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Content-Aware Display Adaptation and Interactive
Editing for Stereoscopic Images

Che-Han Chang, Chia-Kai Liang, and Yung-Yu Chuang

Abstract—We propose a content-aware stereoscopic image dis-
play adaptation method which simultaneously resizes a binocular
image to the target resolution and adapts its depth to the
comfort zone of the display while preserving the perceived
shapes of prominent objects. This method does not require depth
information or dense correspondences. Given the specification
of the target display and a sparse set of correspondences, our
method efficiently deforms the input stereoscopic images for
display adaptation by solving a least-squares energy minimization
problem. This can be used to adjust stereoscopic images to fit
displays with different real estates, aspect ratios, and comfort
zones. In addition, with slight modifications to the energy
function, our method allows users to interactively adjust the sizes,
locations, and depths of the selected objects, giving users aesthetic
control for depth perception. User studies show that the method
is effective at editing depth and reducing occurrences of diplopia
and distortions.

Index Terms—Content-aware image retargeting, stereoscopic
image editing, depth adaptation.

I. INTRODUCTION

The rapid deployment of stereoscopic equipment like dis-
plays and cameras will soon lead to a demand for users to
be able to manipulate stereoscopic media similar to the way
they manipulate 2D media. Stereoscopic media delivers not
only an additional dimension and added enjoyment, but also
additional challenges and constraints in creating a comfortable
and enjoyable 3D experience. Because they do not address
these constraints, naı̈ve extensions of existing 2D media ma-
nipulation algorithms usually fail to deliver a comfortable 3D
viewing experience. Thus, nontrivial adjustments are often
required to accommodate new constraints and take advantage
of new opportunities.

Most stereoscopic displays rely on the principle of stereop-
sis; human eyes are horizontally separated and the separation
causes an interocular difference in the images projected onto
the left and right retinas. When each eye is presented with the
proper image, humans perceive depth by fusing the left and
the right images. The fusibility of stereoscopic images depends
not only on properly calibrated displays but also depends
heavily on perfect matches between the left and right images.
Mismatches in image pairs, or binocular asymmetries, can
lead to serious viewing discomfort. In severe cases, the user
experiences diplopia (double vision) and 3D scene perception
is totally disrupted or highly inaccurate. Even if the user is able
to perceive a consistent 3D view, the effort required to resolve
conflicts caused by binocular imperfections can lead to serious
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fatigue, eyestrain, and headache, and may reduce the sense of
realism [1], [2]. Such mismatch is often caused by asymmet-
rical optical geometry or photometric characteristics [3]. For
example, the viewer may experience viewing discomfort if the
left and the right images are misaligned horizontally.

Due to the diversity among display resolutions and as-
pect ratios, similar to 2D media, binocular images1 require
adaptation to be displayed properly on different devices. In
addition to adapting to the device resolution and aspect ratio
(retargeting along the x and y directions on the screen plane),
for stereoscopic displays, we often must adapt images to its
comfort zone (that is, depth adaptation along the z direction
perpendicular to the display). In addition to adapting to differ-
ent displays, depth adaptation is often required for binocular
images with excessive depth ranges. However, existing solu-
tions are not content-aware and can lead to noticeable object
shape distortion. In this paper we present a content-aware
stereoscopic image display adaptation and editing method,
in which we perform image retargeting and depth adaptation
simultaneously without dense correspondences. Our method is
inspired by recent warping-based image manipulation methods
which have been shown successful in many different problems,
such as image/video retargeting [4], [5], video stabilization [6],
artistic perspective manipulation [7] and wide-angle projec-
tion [8], just to name a few. The key idea is that as long as
the warped results of salient regions are close to the physically-
correct constraints or user intention, the distortions introduced
in the non-salient regions are unnoticeable to the user.

Our method first detects a sparse set of robust corre-
spondence points and then optimizes the warping fields of
the image pair according to the target display parameters,
correspondence constraints, and other constraints that prevent
the results from distortions. Our method can achieve various
retargeting scenarios, including changing the display size,
aspect ratio, allowable depth range, and viewing configuration.
It can also achieve effects not supported in traditional depth
adaptation methods, such as changes to the scene depth that
do not affect its scale. In addition, by modeling the user
interaction as constraints, our system can be extended to an
interactive stereoscopic image editing system. The user can
specify the transformation of the disparity/depth values, and
our system accordingly warps the input to generate a new
stereoscopic image. The user can also select a single object
and specify its position, depth, or even explicit 3D location.
Our system automatically identifies the depths of other regions

1We focus on stereoscopic images with two views and call them stereo-
scopic images and binocular images interchangeably.
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and warps the input to match user’s intention. The resultant
system is the first content-aware system to simultaneously
allow retargeting, depth adaptation, and interactive editing of
stereoscopic images.

II. RELATED WORK

Stereoscopy and 3D Cinematography. Stereopsis was first
described by Charles Wheatstone in 1838 [9]. Along with
the development of 3D cinema, tremendous effort has been
put into better understanding the biological and physiological
foundation of stereopsis, such as the study of the stereo asym-
metry effect [2] and visual discomfort [3]. There are editing
tools for stereoscopic cinema [10], but most of them directly
manipulate the disparity maps without high-level parameters
such as eye positions. Recently, Koppal et al. proposed a
viewer-centric editor for stereoscopic cinema which allows
manipulation using stereo parameters such as interocular dis-
tance, field of view, and location [11]. However, their method
requires accurate, dense depth maps, which are usually difficult
to obtain for general footage.
Media Retargeting. The problem of 2D image and video
retargeting, that is, adapting the images or videos for displays
with different sizes and aspect ratios, has received considerable
attention these years. While traditional scaling and cropping
methods can easily cause significant distortions or informa-
tion loss, modern content-aware approaches take into account
the saliency distribution of the image and attempt to keep
the salient features uncontaminated. These approaches can
roughly be categorized as discrete approaches or continuous
approaches [12].

