Features

Digital Visual Effects Yung-Yu Chuang

with slides by Trevor Darrell Cordelia Schmid, David Lone, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim

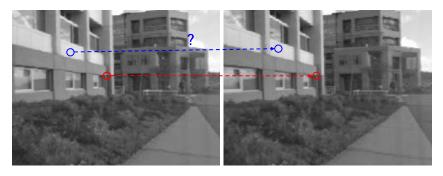
Features

Outline

- Features
- Harris corner detector
- SIFT
- Extensions
- Applications

Features

 Also known as interesting points, salient points or keypoints. Points that you can easily point out their correspondences in multiple images using only local information.



Desired properties for features

- Distinctive: a single feature can be correctly matched with high probability.
- Invariant: invariant to scale, rotation, affine, illumination and noise for robust matching across a substantial range of affine distortion, viewpoint change and so on. That is, it is repeatable.

Applications

- Object or scene recognition
- Structure from motion
- Stereo
- Motion tracking
- ...

Components

DigiVFX

- Feature detection locates where they are
- Feature description describes what they are
- Feature matching decides whether two are the same one

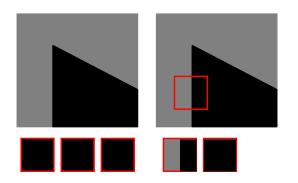
Harris corner detector

Moravec corner detector (1980)

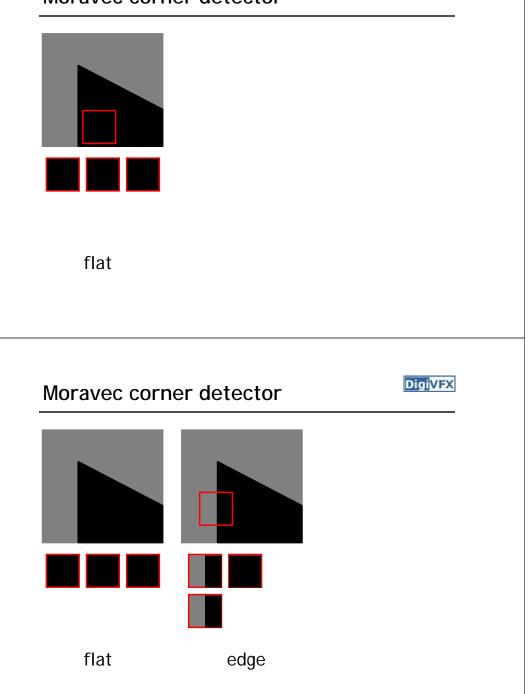
DigiVFX

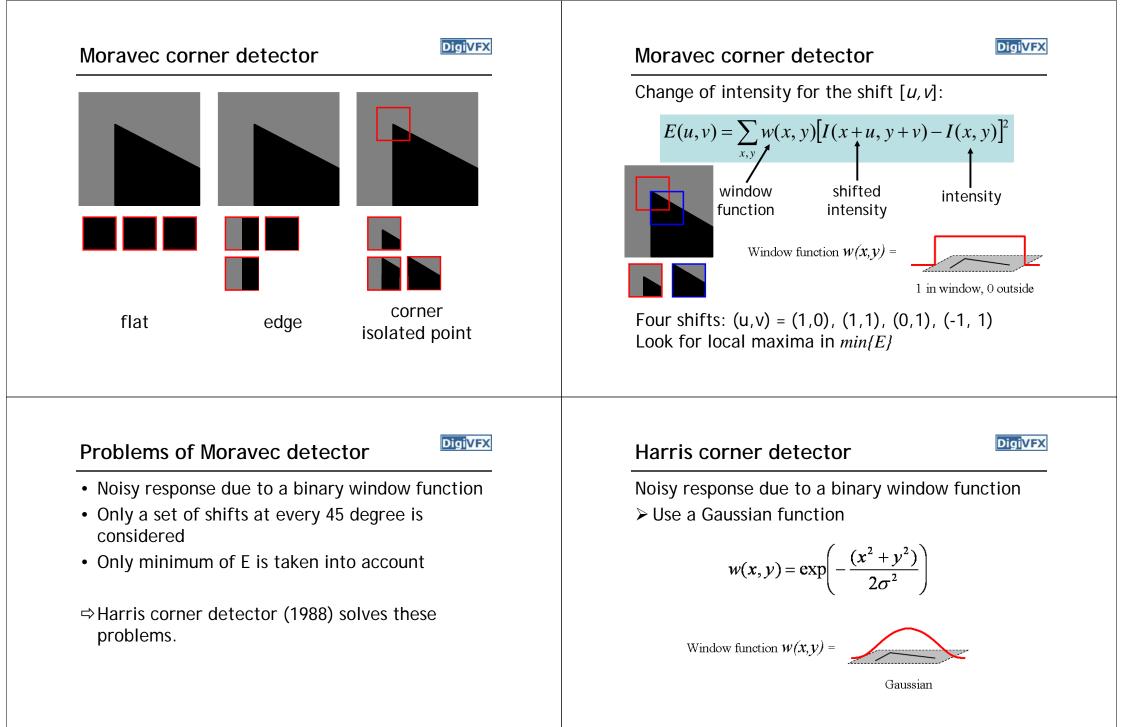
- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

Moravec corner detector



Moravec corner detector





Harris corner detector

DigiVFX

Only a set of shifts at every 45 degree is considered ➤ Consider all small shifts by Taylor's expansion

Harris corner detector

Only a set of shifts at every 45 degree is considered

> Consider all small shifts by Taylor's expansion

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u, y+v) - I(x,y)]^2$$

= $\sum_{x,y} w(x,y) [I_x u + I_y v + O(u^2, v^2)]^2$
 $E(u,v) = Au^2 + 2Cuv + Bv^2$
 $A = \sum_{x,y} w(x,y) I_x^2(x,y)$
 $B = \sum_{x,y} w(x,y) I_y^2(x,y)$
 $C = \sum_{x,y} w(x,y) I_x(x,y) I_y(x,y)$

Harris corner detector

DigiVFX

Equivalently, for small shifts [u, v] we have a *bilinear* approximation:

 $E(u,v) \cong \begin{bmatrix} u & v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$

, where \boldsymbol{M} is a 2×2 matrix computed from image derivatives:

$$\mathbf{M} = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Harris corner detector (matrix form)

$$E(\mathbf{u}) = \sum_{\mathbf{x}_0 \in W(\mathbf{p})} W(\mathbf{x}_0) | I(\mathbf{x}_0 + \mathbf{u}) - I(\mathbf{x}_0) |^2$$
$$| I(\mathbf{x}_0 + \mathbf{u}) - I(\mathbf{x}_0) |^2$$
$$= \left| \left(I_0 + \frac{\partial I}{\partial \mathbf{x}}^T \mathbf{u} \right) - I_0 \right|^2$$
$$= \left| \frac{\partial I}{\partial \mathbf{x}}^T \mathbf{u} \right|^2$$
$$= \mathbf{u}^T \frac{\partial I}{\partial \mathbf{x}} \frac{\partial I}{\partial \mathbf{x}}^T \mathbf{u}$$
$$= \mathbf{u}^T \mathbf{M} \mathbf{u}$$

Harris corner detector

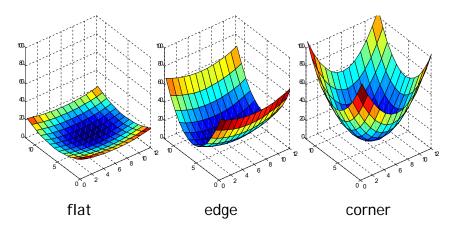
DigiVFX

Only minimum of *E* is taken into account >A new corner measurement by investigating the shape of the error function

 $\mathbf{u}^{T}\mathbf{M}\mathbf{u}$ represents a quadratic function; Thus, we can analyze E's shape by looking at the property of \mathbf{M}

Harris corner detector

High-level idea: what shape of the error function will we prefer for features?



