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Features



Features

• Also known as interesting points, salient points 
or keypoints. Points that you can easily point 
out their correspondences in multiple images 
using only local information.

?



Desired properties for features

• Distinctive: a single feature can be correctly 
matched with high probability.

• Invariant: invariant to scale, rotation, affine, 
illumination and noise for robust matching 
across a substantial range of affine distortion, 
viewpoint change and so on. That is, it is 
repeatable.



Applications

• Object or scene recognition
• Structure from motion
• Stereo
• Motion tracking
• …



Components

• Feature detection locates where they are
• Feature description describes what they are
• Feature matching decides whether two are the 

same one



Harris corner detector



Moravec corner detector (1980)

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity



Moravec corner detector

flat



Moravec corner detector

flat



Moravec corner detector

flat edge



Moravec corner detector

flat edge corner
isolated point
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Moravec corner detector

Change of intensity for the shift [u,v]:

window 
function

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}

intensityshifted 
intensity



Problems of Moravec detector

• Noisy response due to a binary window function
• Only a set of shifts at every 45 degree is 

considered
• Only minimum of E is taken into account

Harris corner detector (1988) solves these 
problems.



Harris corner detector

Noisy response due to a binary window function
Use a Gaussian function



Harris corner detector

Only a set of shifts at every 45 degree is considered
Consider all small shifts by Taylor’s expansion



Harris corner detector

Only a set of shifts at every 45 degree is considered
Consider all small shifts by Taylor’s expansion
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Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear
approximation:

, where M is a 22 matrix computed from image derivatives:
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Harris corner detector (matrix form)
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Harris corner detector

Only minimum of E is taken into account
A new corner measurement by investigating the 
shape of the error function

represents a quadratic function; Thus, we 
can analyze E’s shape by looking at the property 
of M

MuuT



Harris corner detector

High-level idea: what shape of the error function 
will we prefer for features?
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Quadratic forms

• Quadratic form (homogeneous polynomial of 
degree two) of n variables xi

• Examples

=



Symmetric matrices

• Quadratic forms can be represented by a real 
symmetric matrix A where



Eigenvalues of symmetric matrices

Brad Osgood



Eigenvectors of symmetric matrices



Eigenvectors of symmetric matrices
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Harris corner detector

Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(max)-1/2

(min)-1/2

Ellipse E(u,v) = const
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Visualize quadratic functions
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Visualize quadratic functions
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Visualize quadratic functions
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Visualize quadratic functions
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Harris corner detector

1

2

Corner
1 and 2 are large,
1 ~ 2;
E increases in all 
directions

1 and 2 are small;
E is almost constant 
in all directions

edge 
1 >> 2

edge 
2 >> 1

flat

Classification of 
image points 
using eigenvalues 
of M:



Harris corner detector

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)
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Harris corner detector



Another view



Another view



Another view



Summary of Harris detector

1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of 
derivatives at each pixel
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Summary of Harris detector

4. Define the matrix at each pixel 

5. Compute the response of the detector at each 
pixel

6. Threshold on value of R; compute nonmax 
suppression.
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Harris corner detector (input)



Corner response R



Threshold on R



Local maximum of R



Harris corner detector



Harris detector: summary

• Average intensity change in direction [u,v] can be 
expressed as a bilinear form: 

• Describe a point in terms of eigenvalues of M:
measure of corner response

• A good (corner) point should have a large intensity 
change in all directions, i.e. R should be large 
positive
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Now we know where features are

• But, how to match them?
• What is the descriptor for a feature? The 

simplest solution is the intensities of its spatial 
neighbors. This might not be robust to 
brightness change or small shift/rotation. 

( )

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9



Harris detector: some properties
• Partial invariance to affine intensity change

  Only derivatives are used => 
invariance to intensity shift I  I + b

  Intensity scale: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains 
the same

Corner response R is invariant to image rotation



Harris Detector is rotation invariant

Repeatability rate:
# correspondences

# possible correspondences



Harris Detector: Some Properties

• But: not invariant to image scale!

All points will be 
classified as edges

Corner !



Harris detector: some properties

• Quality of Harris detector for different scale 
changes

Repeatability rate:
# correspondences

# possible correspondences



Scale invariant detection

• Consider regions (e.g. circles) of different sizes 
around a point

• Regions of corresponding sizes will look the 
same in both images



Scale invariant detection

• The problem: how do we choose corresponding 
circles independently in each image?

