High dynamic range imaging

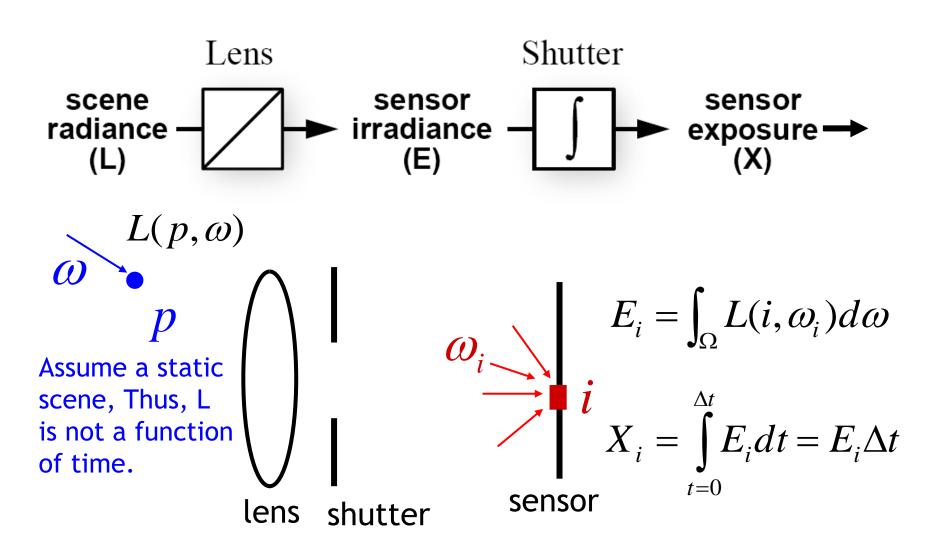
Digital Visual Effects Yung-Yu Chuang

with slides by Fredo Durand, Brian Curless, Steve Seitz, Paul Debevec and Alexei Efros

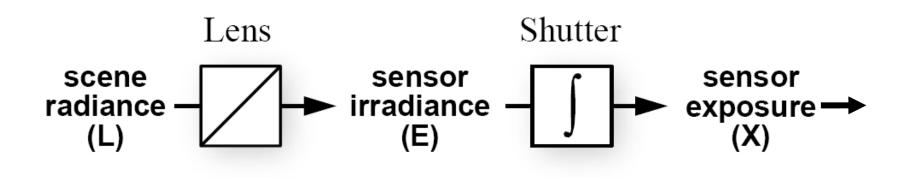
Camera is an imperfect device

- Camera is an imperfect device for measuring the radiance distribution of a scene because it cannot capture the full spectral content and dynamic range.
- Limitations in sensor design prevent cameras from capturing all information passed by lens.

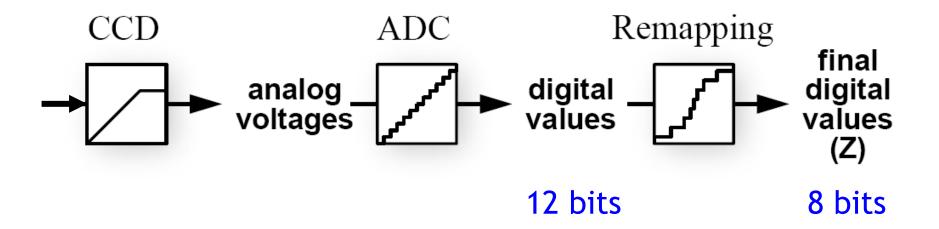
Camera pipeline



Camera pipeline

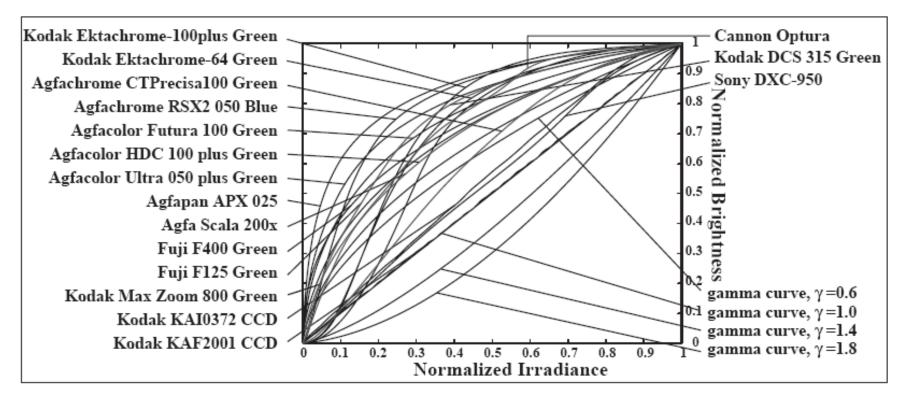


DigiVF)