The seam carving method [13] is a well-known discrete
approach that uses dynamic programming to find the optimal
seam to be removed in an image according to its saliency map.
A seam is a path of pixels from top to bottom or side to side.
Rubinstein et al.improved the original method and extended
it for video resizing [14]. However, because of their discrete
nature, those approaches do not preserve structured objects
well, and lead to disturbing artifacts.

For continuous approaches, several warping-based methods
have been proposed [4], [15], [16]. These methods treat re-
targeting as a mesh deformation/warping problem; prominent
regions are constrained so that their shapes are preserved
as much as possible while less salient areas are allowed
to be distorted more. The optimal warping field is usually
obtained by minimizing certain energy functions. A direct
application of these 2D content-aware retargeting algorithms
to binocular images could, however, lead to visual discomfort
because the binocular disparity cues in the input are not
properly preserved. Moreover, stereoscopic content introduces
an additional retargeting dimension along the depth axis.
Depth Adaptation. For retargeting along the depth axis, or
controlling depth perception in the 3D content, researchers in
the stereoscopic display community have proposed a variety
of techniques, such as false eye separation, alpha-false eye
separation, image scaling, image shifting, view scaling, etc. [1]
Unfortunately, none of these methods is content-aware, and
hence they may cause large distortions on the image plane.

Because most methods use global image transformations, they
have limited control over depths or disparities (see the next
section for more details). For example, Kim suggested using
a uniform adaptation that scales the image uniformly [17].
However, this can lead to distortion of the object shape if the
horizontal and vertical scaling factors are different. Moreover,
the perceived depth range varies with the scaling factor.

Recently, Lang et al. [18] developed a nonlinear disparity
mapping system for perceived depth change of stereoscopic
videos. As does our method, their method uses image warping
with disparity constraints to manipulate input images; also,
both methods take into account depth adaptation applica-
tions. However, in terms of the problems to be solved, their
method can handle videos, but is limited to altering the
perceived depth. While our method deals only with images, it
simultaneously supports image retargeting, depth adaptation,
and interactive depth editing for stereoscopic images. More
specifically, Lang et al. focus on the central aspects of disparity
in stereoscopy and the resulting requirements for stereoscopic
content production and display, and develop several disparity
mapping operations for post-processing. However, they do
not take into account the distortions when the display aspect
ratio is changed; their depth adaptation method presumably
fails in this situation. Moreover, they do not attempt to
explicitly map between disparity values and 3D coordinates
in their formulation. This could lead to the miniaturization
or gigantism effects that will be discussed in Section III. In
contrast, our method directly modifies the perceived depths
and shapes through a more natural explicit mapping.

Technically, we have made the following contributions.
First, we provide a mapping between the perceived depths
and the disparity values, which allows for more natural depth
manipulation. Second, we show that, coupled with image
warping, it is often sufficient to use sparse but accurate feature
correspondences to alter depths or sizes. Third, we provide a
mechanism to preserve relative disparities by automatically
finding a similarity transformation of disparities.

III. BACKGROUND

In this section, we first describe the basic model for stereo
vision, in particular the relationship between perceived depth
and image disparity. We then formulate the problem of stereo-
scopic image retargeting and discuss why linear scaling and
other content-aware image retargeting methods do not solve
this problem.

A. Stereo Vision

Fig. 1 shows a typical viewing configuration for stereo-
scopic displays. Here L and R denote the left and right eye of
the viewer, respectively, e is the interocular distance between
two eyes (this averages about 6.5 cm for adults), and D is the
viewing distance to the screen. Without loss of generality, we
assume that the eyes are aligned on the x-axis of the world
coordinate and the origin is their midpoint. Note that in this
paper we only deal with the viewing of existing stereoscopic
images. Our purpose is to change the apparent depth (the
perceived depth) to the viewer and not the real depth, which



IEEE TRANSACTIONS ON MULTIMEDIA 3

( ), ,X Y Z( ),Lx y

( ),Rx y

R

L d

D

e

x

y

z

Fig. 1. The viewing configuration for stereoscopic displays.
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Fig. 2. The mapping between the disparity and the depth value. Here we
use e = 0.065 m and D = 3.2 m in Eq. 6 (dotted line).

depends on the camera. For this, only the interocular distance
matters and not the baseline distance, that is, the distance
between two cameras during image capture.

A stereoscopic display delivers two different images to two
eyes, and the viewer’s brain fuses these images to achieve
3D perception. Therefore, to have a perception of point P at
[Xp, Yp, Zp]T in 3D space, its projection is pL = [xLp , yp]T on
the left image and pR = [xRp , yp]T on the right image, where

xLp =
(
Xp +

e

2

) D

Zp
− e

2
, (1)

xRp =
(
Xp −

e

2

) D

Zp
+
e

2
, and (2)

yp = Yp
D

Zp
. (3)

The horizontal shift of pixel p between the left and right
eyes, dp = xRp − xLp , is usually denoted as disparity and is
related to its depth Zp by

dp = xRp − xLp = e

(
1− D

Zp

)
. (4)

Similarly, given the two corresponding points pL =
[xLp , yp]T and pR = [xRp , yp]T on the left and the right images,
the viewer perceives a 3D point P at [Xp, Yp, Zp]T :

[Xp, Yp, Zp]T =
e

e− dp

[
xLp + xRp

2
, yp, D

]T
. (5)

In particular, the perceived depth Zp of the point is related
to the disparity dp as

Zp =
eD

e− dp
. (6)
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Fig. 3. Image shifting versus correct depth shift. (a) Given the original
left/right images, viewers perceive the virtual magenta cube. (b) If we shift
the left and right images, the cube moves backward and scales up at the same
time. (c) To change the depth of the cube without scaling, its projections on
the images must be scaled as well.