Quadratic forms

DigiVFX

 Quadratic form (homogeneous polynomial of degree two) of *n* variables x_i

$$\sum_{\substack{i=1\\j\leq j}}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j$$

• Examples

$$4x_1^2 + 5x_2^2 + 3x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

= $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

Symmetric matrices

- Digi<mark>VFX</mark>
- Quadratic forms can be represented by a real symmetric matrix **A** where $a_{ij} = \begin{cases} c_{ij} & \text{if } i = j, \\ \frac{1}{2}c_{ij} & \text{if } i < j, \\ \frac{1}{2}c_{ji} & \text{if } i < j, \\ \frac{1}{2}c_{ji} & \text{if } i > j. \end{cases}$ $\sum_{\substack{i=1 \ i \leq j}}^{n} \sum_{i=1}^{n} c_{ij}x_ix_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j$ $= (x_1 \dots x_n) \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $= \mathbf{x}^t A \mathbf{x}$

Eigenvalues of symmetric matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ **fact:** the eigenvalues of A are real

suppose
$$Av = \lambda v, v \neq 0, v \in \mathbf{C}^n$$

 $\overline{v}^T A v = \overline{v}^T (Av) = \lambda \overline{v}^T v = \lambda \sum_{i=1}^n |v_i|^2$
 $\overline{v}^T A v = \overline{(Av)}^T v = \overline{(\lambda v)}^T v = \overline{\lambda} \sum_{i=1}^n |v_i|^2$
we have $\lambda = \overline{\lambda}, i.e., \lambda \in \mathbf{R}$
(hence, can assume $v \in \mathbf{R}^n$)

Brad Osgood

DigiVFX

 $\mathbf{x}^{\mathrm{T}}\mathbf{x} = 1$

Eigenvectors of symmetric matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ fact: there is a set of orthonormal eigenvectors of A $A = Q\Lambda Q^T$

Eigenvectors of symmetric matrices

 $= \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y}$

 $= \mathbf{z}^{\mathrm{T}}\mathbf{z}$

 $= \left(\Lambda^{\frac{1}{2}}\mathbf{y}\right)^{\mathrm{T}}\left(\Lambda^{\frac{1}{2}}\mathbf{y}\right)$

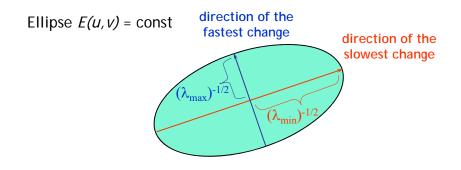
suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ fact: there is a set of orthonormal eigenvectors of A $A = Q \Lambda Q^T$ $\mathbf{x}^T \mathbf{A} \mathbf{x}$ $= (\mathbf{Q}^T \mathbf{x})^T \Lambda (\mathbf{Q}^T \mathbf{x})$ $\mathbf{z}^T \mathbf{z} = 1$ $\sqrt{\lambda_2 q_2}$

Harris corner detector

DigiVFX

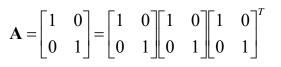
Intensity change in shifting window: eigenvalue analysis

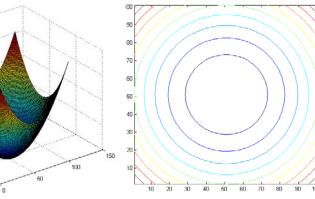
$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \mathbf{M} \begin{bmatrix} u\\v \end{bmatrix}$$
 λ_1, λ_2 - eigenvalues of \mathbf{M}

