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Abstract—This paper proposes a method to align a set of
images captured from multiple view points. Traditional methods
using image warps parameterized by global transformations
suffer from the problem of misalignment due to parallax effects
induced by camera motions between images and depth variations
of the scene. Our method parameterizes warps using mesh
deformation and achieves spatially-varying transformations to al-
leviate the misalignment problem. The proposed method has two
stages: a hybrid image alignment stage which combines direct-
based methods and feature-based methods, followed by a shape-
preserving aggregation stage which further refines the result.
Experiments show that our method achieves better alignment
and provides visually pleasing image summaries for scenes.

I. INTRODUCTION

Limited by the camera’s capability, a single view often
can not fully capture a scene as we perceive it. To better
depict the scene, it has become common to take multiple
pictures of the same scene and compose them into a single
seamless image of the scene, called a scene collage. It is a more
informative representation than a single viewpoint can provide.
Artists often incorporate multiple view points into a single
painting to produce more informative representations than a
single viewpoint can [1]. A panorama can be taken as a special
case of scene collage, often taken from a single viewpoint.
Unfortunately, limited by alignment methods, photographers
do not have the freedom to change the view point smoothly
and to select which aspects of the scene will be represented.

This paper proposes a spatially-varying-warp-based method
to align multiple images captured from multiple view points
so that users can enjoy more freedom to select views and
produce compelling and informative scene collages. Other than
few exceptions [2], [3], [4], most image alignment methods
assume a global transform for the motion between images [5].
Thus, they often produce misalignment when aligning images
from multiple view points as in our application. A previous
method of scene collage [1], [6] uses global warps and the
alignment is not always perfect. Our method overcomes the
problem by using spatially-varying warps driven by mesh
deformation and provides more flexibility for generating scene
collages. In addition, users have controls on the final com-
posite by setting optional constraints. Thus, users can create
more visually pleasing and seamless scene collages with our
method. In addition to the proposed application, by providing
more accurate alignment between images, our method can be
used in various applications such as finding correspondences,
annotation transfer and so on.

Although a few recent methods also allow local defor-
mation for better alignment [2], [4], our method bears some
differences with them. First, for areas without alignment con-
straints, we use conformal energy for regularization instead of
imposing globally affine/projective assumptions. Second, our
method provides more ease on controlling results by adding
constraints.

A. Related work

Existing image alignment methods can be mainly cat-
egorized into two types: direct (pixel-based) methods and
feature-based methods. Direct methods utilize all pixels for
alignment. It can be very accurate, but has a limited range
of convergence [5]. Feature-based methods have success in
matching images with large differences in scales, orientations,
lighting [7]. A well-known application is panorama. However,
most panorama construction methods assume a global trans-
formation to model the motion between images. Few explored
spatially-varying models. Lin et al. [2] proposed a smoothly
varying affine stitching field, which is globally affine while
allowing local deformations, for image alignment. The core
idea is to pose the problem as nonrigid point-set registration.
Zaragoza et al. [4] proposed the as-projective-as-possible warp
which is globally projective while allowing local deviations for
better alignment. Gao et al. [3] proposed dual-homography
warping to construct panoramas. Since they focus on the
panorama application, they assume that most panoramic scenes
are mainly composed by two dominant planes and find two
homographies for each image. The goal of our method is re-
lated to multi-viewpoint panorama generation [8], [9], [10]. For
reducing shape/area distortion while stitching multiple images,
Chang et al. [11] proposed the shape-preserving half-projective
warp, a spatial combination of a projective transformation
and a similarity transformation. It provides good alignment
accuracy as projective warps while preserving the perspective
of individual image as similarity warps.

B. Overview

In the following sections, we first develop the proposed
method using spatially-varying warps (Section II). Our method
combines feature-based and direct methods with advantages of
both: a feature-based method provides us a roughly correct
alignment and a direct method improves upon it for more
accurate results. We then present results using our technique
and comparisons with an existing method (Section III). Finally,
we conclude with a summary and ideas for future research
(Section IV).



II. THE PROPOSED METHOD

Given a set of m images I1, I2, · · · , Im, the goal is to
jointly align these images into a single one. Adopting group-
wise image alignment is a natural choice. However, the number
of variables are huge and the optimization is time-consuming.
Since image-to-image alignment techniques is more mature
and stable than groupwise alignment, we instead opt to adopt
pairwise alignment techniques first.

Our method consists of two stages: pairwise alignment
and aggregation. The first stage finds pairs to match and
use pairwise alignment to align image pairs. The aggregation
stage integrates the pairwise results altogether using content-
preserving warps. In addition, our framework provides users
with tools for improving the aggregated result. After align-
ment, any blending technique can be used to obtain the final
composite. Here we simply use layering to better demonstrate
quality of the alignment.