From Eq. (6) we can see that the perceived depth is related
nonlinearly to disparity, as shown in Fig. 2. An object appears
in front of the screen when its disparity is negative and
vice versa. For a scene with objects at depths ranging from
0.8 m to infinity, the disparity values range from −0.2 m
to 0.065 m. Note that the above formulas are measured in
the physical domain, not the pixel domain. Therefore, to use
these formulas, disparities measured in the pixel domain must
be converted to the physical domain by dividing by the pixel
density (pixels per inch) of the target display.

B. Depth Adaptation

We can also see that when the image is transformed, the
disparities change subtly. When the image is stretched linearly
along the x-axis, the disparities increase linearly. However, the
disparities are unaffected by y-axis stretch. Therefore, when
the real estate of the display increases, the depth range of the
displayed image increases accordingly. In the worst case, the
object can be pushed beyond infinity (i.e. , dp > e in Eq.
(6)), leading to an incorrect and irritating 3D effect. Similarly,
when the aspect ratio changes, the disparities change accord-
ingly. These phenomena seriously hinder the distributions of
stereoscopic content across different medium: a striking 3D
effect in the cinema may look flat and boring on a 3D mobile
phone, and a 3D effect that looks good on a mobile phone
may lead to diplopia in the cinema.

Another crucial parameter of a stereoscopic display is
its comfort depth range, or comfort zone. When viewing a
stereoscopic display, our eyes fixate on the virtual 3D object,
providing the convergence cue for 3D perception. We must
focus on the screen for sharp images [19]; this lack of an
accommodation cue (change of focus) informs the brain that
the display is flat. This conflict between accommodation and
convergence cues causes visual discomfort, especially for
excessive disparity values. Thus the comfort zone is that range
of depths where the conflict can be tolerated. Depth outside
that zone can cause diplopia or blur. Because of optics prop-
erties, viewing distances, and other factors, different displays
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(a) (b) (c) (d) (e) (f)
Fig. 4. Algorithm overview. The top row shows the left view and second row shows the right view. (a) The input binocular image pair, (b) their saliency
maps, (c) quad importance maps, (d) original images with grid meshes and feature points, (e) retargeted image pair with deformed grid meshes and relocated
feature points, and (f) retargeted image pair.

have different comfort zones. Even for the same viewing
configuration, the comfort zone can vary among individuals.

For these reasons, depth adaptation is required to ensure
a vivid and enjoyable 3D experience. Given a stereoscopic
image pair captured for a specific viewing configuration, the
depth adaptation process attempts to adjust the content such
that the 3D perception delivered in another viewing configura-
tion is identical or similar to the original one. The method most
commonly used in commercial stereo displays is the image
shifting method. By horizontally shifting one of the images,
we can increase/decrease the disparities and thus the depths.
However, because the mapping between the disparity and 3D
coordinate is nonlinear, this simple method causes undesirable
miniaturization or gigantism effects, as illustrated in Fig. 3.
Thus, when image shifting is used to adjust the binocular
image, the perceived scene scale changes accordingly as an
unwanted side effect. Other methods that rely on global image
transformations have the same drawback [1].

Theoretically, for perfect depth adaptation, one should first
reconstruct the scene from the input images, transform the
scene to fit the display comfort zone, and finally re-project
the scene to obtain the new stereoscopic images. One such
example is shown in Fig. 3 (c), where we see that the projected
images of the object are properly transformed. However, this
approach requires dense scene geometry, which is typically
noisy or even unavailable. Moreover, in the scene transfor-
mation and re-projection process, the system must recover
scene content occluded in the original input, which itself is
a challenging and unsolved research problem. One solution is
to sample more data during acquisition by using multi-rigging
techniques or camera arrays [20], which allow for better
scene reconstruction. If the footage is computer-generated, it
is possible to re-render it for each display [21]. However, these
approaches are expensive for amateurs. Another solution is to
edit the stereoscopic content by manual authoring, which can
be very time-consuming. As described in the next section, our
warping-based approach can avoid these difficulties and still
generate appealing results.

IV. THE PROPOSED RETARGETING METHOD

We developed our content-aware binocular image display
adaptation algorithm based on warping-based image manipu-
lation methods [4] with two stereoscopic constraints: vertical
alignment and horizontal disparity consistency. The former
requires that corresponding points in the two views remain
horizontally aligned on the same scanline after processing, and
the latter requires that horizontal disparities are manipulated in
a consistent way. As explained in Section III, these constraints
are important for enjoyable 3D viewing experiences.