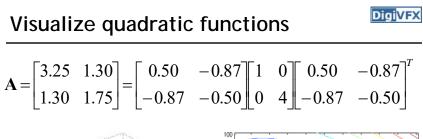


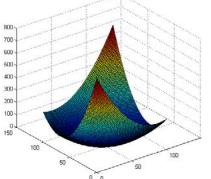
Visualize quadratic functions

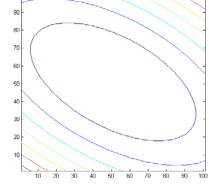
Digi<mark>VFX</mark>





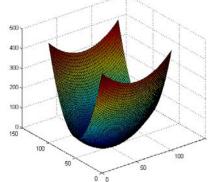


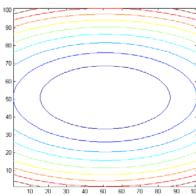


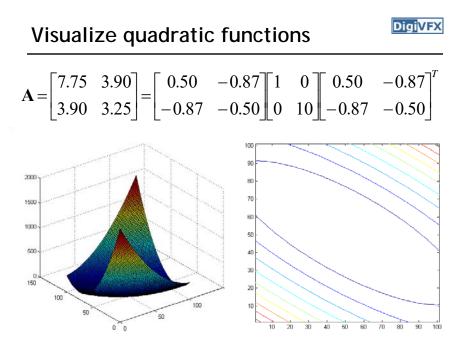


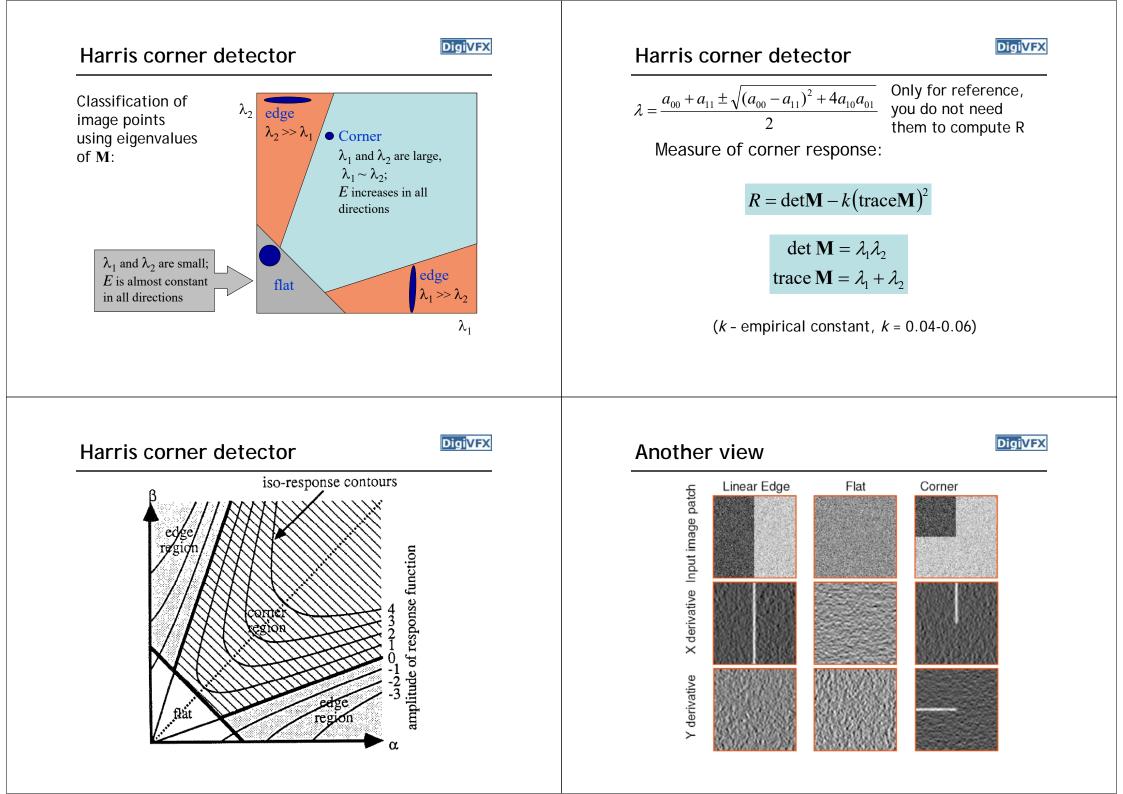
Visualize quadratic functions

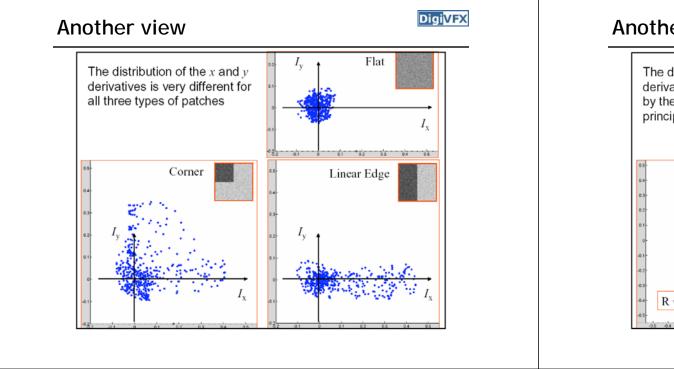












Summary of Harris detector

DigiVFX

1. Compute x and y derivatives of image

$$I_x = G_\sigma^x * I \qquad I_y = G_\sigma^y * I$$

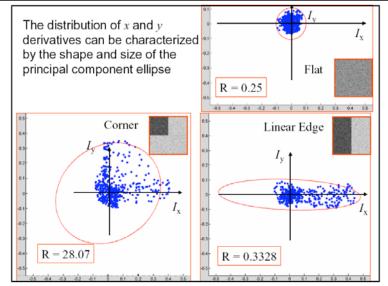
2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x \qquad I_{y^2} = I_y \cdot I_y \qquad I_{xy} = I_x \cdot I_y$$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

Another view



Summary of Harris detector

DigiVFX

4. Define the matrix at each pixel

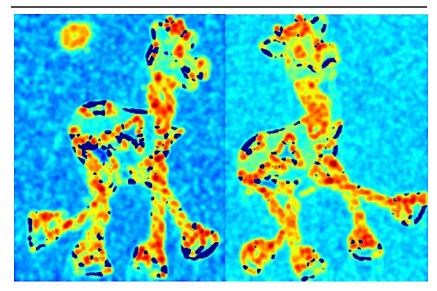
$$M(x, y) = \begin{bmatrix} S_{x^{2}}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y^{2}}(x, y) \end{bmatrix}$$

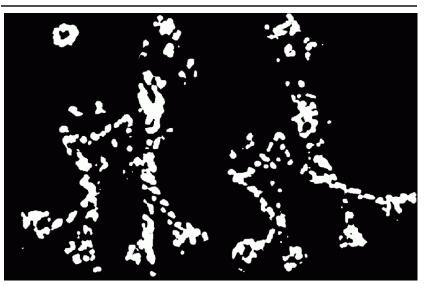
- 5. Compute the response of the detector at each pixel $R = \det M - k(\operatorname{trace} M)^2$
- 6. Threshold on value of R; compute nonmax suppression.

Harris corner detector (input)

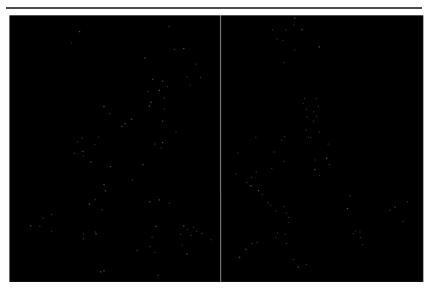
DigiVFX

Corner response R





Local maximum of R



Harris corner detector

Harris detector: summary

• Average intensity change in direction [*u*, *v*] can be expressed as a bilinear form:

$$E(u,v) \cong \begin{bmatrix} u, v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

• Describe a point in terms of eigenvalues of *M*: *measure of corner response*

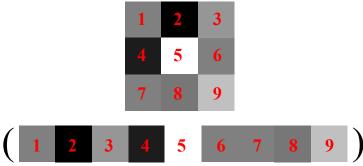
$$R = \lambda_1 \lambda_2 - k (\lambda_1 + \lambda_2)^2$$

• A good (corner) point should have a *large intensity change* in *all directions*, i.e. *R* should be large positive

Now we know where features are

DigiVFX

- But, how to match them?
- What is the descriptor for a feature? The simplest solution is the intensities of its spatial neighbors. This might not be robust to brightness change or small shift/rotation.

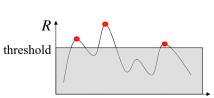


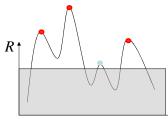
Harris detector: some properties

• Partial invariance to *affine intensity* change

 \checkmark Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$



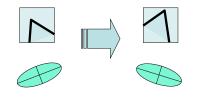


x (image coordinate)

x (image coordinate)

Harris Detector: Some Properties

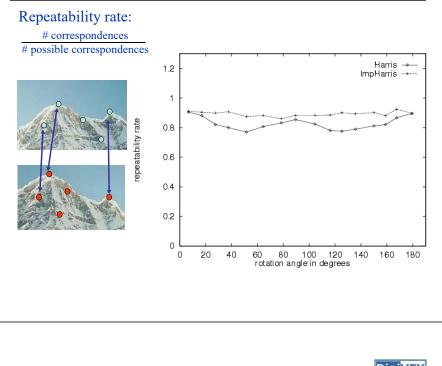
Rotation invariance



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

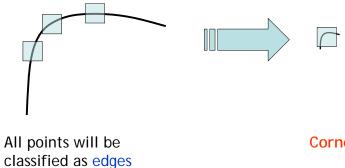
Corner response R is invariant to image rotation

Harris Detector is rotation invariant



Harris Detector: Some Properties

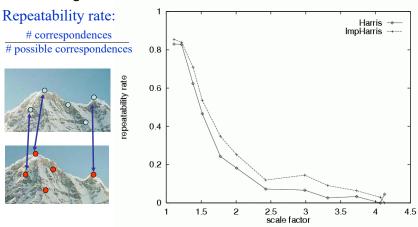
• But: not invariant to *image scale*!



