, 1] n/a
Pannini [4] [0,∞] 0

√
1 + tan2(θ)

− Stereographic Pannini 1 0
√

1 + tan2(θ)
Swung-to-plane model [1] [0, 1] 0 rounded rectangle
Swung-to-cylinder model [0, 1] [0, 1] rounded rectangle

Pannini projection drastically enlarges the two sides of the
image. When comparing to Kopf et al.’s model, our swung-
to-cylinder projection has advantages when viewing scenes
with large vertical FOVs. We then compare these methods on
line preserving using grid patterns shown in the middle co-
lumn of Fig. 3. All models other than the swung-to-cylinder
projection model keep vertical lines straight. Although the
swung-to-cylinder projection model does not guarantee pre-
serving all vertical lines, one could find a proper aspect ratio
h to ensure all visible vertical lines are straight. For other
lines, line bending is the worst in the cylindrical projection.
The stereographic Pannini projection maintains the straight-
ness of lines that pass through the image center at the price
of severe area distortions. Kopf et al.’s model and the swung-
to-cylinder projection model have similar effects on line pre-
serving because both models allow the radius of projection
cylinder to vary and achieve a good balance between distor-
tion and line preserving. However, Kopf et al.’s model could
cause serious shape distortion when viewing with a larger ver-
tical FOV as shown in Fig. 4. Our projection looks more per-
spective than Kopf et al.’s model.

3.3. Parameter optimization

There are four parameters in our swung-to-cylinder projection
model, d, κ, h and l. We provide users with an option for
automatically setting parameters based on the image content.
The content features are lines and image saliency. For image
saliency, we use the gradient magnitude to indicate visual sa-
liency on the viewing sphere. We construct a set of points
P ={p1, p2, ..., pn} on the viewing sphere by regularly taking
samples for the spherical coordinate (θ, φ). The saliency si
of each sample point pi is obtained by computing its gradient
magnitude on the viewing sphere. For finding line structu-
res, we use a cube map to project the viewing sphere onto six
perspective views, and then use the LSD line segment detec-
tor [16] to find line segments. Each line segment corresponds
to an arc lj of a great circle on the viewing sphere.

Our energy function E(d, κ) is composed of three terms
respectively for shape distortions, area distortions and line
distortions. We make use of Tissot’s indicatrix for measu-
ring shape distortions and area distortions. An infinitesimal
circle at pi on the viewing sphere is mapped to an ellipse ψi
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Tissot’s indicatrix Grid pattern Projection

Fig. 3. Tissot’s indicatrix and grid patterns. (a) Central cylin-
drical projection (d = 0, κ = 1), (b) Stereographic Pannini
projection [4] (d = 1, κ = 0), (c) Kopf et al.’s model [10]
(d = 0, κ = 0.6). (d) Our swung-to-cylinder projection
(d = 0.6, κ = 0.6, l = 0.75, h = 3). The left column
shows the Tissot’s indicatrix. The grey lines are contours of
either constant θ or constant φ. The middle column shows the
projection of three sets of orthogonal scene lines. The right
column shows the projection images.

on the image plane after the projection. We then use the semi-
major axis and the semi-minor axis of the ellipse ψi to mea-
sure shape and area distortions.

For shape distortions, we would like to preserve the con-
formality of the projection. If pi undergoes an conformal pro-
jection, then its ellipse ψi should be a circle. Therefore, we
require that the aspect ratio of ψi is close to 1. Therefore, the
shape distortion term is defined as

Es(d, κ) =
∑

pi∈P ′

s(pi) ·
(
λ1(pi, d, κ)

λ2(pi, d, κ)
− 1

)2

, (7)

where P ′ ⊂ P is the set of sample points that are visible on
the image plane; λ1(pi, d, κ) and λ2(pi, d, κ) return the semi-
major axis and semi-minor axis of the ellipse ψi respectively;
the saliency s(pi) is incorporated into the energy and serves
as a weighting factor.

For area distortions, we would like to maintain the area
of local regions after the projection. If a projection is area-
preserving, we have λ1λ2 = 1. The area distortion energy is
then defined as

Ea(d, κ) =
∑

pi∈P ′ s(pi) · (λ1(pi, d, κ)λ2(pi, d, κ)− 1)
2
. (8)

For the line distortion term, we would to like to minimize
the bending of lines. An arc lj of a great circle on the vie-
wing sphere is mapped to a curve on the image plane after the
projection. We compute the tangent vectors of the curve at its
two endpoints and denote them as t1(j, d, κ) and t2(j, d, κ).
The line distortion term is then defined by measuring the an-



(a) Central cylindrical projection (b) Central cylindrical projection

(c) Stereographic Pannini projection (d) Stereographic Pannini projection

(e) Kopf et al.’s model (f) Kopf et al.’s model

(g) Ours (h) Ours

Fig. 4. Comparisons of the central cylindrical projection, the
stereographic Pannini projection, Kopf et al.’s model and our
swung-to-cylinder projection model.

gle between them,

El(d, κ) =
∑
j

arccos(
t1(j, d, κ) · t2(j, d, κ)

‖t1(j, d, κ)‖ ‖t2(j, d, κ)‖
). (9)

The energy function is aggregated as a weighted sum of
the above three energy terms

E(d, κ) = Es(d, κ) + waEa(d, κ) + wlEl(d, κ). (10)

The energy is a nonlinear function in terms of d and κ. The
optimization is performed by regularly sampling the 2D pa-
rameter space (d, κ), evaluating the energy for the sampled
values and picking up the one with the lowest energy. We
used wa = 0.01 and wl = 60 in our experiments. After de-
termining d and κ, we find a good aspect ratio h with zero
roundness, and then seek the best roundness of the rounded
rectangle with that aspect ratio using a method similar to the
one proposed by Chang et al. [1].

4. EXPERIMENTS

We implemented our methods on a PC with a 3.4GHz CPU
and 4GB RAM. As for the running time, for an output image
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Fig. 5. Full spherical panorama visualizations. (a) The cylin-
drical projection. (b) The Pannini projection. (c) The stere-
ographic projection. (d) The swung-to-plane projection. (e)
Our swung-to-cylinder projection.
with the 800 × 400 resolution, our implementation of the
swung-to-cylinder model took around 5 minutes to find the
parameters, and the projection took less than 1 second. We
have compared our swung-to-cylinder projection models with
previous models and discussed their strengths and weaknes-
ses in Fig. 3. In Fig. 4, we show more results of comparing
our model with previous models. For Kopf et al.’s model,
we uniformly sample κ and select the best κ which mini-
mizes the energy function in Equation (10). In general, our
swung-to-cylinder projection model achieves a good balance
between each distortion. It presents better perspective effects
than the central cylindrical projection and Kopf et al.’s mo-
del while having much less distortion than the stereographic
Pannini projection. Fig. 5 compares results when viewing full
spherical panoramas with a 360◦ horizontal FOV.

5. CONCLUSION

This paper proposes a projection model for visualizing wide-
angle images and panoramas with 360◦ hFOV. Our swung-
to-cylinder projection model generalizes the swung-to-plane
model by projecting from the swung surface to the projection
cylinder in the second step. It performs better when viewing
with a full horizontal FOV of 360◦. The proposed model also
unifies several previous models and strike a better balance be-
tween shape/area distortions and line preserving.
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