Fig. 4 illustrates the overview of our method. First, a
saliency detection algorithm is applied to measure per-pixel
importance of the image pair (Fig. 4(b)). Then, we repre-
sent each image as a grid mesh and measure the per-quad
importance by averaging and normalizing per-pixel saliency
(Fig. 4(c)). Next, we use feature extraction and matching to
obtain sparse matching pairs between the left and right images
(Fig. 4(d)). Given the retargeting parameters, we obtain the
warping functions on the mesh vertices by optimizing an
energy function (Fig. 4(e)). Finally, we interpolate the full
warping fields and the final output using bilinear interpolation
(Fig. 4(f)). We detail each step below.

Given the binocular image pair {IL, IR}, we estimate the
saliency maps {ΦL,ΦR} using a graph-based visual saliency
algorithm [22]. To build the stereoscopic constraints, we must
extract the correspondences between IL and IR. Although
we could use two-frame stereo correspondence algorithms to
estimate dense correspondences [23], unfortunately, state-of-
the-art stereo methods are computationally expensive and still
far from perfect. Thus, we only extract sparse but reliable
features from the image pair. In our system, we first detect
SIFT features [24] from both images. For each feature point
in IL, we find its best match in IR and then verify all matches
using the fundamental matrix estimated using RANSAC [25].
To ensure a better spatial distribution of features, we use non-
maximum suppression [26] to remove cluttered features. As
we will see, warped images driven by sparse correspondences
are enough to generate satisfactory 3D effects.
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A. Energy Minimization

In this subsection, we describe the energy minimization
approach we use to obtain the warping fields. We denote
the set of n matched features as F = {(fLi , fRi )|i = 1..n}.
Similar to other warping-based methods, we use a uniform grid
mesh to guide the image deformation. Let {VL,EL,QL} and
{VR,ER,QR} denote the grid meshes for both images, where
V, E and Q represent the vertex sets, edge sets, and quad face
sets, respectively. Our content-aware display adaptation algo-
rithm attempts to find two sets of deformed vertex positions
ṼL = {ṽL

i } and ṼR = {ṽR
i } for the left and right images

such that the energy function Ψ(ṼL, ṼR) is minimized. The
energy function consists of four parts: distortion energy Ψd,
line bending energy Ψb, alignment energy Ψa, and disparity
consistency energy Ψc.
Distortion energy. This term prevents important quads from
being non-uniformly scaled and is defined similarly to that
used by Wang et al. [4]. For each quad q with four edges
E(q), the distortion energy for the quad is defined as

Ψq(q) =
∑

(i,j)∈E(q)

‖ (ṽi − ṽj)− sq (vi − vj) ‖2, (7)

where sq is the scale factor defined by ṽi and vi. Please
refer to [4] for more details. The total distortion energy is the
weighted sum of the distortions of all quads in both views,
defined as

Ψd =
∑
q∈QL

$(q)Ψq(q) +
∑

q∈QR

$(q)Ψq(q), (8)

where $(q) is the quad importance of q (Fig. 4 (c)). We
initialize $(q) as the average of the saliency values of all
pixels in q and then normalize it to [ε, 1], where ε is a small
constant (we set ε = 0.05).
Line bending energy. In addition to non-uniform scaling, we
want to minimize the bending of the grid edges. That is, we
want the angle between the original edge e and deformed edge
ẽ to be as small as possible. Wang et al. [4] define a non-linear
line bending energy which is complex to minimize. Here we
propose a new linear line bending energy. Consider edge e
which has the two vertices vi and vj and its deformed version
ẽ = (ṽi, ṽj). Define vectors e = vi − vj and ẽ = ṽi − ṽj ;
we use the following term to approximate the angle between
e and ẽ:

∆(ẽ) = ‖see− ẽ‖2, (9)

where se is a scale parameter we wish to optimize. Taking
the partial derivative of ∆ with respect to se, we obtain the
optimal s∗e as

s∗e = (eTe)−1eT ẽ. (10)

Substituting s∗e back into Eq. (9) yields a function of ẽ:

∆(ẽ) = ‖see− ẽ‖2

= ‖e(eTe)−1eT ẽ− ẽ‖2

= ‖Cẽ‖2, (11)

where C = e(eTe)−1eT − I and I is the identity matrix.

e
�

A

e B C

Fig. 5. The approximated line bending energy. Wang et al. used the line
AC to approximate the arc AC. This however leads to a nonlinear term. We
instead use line AB as the approximation. The results are similar to theirs but
without nonlinear terms.

Eq. (11) can be further rewritten as a function of ṽi and
ṽj :

∆(ṽi, ṽj) =

∣∣∣∣∣∣∣∣C [ 1 0 −1 0
0 1 0 −1

] [
ṽi

ṽj

]∣∣∣∣∣∣∣∣2 . (12)

Finally, the total line bending energy can be defined as

Ψb =
∑

(i,j)∈EL

∆(ṽL
i , ṽ

L
j ) +

∑
(i,j)∈ER

∆(ṽR
i , ṽ

R
j ). (13)

We use the example shown in Fig. 5 to compare different
line bending measurements. In this example, the ideal line
bending measurement should be the angle between e and ẽ, or
equivalently the length of the arc AC. Wang et al. use the line
AC to approximate the arc, which is still a non-linear function
of ẽ. In our formulation (Eq. (9)), the parameter se allows us
move freely on the line along e. Thus, Eq. (9) essentially
finds the minimal distance from A to the line along e, giving
us the line AB. That is, we use the line AB to approximate the
arc AC, and in so doing eliminate the nonlinear terms in the
energy function. Although it is not as close as the line AC, it
is good enough for our application. Only when the arc AC is
large does the approximation deviate significantly, when the
warping result is implausible and useless anyway.