We start by defining notations. Let W be a parametric
warping function parameterized by its parameters p. A point
x is mapped to the position W (x;p) by the warping function.
We use a uniform grid mesh to guide spatially-varying image
warping. A uniform grid mesh for the i-th image Ii is denoted
as {Vi,Ei,Qi}. V = [vT

1 ,v
T
2 , · · · ,vT

n ]T is the vector by
concatenating all vertex positions of the mesh. E and Q
represent edge set and quad set. The warping parameters are
defined as the vertex position differences between the original
mesh and the deformed mesh, p = Ṽ−V. Using this definition
makes sure that W (x;0) is the identity warp, which is natural
and is a necessary requirement for the optimization below. The
warping function becomes

x̃ = W (x;p) = Ψ(x)T Ṽ = Ψ(x)T (V + p) , (1)

where Ψ(x) is a vector containing x’s bilinear interpolation
coefficients in terms of V.

A. Pairwise alignment

In this step, we consider the problem of aligning two
images, Ii and Ij , at a time. The goal is to find their respective
warping functions Wi and Wj determined by parameters pi

and pj , so that (1) the two images align well with each other
and (2) the distortions induced by warping are small. Our
approach combines feature-based alignment and direct-based
alignment for achieving good alignment.

First, we adopt SIFT feature matching to find image pairs
and their feature matches [7]. Feature matches are verified
by RANSAC with the Homography-based motion model. We
denote the set of resulting feature pairs between Ii and Ij as
Fij . Given Fij , we attempt to align Ii and Ij by minimizing an
energy function comprised of three terms: feature alignment,
pixel alignment and shape distortion.

Feature alignment Ef . Assume the k-th feature pair contains
features (fki , f

k
j ). To guarantee good alignment, the positions

of matched features after warping should coincide. Thus, we
define the term by measuring the distance between matched
features after warping:

Ef (pi,pj) =

|Fij |∑
k=1

∥∥∥f̃ki − f̃kj

∥∥∥2 , (2)

global warp spatially-varying warp

Fig. 1. Pairwise alignment using global and spatially-varying warps. On the
left, two aligned images using global warps and their composition are shown
from top to bottom. The right displays results using spatially-varying warps. In
the overlapped region, misalignment is much reduced with our method using
spatially-varying warps.

where f̃ki = Wi(f
k
i ;pi) and f̃kj = Wj(f

k
j ;pj) are positions of

features after warping.

Pixel alignment Ea. This term further requires that the
visual appearance of overlap regions of both images after
warping should be similar. Let I(x) denote the image intensity
at position x. According to the warping function W with
parameter p, by using inverse mapping, the intensity of the
warped image Ĩ at x should be

Ĩ(x) = I
(
W−1 (x;p)

)
. (3)

This term is thus defined by measuring the intensity differences
between the overlap regions of Ĩi and Ĩj ,

Ea(pi,pj) =
∑
x∈X

(
Ĩi(x)− Ĩj(x)

)2
, (4)

where X is the set of pixel locations where Ĩi and Ĩj overlaps.

Shape distortion Ed. This term attempts to maintain the
shapes of the quad meshes, preventing the warped image
from much distortion. We use the conformal energy [12] for
measuring distortion. It prefers that each quad undergoes a
similarity transformation by minimizing the deviation of the
deformed quad from a similarity transform. Since Ef and Ea

usually only cover a subset of all vertices, including Ed not
only minimizes distortions but also ensures that the energy
function has a unique solution.



Optimization. The total energy can be written as a linear
combination of these three terms as follows:

E(pi,pj) =Ea(pi,pj) + λfEf (pi,pj)

+λd(Ed(pi) + Ed(pj)). (5)

We used λf = 5000 and λd = 1 in our experiments. Since Ea

is nonlinear, we used iterative optimization for minimization.
Assume that an initial guess of pi and pj is given, the
optimization alternatively solves for pi and pj . Assuming that
pj is constant, Equation 5 becomes

E(pi) = Ea(pi) + λfEf (pi) + λdEd(pi). (6)

Since Ea is the term that complicates the optimization, we
take a closer look at Ea(pi). By denoting y = W−1i (x;pi),
Ea(pi) can be reformulated as

Ea(pi) =
∑
y∈Y

(
Ii(y)− Ĩj(Wi (y;pi))

)2
, (7)

where Y is the set of pixel locations where Ii(y) and
Ĩj(Wi (y;pi)) overlaps. Equation 7 becomes the formulation
of traditional image alignment problem [13]. The well-known
Lucas-Kanade framework can be used for solving Equation 6.
We use the inverse compositional Lucas-Kanade algorithm [14]
to minimize it. In the view of Lucas-Kanade algorithm, Ii
and Ĩj play the roles of template image and input image
respectively. Ef (pi) and Ed(pi) serve as regularization terms.
Please refer to [14] for more details.