Corner !

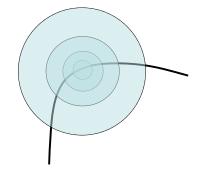
Harris detector: some properties

• Quality of Harris detector for different scale changes



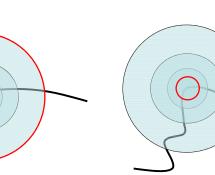
Scale invariant detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



Scale invariant detection

- The problem: how do we choose corresponding circles *independently* in each image?
- Aperture problem



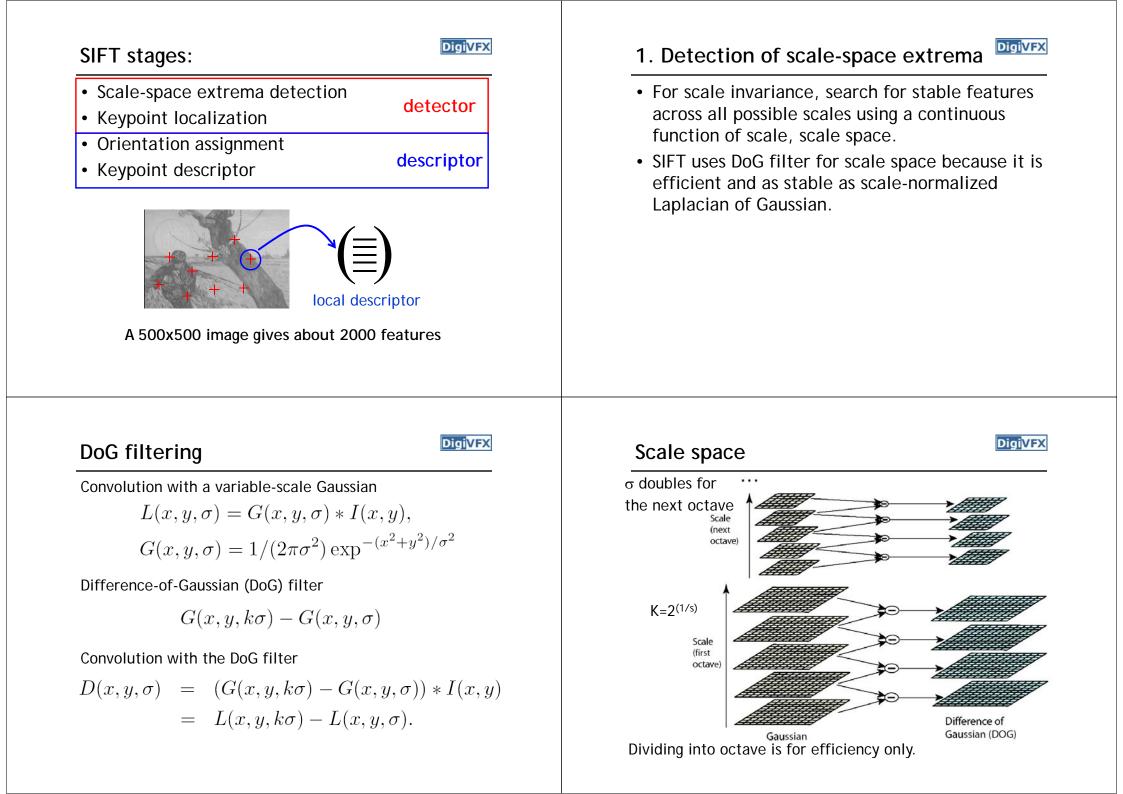
DigiVFX

DigiVFX

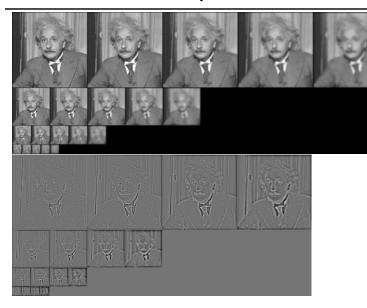
SIFT

• SIFT is an carefully designed procedure with empirically determined parameters for the invariant and distinctive features.

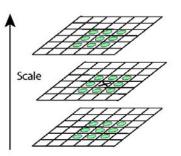
SIFT (Scale Invariant Feature Transform)



Detection of scale-space extrema



Keypoint localization

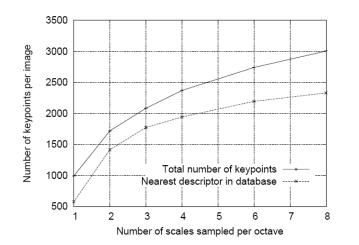


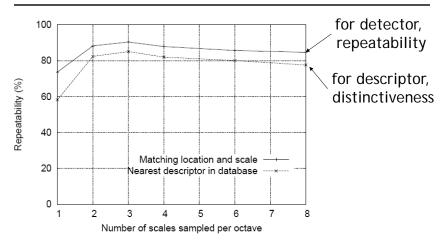
X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency

- It is impossible to sample the whole space, tradeoff efficiency with completeness.
- Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations. (rotation, scaling, affine stretch, brightness and contrast change, adding noise...)

Decide scale sampling frequency





DigiVFX

DigiVFX

s=3 is the best, for larger s, too many unstable features

Harris-Laplacian
 SIFT (Lowe)

3.5

4.5

Harris

Scale invariance

0.9

0.8

0.7

0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -

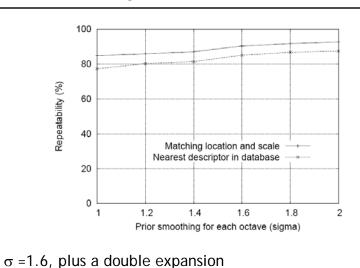
1.5

2.5

scale

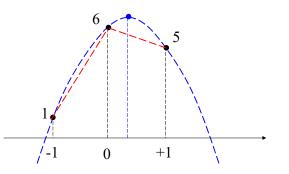
repeatability rate

Pre-smoothing



2. Accurate keypoint localization

- Reject points with low contrast (flat) and poorly localized along an edge (edge)
- Fit a 3D quadratic function for sub-pixel maxima



2. Accurate keypoint localization

Digi<mark>VFX</mark>

 $f(x) \approx 6 + 2x + \frac{-6}{2}x^2 = 6 + 2x - 3x^2$

 $f'(x) = 2 - 6x = 0 \longrightarrow \hat{x} = \frac{1}{3}$

 $f(\hat{x}) = 6 + 2 \cdot \frac{1}{3} - 3 \cdot \left(\frac{1}{3}\right)^2 = 6\frac{1}{3}$