Fig. 6 shows that the proposed line bending energy yields
results similar to Wang et al.’s line bending energy. However,
it is more efficient. Because Wang et al.’s line bending energy
is nonlinear, it requires an iterative nonlinear optimization.
The number of iterations is typically around 10. The proposed
linear line bending energy requires only one iteration and is
therefore more efficient.
Alignment energy. This term is used to ensure vertical
alignment of features after deformation to avoid binocular
asymmetries. The energy Ψa is defined as

Ψa =
1

n

n∑
i=1

(
f̃Li [y]− f̃Ri [y]

)2
, (14)

where we use the notation v[y] to represent the y component
of the vector v, and similarly v[x] for the x component.

Note that the relocated feature f̃ can be expressed as a
linear combination of the vertices after deformation ṽi using
barycentric coordinates. Assume that, before deformation, the
feature f is related to the vertices vi of the quad where it is
located in as f =

∑4
i=1 βivi, where βi are the barycentric

coordinates. The relocated feature f̃ can then be written as
a linear combination of deformed vertices, f̃ =

∑4
i=1 βiṽi,

using the same barycentric coordinates. Therefore, Eq. (14)
can be written as a function of the warped vertices ṽi.



6 IEEE TRANSACTIONS ON MULTIMEDIA

(a) (b) (c) (d)

Fig. 6. Resizing results with different line bending energies. (a) Original single image. (b) Without line bending energy. (c) Wang et al.’s line bending
energy. (d) The proposed line bending energy. The proposed line bending energy gives similar results to (c), but it is linear and more efficient.

Disparity consistency energy. This term is used to ensure that
the disparities of features are manipulated in a consistent way
to avoid distortion of the perceived depths. We propose two
different disparity consistency energies, each of which is useful
for different applications. The first energy is an attempt to keep
the perceived depths identical to those before deformation.
This is useful for the situation when the image size changes
while the viewing configuration is the same. In such cases, we
would like to maintain the same disparity so that the perceived
depth is the same after resizing. For this option, the disparity
consistency energy Ψc is defined as

Ψc =
1

n

n∑
i=1

(
di − d̃i

)2
, (15)

where di = fRi [x] − fLi [x] and d̃i = f̃Ri [x] − f̃Li [x] are
the disparity values in the pixel domain before and after
deformation respectively.

In cases in which viewing configurations change, the dis-
parity values should be scaled and shifted accordingly. Thus,
for the second option, we try to maintain the relative depths of
the feature points in the input images by finding a monotonic
increasing mapping of depths. In this way, the depth order of
the objects is preserved but their absolute depths are flexible.
A trivial choice is to find a proper 1D similarity transform of
depths to maintain the relative depths. However, this makes the
energy term nonlinear to deformed features. We choose instead
to find a proper 1D similarity transformation of disparities to
maintain the relative depths:

Ψc =
1

n

n∑
i=1

(
(sddi + td)− d̃i

)2
, (16)

where sd represents the global scaling factor of disparity and
td represents the shift. Using the same approach used to obtain
the optimal s∗e in Eq. (9), we eliminate sd and td from Eq.
(16) and turn it into a function of deformed features, each of
them a linear combination of deformed vertices. After defining

matrix E and vector Ẽ as

E =


d1 1
d2 1
...

...
dn 1

 and Ẽ =


d̃1
d̃2
...
d̃n

 ,
Eq. (16) is re-written as

Ψc =
1

n

∣∣∣∣∣∣∣∣E [ sd
td

]
− Ẽ

∣∣∣∣∣∣∣∣2 , (17)

and the optimal scale s∗d and shift t∗d are[
s∗d
t∗d

]
= (ETE)−1ET Ẽ. (18)

By substituting s∗d and t∗d back into Eq. (17), the energy Ψc

can be written as a function of deformed features:

Ψc =
1

n
‖BAf̃‖2, (19)

where B = E(ETE)−1ET − I, A = [−I|I] and

f̃ =



f̃L1 [x]
...

f̃Ln [x]

f̃R1 [x]
...

f̃Rn [x]


.

Again, f̃ can be rewritten in terms of the deformed vertices.
Note that the optimal scale and shift can be integrated into the
energy function and determined automatically by optimization.

The final energy Ψ is the sum of the four defined energy
terms:

Ψ = Ψd + λbΨb + λaΨa + λcΨc. (20)

In our experiments, we set λb = 1, λa = 10, and λc =
500. Our energy function is an interplay between 2D shape
conservation and depth preservation. Note that these terms
are all functions of the deformed grid vertices ṽL

i and ṽR
i .

Minimizing Ψ corresponds to solving a least-squares problem
and leads to a linear system involving only ṽL

i and ṽR
i . By
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Main window (Single view) Bird’s eye view

Side view

Depth distribution

Comfort zone
(optional input)User drawing

Bounding box of selected features

Center of selected features

Original distribution

Resulting 
distribution

Fig. 7. Screenshots of the user interface for stereoscopic image editing. The left part shows the image, the side view, and bird’s eye view of feature points
and depth distributions. The right part shows those of the edited results.

finding the sets of deformed vertices ṼL and ṼR which
minimize Ψ and satisfy the boundary conditions [4], we warp
both images to the target resolution while maintaining the 3D
shapes of important objects.

V. INTERACTIVE STEREOSCOPIC IMAGE EDITING

Our framework can be extended to interactively edit depths
of the whole scene or even a region in images. Note that it is
more natural to edit depths than disparities. Thus, we use the
formulas laid out in Section III to convert between depths and
disparities (Eq. (1–3) and Eq. (5)). In this section we describe
first our user interface design and then how to incorporate user
edits into the energy defined in the previous section.