For the initial guesses of pi and pj , we use the optimal
homography computed from matched features. Let Hj→i be
the homography transformation from Ij to Ii, and Vj→i be
the warped vertex positions Vj by Hj→i. We set Wi to be the
identity warp and Wj to be Hj→i as the initial guess. That is,
pi = 0 and pj = Vj→i −Vj . To converge faster and avoid
local minimum, we employ a coarse-to-fine strategy in terms
of the number of quads in meshes. At the coarsest level, the
mesh has only 1×1 quad. When converged, to advance to the
next level, a quad is divided into four quads. Five levels were
used in our experiments. Thus, at the finest level, the mesh
consists of 16× 16 quads. Figure 1 shows a sample result for
pairwise alignment and compares global warps and spatially-
varying warps.

B. Aggregation

The goal of aggregation is to align I1, I2, · · · , Im alto-
gether to obtain a group-aligned image by combining pairwise
alignment results from the previous stage. Since an image
is usually involved with more than one image pair, it has
multiple deformations for the pairs it is involved. We adopt an
energy minimization approach to jointly estimate the deformed
vertices Ṽ1, Ṽ2, · · · , Ṽm for all images for combining the
deformations derived from pairwise alignment. The energy
encourages the following three properties: (1) Aligned image
pairs should remain well aligned after aggregation. (2) The
distortions induced by aggregation should be small. (3) User
can refine the shape of the group-aligned image by imposing
constraints. The energy has three terms, each corresponding to
a property.

Correspondences Ec. This term attempts to preserve the
correspondences induced from pairwise alignment. It plays the

without the smoothness term with the smoothness term

Fig. 2. The smoothness energy term ensures that the shape of mesh is
deformed smoothly.

same role with Ef in pairwise alignment. Correspondences
are extracted as follows. Let A denotes the set of image pairs
from the previous stage. Consider an image pair (i, j) ∈ A.
The warping functions Wi and Wj estimated from pairwise
alignment describe how Ii and Ij should be warped to align
to each other. We uniformly extract point correspondences as
constraints in aggregation. Specifically, for (i, j), we construct
a set of correspondences Cij by corresponding vertices to their
positions after warping, that is

Cij =
{(

vk
i ,W

−1
j (ṽk

i ;pj)
)
| k = 1, 2, · · · , n

}
∪
{(
W−1i (ṽk

j ;pi),v
k
j

)
| k = 1, 2, · · · , n

}
. (8)

We would like to maintain the positions of corresponding
points to be the same after aggregation. The correspondence
energy Ec is thus defined as

∑
(i,j)∈A

|Cij |∑
k=1

∥∥c̃ki − c̃kj
∥∥2 , (9)

where c̃ki = Ψi(c
k
i )T Ṽi and c̃kj = Ψj(c

k
j )T Ṽj .

Shape preservation Ed and Es. Like pairwise alignment, we
want to minimize distortions of the deformed meshes using the
same term Ed defined in the previous stage. We also requires
that the deformations are smooth. We use the smoothness
energy Es proposed by Carroll et al. [15], which attempts to
minimize the second derivatives of deformed vertices. Figure 2
compares results with and without the smoothness energy term.
We associate each image with both energy terms. Minimizing
the above energies yields solutions up to a global similarity
transformation. To make the minimization problem well-posed,
we adopt point constraints to resolve the ill-posedness.

Point constraints Ep. This term constrains the location of a
pixel to be fixed in a place specified by the user. To ensure
that the minimization has a unique solution, we apply Ep at
two positions to make it well posed. This term was used by
others for a similar purpose [15].

User refinement. We provide three options for users to
improve the shape of the stitched image. The first is to add
more point constraints. By doing so, users are able to change
the overall shape of the stitched image by changing positions
of control points. Figure 5 gives an example.

The second option is to constrain orientations for some
images for creating more visually pleasing composites. Thus
we add an optional orientation energy Eo to maintain image
orientations. This term requires the orientation changes of



mesh edges are small. A mesh edge e = [ex, ey]T ∈ E is
defined as the vector formed by two neighboring vertices. Let
ẽ be the deformed edge. Eo is then defined as∑

e∈Eh

ẽ2y +
∑
e∈Ev

ẽ2x, (10)

where Eh and Ev are the horizontal and vertical edge set
respectively. Figure 6 shows an example for constraining image
orientations.