- Reject points with low contrast (flat) and poorly localized along an edge (edge)
- Fit a 3D quadratic function for sub-pixel maxima $6\frac{1}{3}$ $f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2}x^2$

Accurate keypoint localization

+1

 $0 \frac{1}{3}$

/-1

DigiVFX

• Taylor expansion in a matrix form, **x** is a vector, *f* maps **x** to a scalar

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^{T} \mathbf{x} + \frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} f}{\partial \mathbf{x}^{2}} \mathbf{x} \quad \text{Hessian matrix} \text{(often symmetric)}$$

$$\text{gradient} \begin{pmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{1}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{pmatrix} \quad \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \end{pmatrix}$$

2. Accurate keypoint localization

Taylor series of several variables

 $T(x_1,\cdots,x_d) = \sum_{n_1=0}^{\infty} \cdots \sum_{n_d=0}^{\infty} \frac{\partial^{n_1}}{\partial x_1^{n_1}} \cdots \frac{\partial^{n_d}}{\partial x_d^{n_d}} \frac{f(a_1,\cdots,a_d)}{n_1!\cdots n_d!} (x_1-a_1)^{n_1} \cdots (x_d-a_d)^{n_d}$

• Two variables

$$f(x, y) \approx f(0,0) + \left(\frac{\partial f}{\partial x}x + \frac{\partial f}{\partial y}y\right) + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x \partial x}x^2 + 2\frac{\partial^2 f}{\partial x \partial y}xy + \frac{\partial^2 f}{\partial y \partial y}y^2\right)$$
$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) \approx f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) + \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right]\begin{bmatrix}x\\y\end{bmatrix} + \frac{1}{2}\begin{bmatrix}x \quad y\end{bmatrix}\left[\frac{\partial^2 f}{\partial x \partial x} \quad \frac{\partial^2 f}{\partial x \partial y}\\\frac{\partial^2 f}{\partial x \partial y} \quad \frac{\partial^2 f}{\partial y \partial y}\right]\begin{bmatrix}x\\y\end{bmatrix}$$
$$f(\mathbf{x}) \approx f(\mathbf{0}) + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2}\mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

2D illustration

Digi<mark>VFX</mark>

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\frac{f_{-1,1} \quad f_{0,1} \quad f_{1,1}}{f_{-1,0} \quad f_{0,0} \quad f_{1,0}} \qquad \qquad \frac{\partial f}{\partial x} = (f_{1,0} - f_{-1,0})/2$$

$$\frac{\partial f}{\partial y} = (f_{0,1} - f_{0,-1})/2$$

$$\frac{\partial^2 f}{\partial y^2} = f_{1,0} - 2f_{0,0} + f_{-1,0}$$

$$\frac{\partial^2 f}{\partial y^2} = f_{0,1} - 2f_{0,0} + f_{0,-1}$$

$$\frac{\partial^2 f}{\partial x \partial y} = (f_{-1,-1} - f_{-1,1} - f_{1,-1} + f_{1,1})/4$$

2D example

DigiVFX

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$
$$h(\mathbf{x}) = \mathbf{g}^T \mathbf{x} \qquad \qquad \frac{\partial h}{\partial \mathbf{x}} =$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{g}^{\mathrm{T}} \mathbf{x}$$

$$= \begin{pmatrix} g_{1} & \cdots & g_{n} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \qquad \frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial h}{\partial x_{1}} \\ \vdots \\ \frac{\partial h}{\partial x_{n}} \end{pmatrix} = \begin{pmatrix} g_{1} \\ \vdots \\ g_{n} \end{pmatrix} = \mathbf{g}$$

$$= \sum_{i=1}^{n} g_{i} x_{i}$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

 $h(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$

 $\frac{\partial h}{\partial \mathbf{x}} =$

DigiVFX

Derivation of matrix form

DigiVFX

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = (x_1 \cdots x_n) \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

$$\frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial h}{\partial x_1} \\ \vdots \\ \frac{\partial h}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{i1} x_i + \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{i=1}^n a_{in} x_i + \sum_{j=1}^n a_{nj} x_j \end{pmatrix} = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x}$$

$$= (\mathbf{A}^T + \mathbf{A}) \mathbf{x}$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\frac{\partial f}{\partial \mathbf{x}} = \frac{\partial f}{\partial \mathbf{x}} + \frac{1}{2} \left(\frac{\partial^2 f}{\partial \mathbf{x}^2} + \frac{\partial^2 f}{\partial \mathbf{x}^2}^T \right) \mathbf{x} = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\mathbf{x}_m = -\frac{\partial^2 f}{\partial \mathbf{x}^2} \quad \frac{\partial f}{\partial \mathbf{x}}$$

Accurate keypoint localization

Digi<mark>VFX</mark>

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

- x is a 3-vector
- Change sample point if offset is larger than 0.5
- Throw out low contrast (<0.03)

Accurate keypoint localization

• Throw out low contrast
$$|D(\hat{\mathbf{x}})| < 0.03$$

 $D(\hat{\mathbf{x}}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \hat{\mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \hat{\mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \left(-\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \left(-\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-T} \frac{\partial^2 D}{\partial \mathbf{x}^2} \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T (-\hat{\mathbf{x}})$
 $= D + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}}$

Eliminating edge responses

Digi<mark>VFX</mark>

DigiVFX

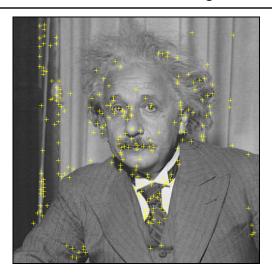
$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$$
 Hessian matrix at keypoint location
$$\mathrm{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$

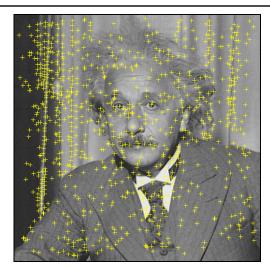
$$Det(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$

Let
$$\alpha = r\beta$$
 $\frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r\beta^2}$

Keep the points with $\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$. r=10

Remove low contrast and edges





Keypoint detector

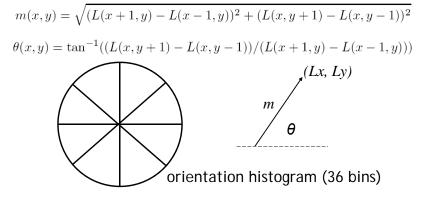
3. Orientation assignment

• By assigning a consistent orientation, the keypoint descriptor can be orientation invariant.