• Aperture problem



SIFT 
(Scale Invariant Feature Transform)



SIFT
• SIFT is an carefully designed procedure with 

empirically determined parameters for  the 
invariant and distinctive features.



SIFT stages:

• Scale-space extrema detection
• Keypoint localization
• Orientation assignment
• Keypoint descriptor

( )
local descriptor 

detector

descriptor

A 500x500 image gives about 2000 features



1. Detection of scale-space extrema

• For scale invariance, search for stable features 
across all possible scales using a continuous 
function of scale, scale space.

• SIFT uses DoG filter for scale space because it is 
efficient and as stable as scale-normalized 
Laplacian of Gaussian.



DoG filtering

Convolution with a variable-scale Gaussian

Difference-of-Gaussian (DoG) filter

Convolution with the DoG filter



Scale space
 doubles for 
the next octave

K=2(1/s)

Dividing into octave is for efficiency only.



Detection of scale-space extrema



Keypoint localization

X is selected if it is larger or smaller than all 26 neighbors



Decide scale sampling frequency

• It is impossible to sample the whole space, 
tradeoff efficiency with completeness.

• Decide the best sampling frequency by 
experimenting on 32 real image subject to 
synthetic transformations. (rotation, scaling, 
affine stretch, brightness and contrast change, 
adding noise…)



Decide scale sampling frequency



Decide scale sampling frequency

s=3 is the best, for larger s, too many unstable features

for detector, 
repeatability

for descriptor, 
distinctiveness



Pre-smoothing

 =1.6, plus a double expansion



Scale invariance



2. Accurate keypoint localization

• Reject points with low contrast (flat) and 
poorly localized along an edge (edge)

• Fit a 3D quadratic function for sub-pixel 
maxima
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2. Accurate keypoint localization

• Reject points with low contrast (flat) and 
poorly localized along an edge (edge)

• Fit a 3D quadratic function for sub-pixel 
maxima
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2. Accurate keypoint localization

• Taylor series of several variables

• Two variables
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Accurate keypoint localization

• Taylor expansion in a matrix form, x is a vector, 
f maps x to a scalar 
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2D illustration



2D example
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Derivation of matrix form
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Derivation of matrix form
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Derivation of matrix form
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Derivation of matrix form
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Derivation of matrix form
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Accurate keypoint localization

• x is a 3-vector
• Change sample point if offset is larger than 0.5
• Throw out low contrast (<0.03)



Accurate keypoint localization

• Throw out low contrast 03.0|)ˆ(| xD
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Eliminating edge responses

r=10

Let

Keep the points with 

Hessian matrix at keypoint location



Maxima in D



Remove low contrast and edges



Keypoint detector

233x89 832 extrema

729 after con-
trast filtering

536 after cur-
vature filtering



3. Orientation assignment

• By assigning a consistent orientation, the keypoint 
descriptor can be orientation invariant.

• For a keypoint, L is the Gaussian-smoothed image 
with the closest scale,

orientation histogram (36 bins)

(Lx, Ly)

m

θ



Orientation assignment



Orientation assignment



Orientation assignment



Orientation assignment

σ=1.5*scale of 
the keypoint



Orientation assignment



Orientation assignment



Orientation assignment
accurate peak position 
is determined by fitting



Orientation assignment

0 2

36-bin orientation histogram over 360˚, 
weighted by m and 1.5*scale falloff
Peak is the orientation
Local peak within 80% creates multiple 

orientations
About 15% has multiple orientations 

and they contribute a lot to stability



SIFT descriptor



4. Local image descriptor
• Thresholded image gradients are sampled over 16x16 

array of locations in scale space
• Create array of orientation histograms (w.r.t. key 

orientation)
• 8 orientations x 4x4 histogram array = 128 dimensions
• Normalized, clip values larger than 0.2, renormalize

σ=0.5*width



Why 4x4x8?



Sensitivity to affine change



Feature matching

• for a feature x, he found the closest feature x1
and the second closest feature x2. If the 
distance ratio of d(x, x1) and d(x, x2) is smaller 
than 0.8, then it is accepted as a match. 