A. User Interface Design

We developed a graphical user interface (GUI) for inter-
active and direct manipulation of the stereoscopic images.
Screenshots of our GUI are shown in Fig. 7. The main window
shows the editing image, and can freely switch between the
original input and the edited result. Depending on the display
capability, it can also switch to the left view, the right view,
the anaglyph image, and the binocular image, which allows
the user to view the 3D effect during editing.

The user simply drags the image boundary to adjust the
size and aspect ratio, and the system displays the retargeting
image interactively. We provide several different visualization
methods for depth adaptation or adjustment. Our GUI shows
the 3D spatial distribution of the feature points from the side
and from the top. It also displays the comfort zone, and the
sorted depth distribution of feature points. The comfort zone
is an optional input which is found either in the specification
of the target display or is determined empirically.

We provide many options for editing depths. As the first
option, the user can either specify a similarity transformation
or directly draw the desired target depth distribution in the
depth distribution view. Our system automatically calculates
the resulting disparity value for each feature point. For the
second option, the user can select an area by drawing a
bounding polygon and edit its 3D position and scaling factor.
In all these editing operations, our system can generate the

warped result and update the disparity distribution and feature
locations immediately. For example, in Fig. 7, we select the
horses, and move them closer to the screen while keeping
the background mountains fixed. The user can see this editing
is performed correctly, as indicated in the feature and depth
distributions.

B. Modified Energy

As mentioned, for the first option, the user first specifies the
desired depth transformations for all features. This can be done
by specifying 1) a 1D similarity transformation of depths, or
2) the target depth distribution. The system then converts the
depths to the corresponding disparities and incorporates them
into the disparity consistency energy Ψc.

To illustrate, assume that a similarity transformation is used.
First, the disparities di of all features F = {fi} are converted
from the pixel domain to the physical domain. Next, the depths
Zi are calculated from their disparities di using Eq. (6), Zi =
eD
e−di

. The target depth Ẑi is calculated as Ẑi = szZi + tz and

then converted back as the target disparity d̂i = e
(

1− D
Ẑi

)
using Eq. (4). After converting d̂i from the physical domain
to the pixel domain, the disparity consistency energy is then
modified using the target disparities as

Ψc =
1

n

n∑
i=1

(
d̃i − d̂i

)2
. (21)

If the target depth distribution is specified, the target depths
Ẑi are given by the user and the resulting procedure is similar.

Our method also allows users to change the size and position
of the object. First, the user selects features on the object
by drawing a closed region. The user can then input the 3D
scaling factor (sx, sy, sz) and translations (tx, ty, tz) for this
object. The set of selected features F̂ = (fLi , f

R
i ) is projected

back to its 3D position (Xi, Yi, Zi) using Eq. (5). Scaling and
translating the 3D position accordingly yields the target 3D
position X̂i, Ŷi, Ẑi, which we then project onto both views
to obtain f̂Li and f̂Ri using Eqs (1)–(3). For the remaining
features, either Eq. (15) or (16) is used as the constraint.
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(a) (b) (c)

(d) (e) (f)
Fig. 8. Resizing results with different aspect ratios. (a) The original
stereoscopic image, resolution 472×425. (b) and (c): The results using linear
scaling. (d) The saliency map of the left image. (e) and (f): Our results.

Assuming that Eq. (16) is used, the disparity consistency
energy is then modified as

Ψc =
1

|F̂|

∑
i∈F̂

(
‖f̃Li − f̂Li ‖2 + ‖f̃Ri − f̂Ri ‖2

)
+

λ

|F \ F̂|

∑
i∈F\F̂

(
(sddi + td)− d̃i

)2
. (22)

λ is the weight between these two parts of energy (we set
λ = 0.1). Finally, Ψ with the modified Ψc is minimized to
deform the images to match our constraints in a content-aware
manner.

VI. EXPERIMENTAL RESULTS

We implemented our system on a PC with a 2.39GHz Pen-
tium Duo CPU and 3.5GB RAM. Our system is very efficient
since it only involves linear system solving. Furthermore, the
matrix in the linear system is fixed and its factorization can
be pre-computed. Thus, retargeting to different sizes only
requires one back substitution to solve the linear system.
For a 480×600 stereoscopic image with quad size 20×20,
factorizing a matrix typically takes less than 2 seconds, and a
back substitution takes 0.0086 second. Overall, our retargeting
system takes 0.018 second for one retargeting operation, that
is, achieving real-time editing with 55 FPS.

For our experiments, we collected binocular images from
the stereoscopic image repository on Flickr. Limited by the
medium, the results shown in this section are presented as
red/cyan color anaglyph images; they are best viewed under
their original resolutions. For user studies, a Samsung 2233 RZ
22” 3D monitor with shuttered glasses and an Nvidia GeForce
3D Vision Solution were used for the best viewing results.

A. Stereoscopic Image Resizing

In Fig. 8, we resize the original image pair to two different
aspect ratios. The depths are preserved by using Eq. (16) as
the disparity consistency energy. Compared with the traditional
scaling method, our results do not distort the people in the
image or alter their relative perceived depths.