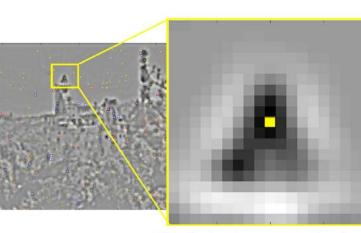
DigiVFX

DigiVFX

• For a keypoint, L is the Gaussian-smoothed image with the closest scale,

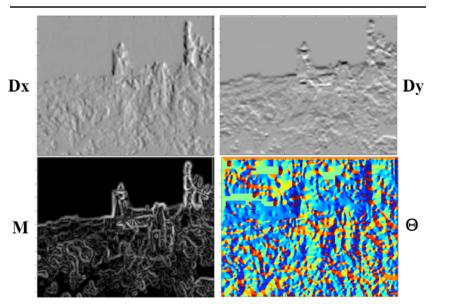


Orientation assignment

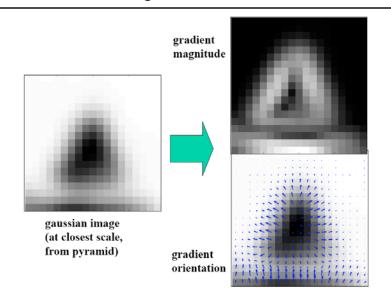


•Keypoint location = extrema location •Keypoint scale is scale of the DOG image

Orientation assignment



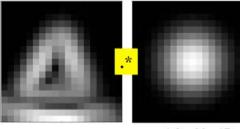
Orientation assignment



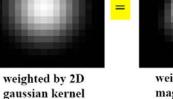
Digi<mark>VFX</mark>

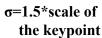
Orientation assignment

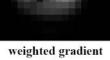
DigiVFX



gradient magnitude

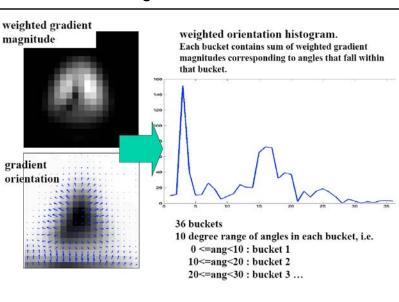




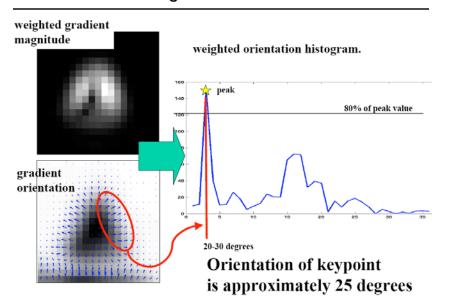


magnitude

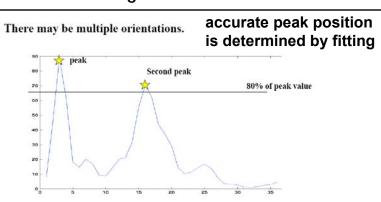
Orientation assignment



Orientation assignment



Orientation assignment

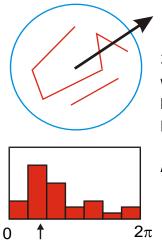


In this case, generate duplicate keypoints, one with orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of possible multiple peaks to two.

Orientation assignment

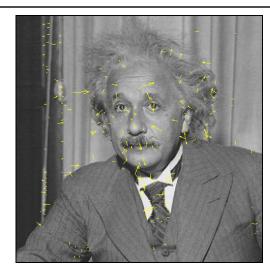
Digi<mark>VFX</mark>



36-bin orientation histogram over 360°,
weighted by m and 1.5*scale falloff
Peak is the orientation
Local peak within 80% creates multiple orientations

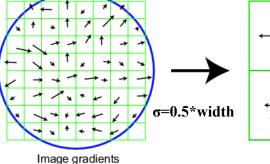
About 15% has multiple orientations and they contribute a lot to stability

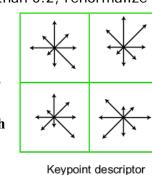
SIFT descriptor



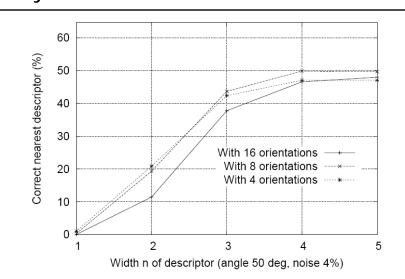
4. Local image descriptor

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms (w.r.t. key orientation)
- 8 orientations x 4x4 histogram array = 128 dimensions
- Normalized, clip values larger than 0.2, renormalize



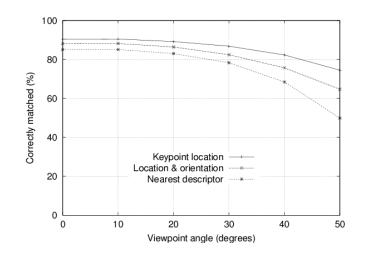


Why 4x4x8?



Sensitivity to affine change

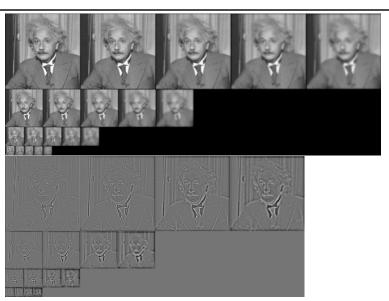
DigiVFX



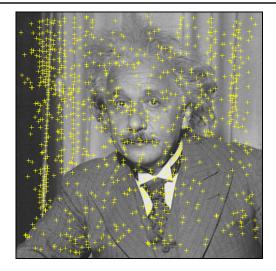
Feature matching

for a feature x, he found the closest feature x₁ and the second closest feature x₂. If the distance ratio of d(x, x₁) and d(x, x₂) is smaller than 0.8, then it is accepted as a match.

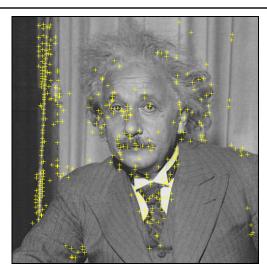
SIFT flow



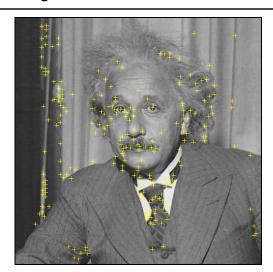
Maxima in D



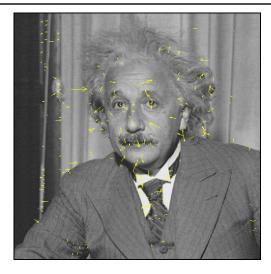
Remove low contrast



Remove edges



SIFT descriptor



Estimated rotation

DigiVFX

- Computed affine transformation from rotated image to original image: 0.7060 -0.7052 128.4230 0.7057 0.7100 -128.9491
 - 0 0 1.0000
- Actual transformation from rotated image to original image:
 - 0.7071 -0.7071 128.6934 0.7071 0.7071 -128.6934
 - 0 0 1.0000

SIFT extensions

DigiVFX

Average face:

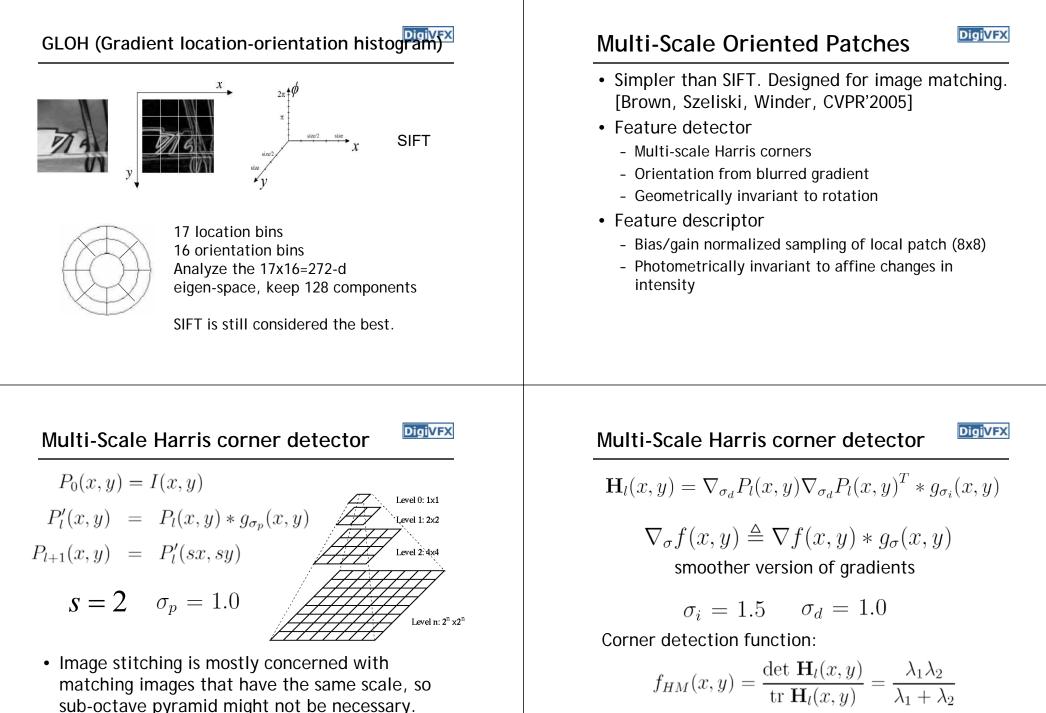
PCA

Top ten eigenfaces (left = highest eigenvalue, right = lowest eigenvalue):

PCA-SIFT

- Only change step 4
- Pre-compute an eigen-space for local gradient patches of size 41x41

- 2x39x39=3042 elements
- Only keep 20 components
- A more compact descriptor



Pick local maxima of 3x3 and larger than 10

Keypoint detection function

Shi-Tomasi $f_{ST} =$

Harmonic mean $f_{HM} = \lambda_1 \lambda_2 / (\lambda_1 + \lambda_2) =$

Harris $f_H = \lambda_1 \lambda_2 - 0.04 (\lambda_1 + \lambda_2)^2 = \det \mathbf{H} - 0.04 (\operatorname{tr} \mathbf{H})^2$

 $\min(\lambda_1, \lambda_2)$

Harris
 Harmonic mean
 Shi-Tomasi

DigiVFX

 $\det \mathbf{H}/\mathrm{tr} \mathbf{H}$

Experiments show roughly

the same performance.

Non-maximal suppression

- Restrict the maximal number of interest points, but also want them spatially well distributed
- Only retain maximums in a neighborhood of radius *r*.
- Sort them by strength, decreasing r from infinity until the number of keypoints (500) is satisfied.

Non-maximal suppression

(a) Strongest 250

(b) Strongest 500

(c) ANMS 250, r = 24

(d) ANMS 500, r = 16

Sub-pixel refinement

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\mathbf{x}_m = -\frac{\partial^2 f}{\partial \mathbf{x}^2}^{-1} \frac{\partial f}{\partial \mathbf{x}}$$
$$\frac{\frac{\partial f}{\partial \mathbf{x}} = (f_{1,0} - f_{-1,0})/2}{\frac{f_{-1,1}}{f_{0,1}} \frac{f_{1,1}}{f_{1,1}}} \frac{\frac{\partial f}{\partial \mathbf{y}} = (f_{0,1} - f_{0,-1})/2}{\frac{\partial^2 f}{\partial \mathbf{y}^2}} = f_{1,0} - 2f_{0,0} + f_{-1,0}}$$
$$\frac{\frac{\partial^2 f}{\partial \mathbf{y}^2}}{\frac{\partial^2 f}{\partial \mathbf{y}^2}} = f_{0,1} - 2f_{0,0} + f_{0,-1}}{\frac{\partial^2 f}{\partial \mathbf{y}^2}} = (f_{-1,-1} - f_{-1,1} - f_{1,-1} + f_{1,1})/4}$$

Orientation assignment

Digi<mark>VFX</mark>

• Orientation = blurred gradient

$$\mathbf{u}_l(x,y) = \nabla_{\sigma_o} P_l(x,y)$$

 $\sigma_o = 4.5$

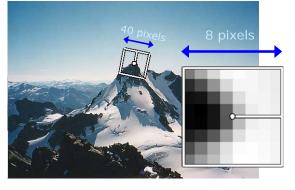
$$[\cos\theta,\sin\theta] = \mathbf{u}/|\mathbf{u}|$$

Descriptor Vector

- Rotation Invariant Frame
 - Scale-space position (x, y, s) + orientation (θ)

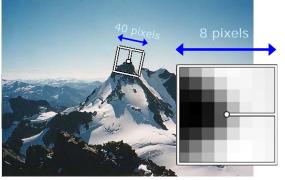
MSOP descriptor vector

- 8x8 oriented patch sampled at 5 x scale. See TR for details.
- Sampled from $P_l(x,y) \ast g_{2 \times \sigma_p}(x,y)$ with spacing=5



MSOP descriptor vector

- 8x8 oriented patch sampled at 5 x scale. See TR for details.
- Bias/gain normalisation: I' = $(I \mu)/\sigma$
- Wavelet transform



Detections at multiple scales

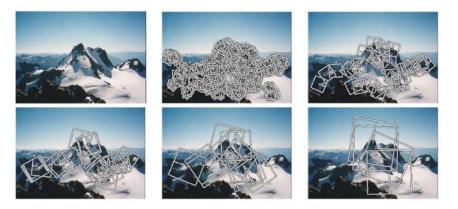


Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Summary

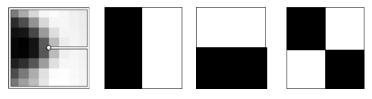
- Multi-scale Harris corner detector
- Sub-pixel refinement
- Orientation assignment by gradients
- Blurred intensity patch as descriptor

Feature matching

- Exhaustive search
 - for each feature in one image, look at *all* the other features in the other image(s)
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - k-trees and their variants (Best Bin First)

Wavelet-based hashing

• Compute a short (3-vector) descriptor from an 8x8 patch using a Haar "wavelet"



- Quantize each value into 10 (overlapping) bins (10³ total entries)
- [Brown, Szeliski, Winder, CVPR'2005]