SIFT flow



Maxima in D



Remove low contrast



Remove edges



SIFT descriptor





Estimated rotation

• Computed affine transformation from rotated 
image to original image:
0.7060   -0.7052  128.4230
0.7057    0.7100 -128.9491

0            0      1.0000

• Actual transformation from rotated image to 
original image:
0.7071   -0.7071  128.6934
0.7071    0.7071 -128.6934

0            0      1.0000



SIFT extensions



PCA



PCA-SIFT

• Only change step 4
• Pre-compute an eigen-space for local gradient 

patches of size 41x41
• 2x39x39=3042 elements
• Only keep 20 components
• A more compact descriptor



GLOH (Gradient location-orientation histogram)

17 location bins
16 orientation bins
Analyze the 17x16=272-d 
eigen-space, keep 128 components

SIFT is still considered the best.

SIFT



Multi-Scale Oriented Patches
• Simpler than SIFT. Designed for image matching. 

[Brown, Szeliski, Winder, CVPR’2005]
• Feature detector

– Multi-scale Harris corners
– Orientation from blurred gradient
– Geometrically invariant to rotation

• Feature descriptor
– Bias/gain normalized sampling of local patch (8x8)
– Photometrically invariant to affine changes in 

intensity



Multi-Scale Harris corner detector

• Image stitching is mostly concerned with 
matching images that have the same scale, so 
sub-octave pyramid might not be necessary.

2s



Multi-Scale Harris corner detector

smoother version of gradients

Corner detection function:

Pick local maxima of 3x3 and larger than 10



Keypoint detection function

Experiments show roughly 
the same performance.



Non-maximal suppression

• Restrict the maximal number of interest points, 
but also want them spatially well distributed

• Only retain maximums in a neighborhood of 
radius r.

• Sort them by strength, decreasing r from 
infinity until the number of keypoints (500) is 
satisfied.



Non-maximal suppression



Sub-pixel refinement



Orientation assignment

• Orientation = blurred gradient



Descriptor Vector
• Rotation Invariant Frame

– Scale-space position (x, y, s) + orientation ()



MSOP descriptor vector
• 8x8 oriented patch sampled at 5 x scale. See TR 

for details. 
• Sampled from                                     with 

spacing=5 

8 pixels



MSOP descriptor vector
• 8x8 oriented patch sampled at 5 x scale. See TR 

for details. 
• Bias/gain normalisation:  I’ = (I – )/
• Wavelet transform

8 pixels



Detections at multiple scales



Summary

• Multi-scale Harris corner detector
• Sub-pixel refinement
• Orientation assignment by gradients
• Blurred intensity patch as descriptor



Feature matching
• Exhaustive search

– for each feature in one image, look at all the other 
features in the other image(s)

• Hashing
– compute a short descriptor from each feature vector, 

or hash longer descriptors (randomly)

• Nearest neighbor techniques
– k-trees and their variants (Best Bin First)



Wavelet-based hashing
• Compute a short (3-vector) descriptor from an 

8x8 patch using a Haar “wavelet”

• Quantize each value into 10 (overlapping) bins 
(103 total entries)

• [Brown, Szeliski, Winder, CVPR’2005]



Nearest neighbor techniques
• k-D tree

and

• Best Bin
First
(BBF)

Indexing Without Invariants in 3D Object Recognition, Beis and Lowe, PAMI’99



Applications



Recognition

SIFT Features



3D object recognition



3D object recognition



Office of the past

Video of desk Images from PDF

Track & 
recognize

T T+1

Internal representation

Scene Graph

Desk Desk



…
> 5000
images

change in viewing angle

Image retrieval



22 correct matches

Image retrieval



…
> 5000
images

change in viewing angle
+ scale change

Image retrieval



Robot location



Robotics: Sony Aibo

SIFT is used for
 Recognizing 

charging station
 Communicating 

with visual cards
 Teaching object 

recognition

 soccer



Structure from Motion

• The SFM Problem
– Reconstruct scene geometry and camera motion 

from two or more images

Track
2D Features Estimate

3D Optimize
(Bundle Adjust) Fit Surfaces

SFM Pipeline



Structure from Motion

Poor mesh Good mesh



Augmented reality



Automatic image stitching



Automatic image stitching



Automatic image stitching



Automatic image stitching



Automatic image stitching
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