In Fig. 9, we show the resizing results using different dis-
parity consistency energies. While we could keep the absolute

(a) (b) (c) (d)
Fig. 9. Resizing results using different disparity consistency energy functions.
(a) The original 444×610 stereoscopic image. Results of (b) traditional
scaling, (c) our method using Eq. (15), and (d) Eq. (16) as Ψc.

depths identical to the original ones using Eq. (15) as shown in
Fig. 9(c), because this enforces an identity transformation of
disparities, there would be more distortions in the non-salient
regions, such as at the image boundary. On the other hand,
if we only constrain the relative depths using Eq. (16), the
additional degree of freedom would allow us to better preserve
the more prominent objects, as shown in Fig. 9(d). However,
because of the unconstrained depth range, the objects might
end up outside of the comfort zone of the display. Therefore,
although Eq. (16) generally leads to better content-aware
results, Eq. (15) is a better choice for large resizing factors.

In Fig. 10, we compare our method with linear scaling and
with the optimized scale-and-stretch (OSS) method [4]. With
linear scaling, the image is stretched uniformly and features
are kept aligned horizontally after resizing, thus maintaining
the required binocular symmetry. However, it seriously distorts
the object shapes and scales up all disparities. Some objects
may go beyond the comfort zone and cause diplopia. With
the OSS method, while the image is resized to the target
resolution in a content-aware manner, the resulting unwanted
vertical parallax causes viewing discomfort. In addition, the
original absolute or relative horizontal disparity values are
totally destroyed, which leads to incorrect and inconsistent
3D perception. Our method yields the best results by jointly
performing image resizing and depth adaptation in a content-
aware manner.

B. Depth Adaptation and Editing

In Fig. 11, by specifying different scale factors for feature
depths, we retarget the binocular image to different aspect
ratios and suppress or expand the depth range of the scene
using the procedure in Section V. In this example, the depths
of feature points are calculated from their disparities using
Eq. (6); e and D are set to 6.5 cm and 35 cm, respectively. In
Fig. 12, by specifying different 1D similarity transformations
of depths, we can put the clouds in the image at different
Z-positions relative to the screen.

In Fig. 13, the user edits the position and shape of the boat,
and our system generates the result by using the modified
disparity consistency energy (Eq. (22)). In Fig. 13, the boat is
placed at different depths: (b) in front of the screen and (c)
behind the screen. Because we specify a rigid transformation
to 3D coordinates of features on the boat, our method does not
change the object size as the image shifting method does, as
illustrated in Fig. 3(b). Note that although the boat in Fig. 13(c)
looks smaller than the boat in Fig. 13(b), both actually have
the same 3D size. The boat in Fig. 13(b) looks bigger because
it has been edited to be closer to the viewer and thus has a
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Fig. 10. Comparisons among different retargeting approaches. (a) The original 472×545 stereoscopic image pair. We expand its width to 1.5x using (b)
linear scaling, (c) OSS, and (d) the proposed method. The disparities of the feature points are shown in (e). Note that our method preserves most disparity
values (the distribution overlaps with the original one) without causing any noticeable distortion. The feature points and their disparities are shown in (f)–(h)
for the three methods in (b)–(d). Note the expanded horizontal disparities in (f) and the vertical parallax in (g).

(a) (b) (c) (d)
Fig. 13. Results of depth adaptation by user editing. The boat is placed at different depths. The first row presents the results as red/cyan images; and the
second row displays the right-view images with features and disparities. (a) The original 476×555 stereoscopic image. All objects are behind the screen. (b)
The boat is moved to the front of the screen (note that sign changes of disparities), and (c) behind the screen. (d) The depth range of the boat is tripled.

bigger 2D projection on the image plane. Note that for this
effect, the projection of the boat on the image plane must
change with its depth, leading to the gradual scale change
in Fig 13(b,c). In Fig. 13(d), the boat is stretched along the
Z-axis by specifying a new depth range while its X and Y
coordinates are fixed: the boat is essentially prolonged in shape
while keeping its position. Note that because we use Eq. (16)
to preserve relative disparities in the image, the depths of
background objects change accordingly. The use of Eq. (15)
allows us to modify the location of the boat while fixing all
other objects.

C. User Study

Since it is difficult to define an objective evaluation for
stereoscopic retargeting, we performed two subjective user
studies to evaluate the performance of our method. The target
for the first user study was image resizing and that for the
second was depth editing. 24 subjects (13 male, 11 female,
average age 24.7) with normal stereoscopic vision were invited
to participate in the user study. For both studies, each subject
was presented with eight test cases.
Image resizing. Since there were no other content-aware
binocular image resizing methods, we compared it to the
naı̈ve extension of Wang et al.’s method (OSS) by applying
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(a) (b)

(c) (d)

(e) (f)
Fig. 11. Resizing results of different depth ranges by user editing. (a) The
original 574×473 input. (b) The saliency map of the left image, and the
results of (c) traditional scaling, (d) our method which maintains the absolute
depths, (e) our method which suppresses the depth range to a half, and (f) our
method which expands the depth range to be 1.5x. Note that less prominent
areas are distorted more to complete the required depth range change in more
prominent areas.
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Fig. 12. Depth adaptation results. (a) The original 484×680 stereoscopic
image. (b) The disparity distributions. (c) The depths are scaled down. (d)
The depths are scaled up.

(1) 476×549 (2) 456×547 (3) 454×758 (4) 574×473

(5) 472×649 (6) 472×691 (7) 414×760 (8) 472×680
Fig. 14. The 8 test cases (left images) used in the image resizing user study.
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Fig. 15. The disparity ranges of 8 test cases in the image resizing user study.
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Fig. 16. The voting result for each image in the image resizing user study.

it independently on the left and right images. Subjects were
asked to choose between the results of our method and OSS,
taking into account viewing comfort and depth perception. In
this user study, our method used in all cases the first kind of
disparity consistency energy. All eight images were expanded
on the x-axis to 150% of the original width. Fig. 14 shows
the original images and their dimensions, and Fig. 15 shows
their disparity ranges.