The third option is to use a homography energy Eh,
which constrains the deformation-induced transformation of
a selected region to be consistent with a single homography.
The region is specified by users, and may cover multiple quads.
The single-homography constraint has the benefits that there
is only a single perspective change for the region and lines
in the region remain straight. This term is especially useful
for refining scenes which have planar regions with strong line
structures. We define Eh as∑

k∈K

‖ṽk −H(vk)‖2 , (11)

where K is a set of vertex indices that lie within the region. H
is the homography that will be solved by our method. Figure 7
gives an example for this option.

The total energy can be written as follows

E=λcEc + λdEd + λsEs︸ ︷︷ ︸
shape

+λpEp + λoEo + λhEh︸ ︷︷ ︸
user refinement

. (12)

The last tree terms are for optional user refinement. Without
Eh, the energy function is still a linear least squares problem
can be be solved by a sparse solver. When including Eh,
Equation 12 becomes nonlinear and we have to resort to
iterative optimization. The process alternates between two
steps: (1) fix H and optimize for the deformed vertices; (2)
fix deformed vertices and optimize for H . The first step is
linear. The second step is reduced to a homography estimation
problem. In our experiments, we set λc = 5000, λd = 1,
λs = 100, λp = 500, λo = 100 and λh = 1.

III. RESULTS

The proposed method involves heavy linear system solving
and we implemented it using Matlab. Depending on the
number of images to stitch, it took two to ten minutes for the
results shown in this section. We tested the proposed method
mainly on the Scene Collage dataset [6]. Figure 3 shows some
collage results by stitching 5 to 35 images with the proposed
method. The first one was taken on our own and the other
two were taken from the Scene Collage dataset. We want
to emphasize again that, for all results, we did not use any
blending to better demonstrate the effectiveness of alignment.

Figure 4 shows results for three image sets with compar-
isons to the Scene Collage method [6]. The first two image sets
were taken from the Scene Collage dataset. The highlighted
areas show that our method yields better alignment than Scene
Collage, with less discontinuity along seams. The last example
was taken on our own. We captured the input image by
panning the camera and shooting a long paint pinned on a
wall. The scene collage method generates a curved results
while our method aligns more accurately. Our method allows

(a) stitching of 5 images with 4 matched image pairs.

(b) stitching of 15 images with 22 matched image pairs.

(c) stitching of 35 images with 88 matched image pairs.

Fig. 3. Results on image stitching. The first one (a) was taken on our own
and the other two (b, c) were taken from the Scene Collage dataset.

spatially varying warps and thus offers more flexibility for
more accurate alignment than global transforms.

Figure 5- 7 show how to incorporate various types of user
hints for creating more visually pleasing results. Figure 5
controls the overall shape of the final composite by placing
control points. The composite better matches reality by having



(a) scene collage (b) the proposed method

Fig. 4. Comparisons with the Scene Collage method [6] on three image sets. The first two image sets were taken from the Scene Collage dataset. The proposed
method provides better alignment accuracy than the scene collage method. The last example was taken on our own. We captured the input image by panning
the camera and shooting a long paint pinned on a wall. The scene collage method generates a curved results while our method aligns more accurately.

(a) before editing (b) after editing

Fig. 5. By moving control points to the desired positions as shown on the right, users can adjust the overall shape of the composite so that it looks more
realistic. The composite (b) looks better because the kids sit upright and the floor is level.

kids sit upright and keeping the floor level. Figure 6 again
shows how to create a more pleasing result, this time, by
constraining the orientations of two images on the bottom.
Finally, Figure 7 shows that, by requiring the carpet to be
deformed by a single homography, distortion of the carpet is
greatly reduced, and the composite looks more natural.

IV. CONCLUSIONS

We present an scene alignment method for aligning a set of
images from multiple view points. Instead of warping images
with global transforms, our method uses mesh deformation to

induce spatially-varying warps. It provides great flexibility for
aligning images with different optical centers and shows im-
proved results against a global-warp-based method. In addition,
we provides refinement tools for users to obtain more visually
pleasing results. With the proposed tool, users can combine
images from multiple viewpoints to produce a compelling and
informative representation of scene with more freedom and
ease. Although the aggregation stage compensates errors by
shape preservation, our results rely on the performance of
pairwise alignment. In addition, we would like to offer more
editing options such as line structure preservation.



(a) before editing (b) after editing

Fig. 6. By constraining orientations of the highlighted images on the bottom, the composite (b) is visually more pleasing.

(a) before editing (b) after editing

Fig. 7. By requiring that deformations of the carpet fit well with a single homography, distortion of the carpet can be greatly reduced in (b).
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