Nearest neighbor techniques

F

Ğ

DE

C

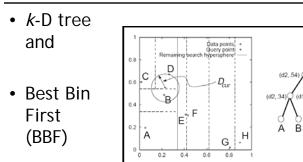
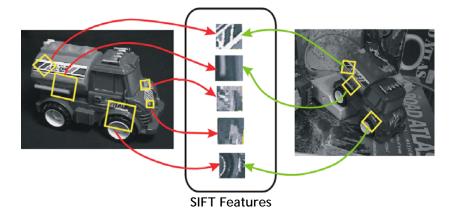


Figure 6: kd-tree with 8 data points labelled A-H, dimension of space k=2. On the right is the full tree, the leaf nodes containing the data points. Internal node information consists of the dimension of the cut plane and the value of the cut in that dimension. On the left is the 2D feature space carved into various sizes and shapes of bin, according to the distribution of the data points. The two representations are isomorphic. The situation shown on the left is after initial tree traversal to locate the bin for query point '-'' (contains point D). In standard search, the closest nodes in the tree are examined first (starting at C). In BFF search, the closest bins to query point q are examined first (starting at B). The latter is more likely to maximize the overlap of (i) the hypersphere centered on q with radius D_{cur} , and (ii) the hyperrectangle of the bin to be searched. In this case, BBF search reduces the number of leaves to examine, since once point B is discovered, all other branches can be pruned.

Indexing Without Invariants in 3D Object Recognition, Beis and Lowe, PAMI'99

Applications

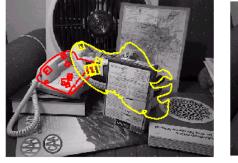
Recognition

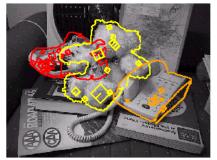


3D object recognition

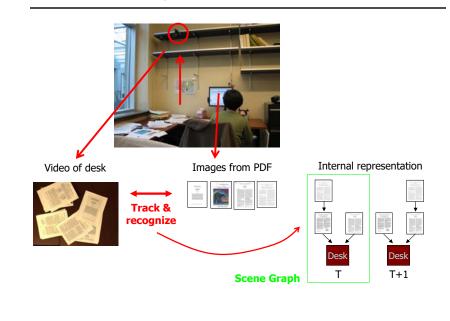
3D object recognition

DigiVFX





Office of the past



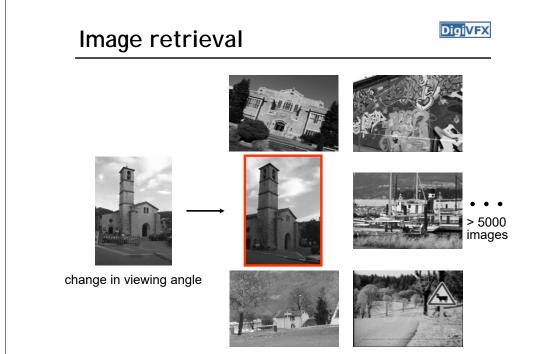
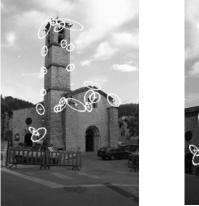


Image retrieval

DigiVFX

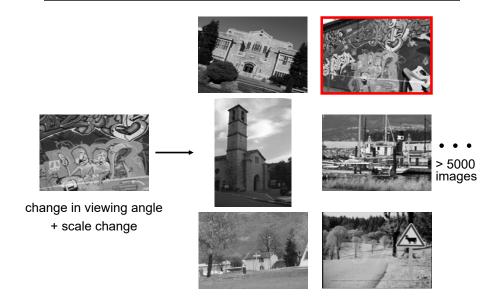


22 correct matches

Image retrieval

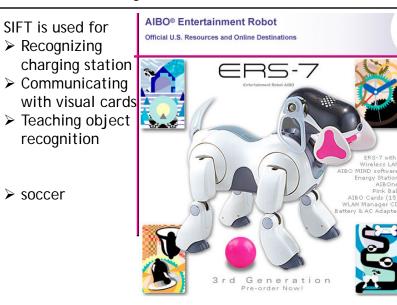
DigiVFX

DigiVFX



Robot location

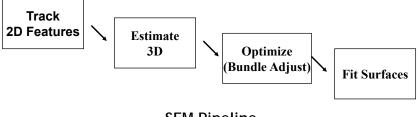
Robotics: Sony Aibo



Structure from Motion

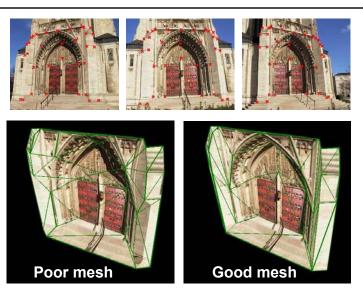
DigiVFX

- The SFM Problem
 - Reconstruct scene geometry and camera motion from two or more images



SFM Pipeline

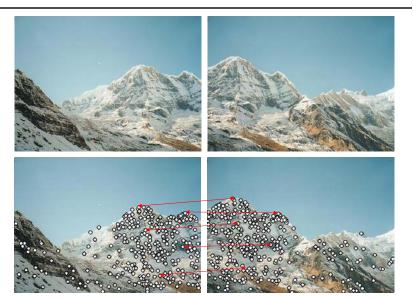
Structure from Motion



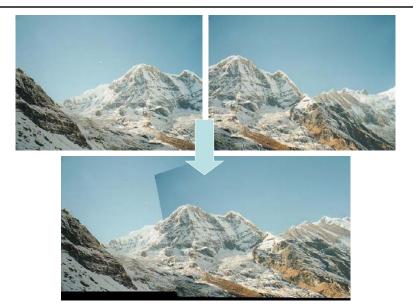
Augmented reality

Automatic image stitching

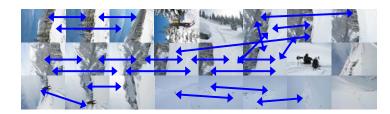
DigiVFX



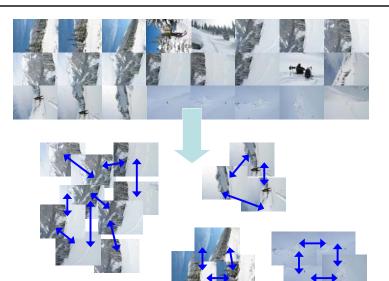
Automatic image stitching



Automatic image stitching



Automatic image stitching



Automatic image stitching

Reference

- Chris Harris, Mike Stephens, <u>A Combined Corner and Edge Detector</u>, 4th Alvey Vision Conference, 1988, pp147-151.
- David G. Lowe, <u>Distinctive Image Features from Scale-Invariant</u> <u>Keypoints</u>, International Journal of Computer Vision, 60(2), 2004, pp91-110.
- Yan Ke, Rahul Sukthankar, <u>PCA-SIFT: A More Distinctive</u> Representation for Local Image Descriptors, CVPR 2004.
- Krystian Mikolajczyk, Cordelia Schmid, <u>A performance evaluation</u> of local descriptors, Submitted to PAMI, 2004.
- <u>SIFT Keypoint Detector</u>, David Lowe.
- <u>Matlab SIFT Tutorial</u>, University of Toronto.