Applying OSS independently likely causes binocular asym-
metries, including unwanted vertical parallax, inconsistent
horizontal disparities, and excessive disparity, all of which
can lead to uncomfortable visual phenomena such as blur
and diplopia. Our method minimizes binocular asymmetries
by taking into account stereoscopic constraints.

Subjects found it difficult to identify a superior method
for 18 of the total 192 comparisons. Of the remaining 174
comparisons (90.6%) in which subject preferences were clear-
cut, 160 votes (91.9%) favored the results of our method over
those of OSS. Fig. 16 shows the distribution of votes for
each test case. In general, the proposed method significantly
outperformed OSS for cases with large depth ranges such as
cases #3, #6, #7, and #8.
Depth editing. Fig. 17 shows the eight test cases used in
the user study, and Fig. 18 shows their disparity ranges. In
this study, the input depths were adapted using the procedure
described in Section V. The depths of all features were
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(1) 594×578 (2) 470×591 (3) 417×756 (4) 470×612

(5) 470×589 (6) 540×369 (7) 452×550 (8) 456×754
Fig. 17. The 8 test cases (left images) used in the depth editing user study.
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Fig. 18. The disparity ranges of 8 test cases in the depth editing user study.
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Fig. 19. The voting result for each image in the depth editing user study.

calculated from their disparities using Eq. (6) where e and D
were set to 6.5 cm and 35 cm, respectively. Then, we applied
the following 1D similarity transformation for depths Zi

Ẑi = 2Zi − Zmax, (23)

where Zmax was the maximum depth of all features. This
linear mapping kept the maximum depth the same, but dou-
bled the depth range; this manipulation of the depth range
effectively drew the foreground area closer to the user.

Subjects were asked to answer the question “Which image’s
foreground area looks closer to you?” Of the 192 comparisons,
16 were indecisive. Of the remaining 176 comparisons, 156
votes (88.6%) correctly recognized the images with closer
foreground areas. Fig. 19 shows the distribution of votes for
each test case. Note that depth range clearly influences whether
the user can correctly recognize the depth editing. For exam-
ple, case #5 in Fig. 17 has the narrowest disparity range and
hence the worst recognition result. This is because the depths
did not change as much as in other examples. In addition, other
contextual factors such as perspective and occlusion cues affect
human depth perception. This also explains why some were
misrecognized. Nevertheless, in this evaluation more than 80%
of the depth editing results were considered successful.

D. Discussions and Limitations

Our method has a few limitations. First, it shares the
limitations that apply to all warping-based 2D retargeting

(a) (b) (c)
Fig. 20. An unsuccessful case. (a) The original stereoscopic image. (b) The
result after increasing the depth range. (c) The resultant left view with the
deformed grid mesh and features.

methods. Thus, it may fail to preserve shapes of prominent
structures if they are not well aligned with the mesh. Second,
the performance of our algorithm is limited by the accuracy
of the saliency map and the number of correct stereo cor-
respondences. However, the continuous advance of saliency
detection, feature matching, and stereo matching algorithms
over time will no doubt alleviate this problem. Third, even
with dense, per-pixel stereo correspondences, the warping-
based approach inevitably introduces distortions around depth
discontinuities. However, we found that when the degree
of disparity change is moderate, and when no structuring
elements appear around the discontinuity, these artifacts are
hardly noticeable. Fourth, our method is not well-suited to
scenes that contain objects with transparency or thin structures
(such as smoke, glass, or hair) because feature extraction and
matching in such cases is not reliable.

Fig. 20 shows an example where our method does not
perform well. While the lamp pole is a thin structure and
no features are associated with it, the lamp itself has a few
features and the flowers on the bottom have many. In this
example, we attempt to scale up the depth range to bring the
flowers closer. Thus, the lamp remains where it is and the
flowers move closer to increase the range. Because there are
no features associated with the pole, it is not considered to
be at the same depth as the lamp. Thus, with no constraints
on the pole, the smooth warping field ensures that its top
stays with the deeper lamp and its bottom goes with the
shallower flowers, thereby curving the pole. This problem is
related to feature extraction for thin structures and to the depth
discontinuity mentioned above.

VII. CONCLUSION

In this paper, we have presented an efficient warping-
based method for stereoscopic image retargeting. We have
formulated it as an energy minimization problem based on
sparse stereo correspondences and their disparity constraints
for obtaining the optimal warping fields for the images, and
have extended it to interactive stereoscopic image editing.
Without explicit scene reconstruction and occlusion filling, our
method still generates appealing results. We conducted two
user studies to show that our method is effective for many
different retargeting scenarios.

We have only used feature matches as constraints to main-
tain symmetry and consistency between views. Although this
is sufficient in most cases, our system would be more robust
and convenient if a dense depth map were available. Such
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depth maps also facilitate better ROI detection that takes depth
into account [27]. People are often interested in the regions
that pop out from the screen, and typically pay less attention to
background objects. Also, as autostereoscopic displays often
need more than two views, usually calling for eight to sixteen
views, extending our method to handle multi-view images or
light fields would be an interesting research venue. Similar to
2D image retargeting, it is natural to extend our method to
stereoscopic video display adaptation, where additional depth
cues such as motion parallax must be taken into account.
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