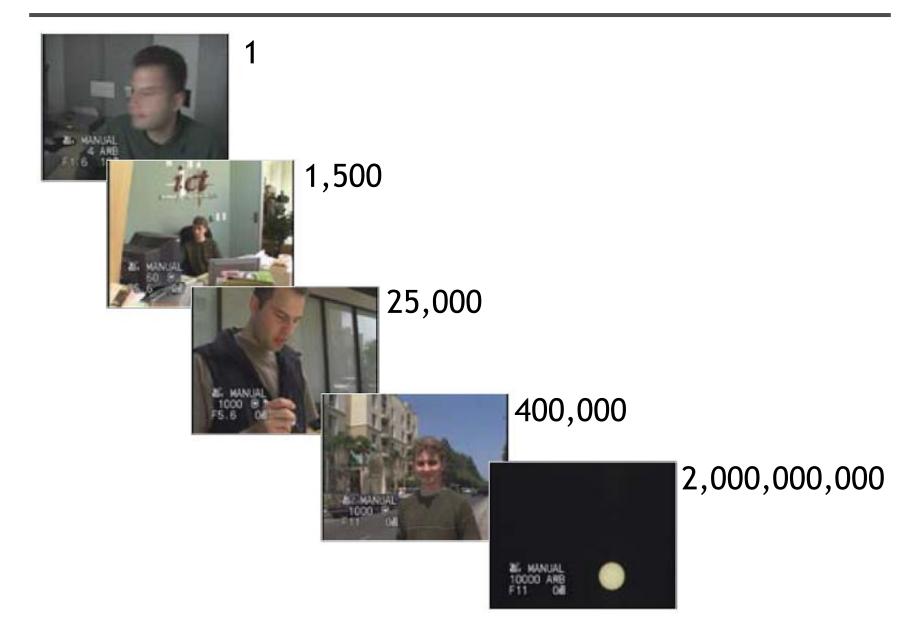


Real-world response functions

In general, the response function is not provided by camera makers who consider it part of their proprietary product differentiation. In addition, they are beyond the standard gamma curves.



The world is high dynamic range

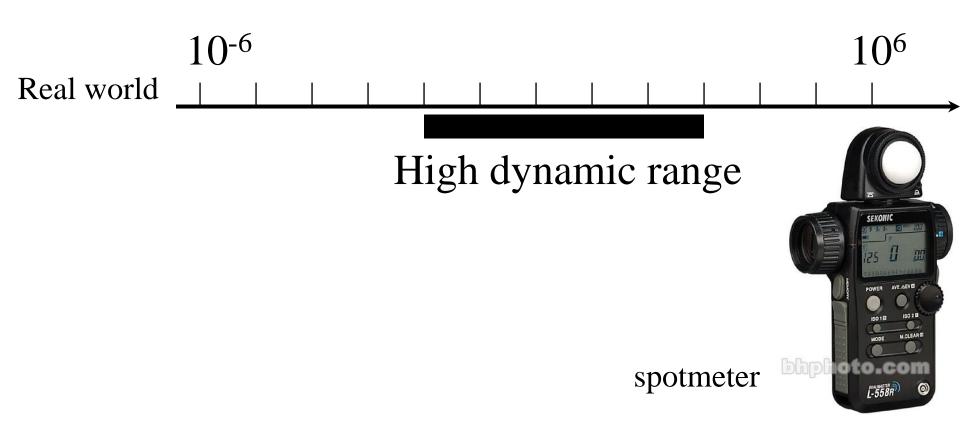


DigiVFX

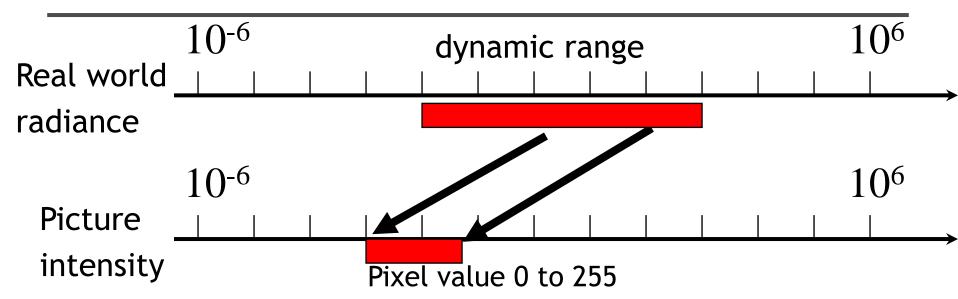
The world is high dynamic range

Real world dynamic range

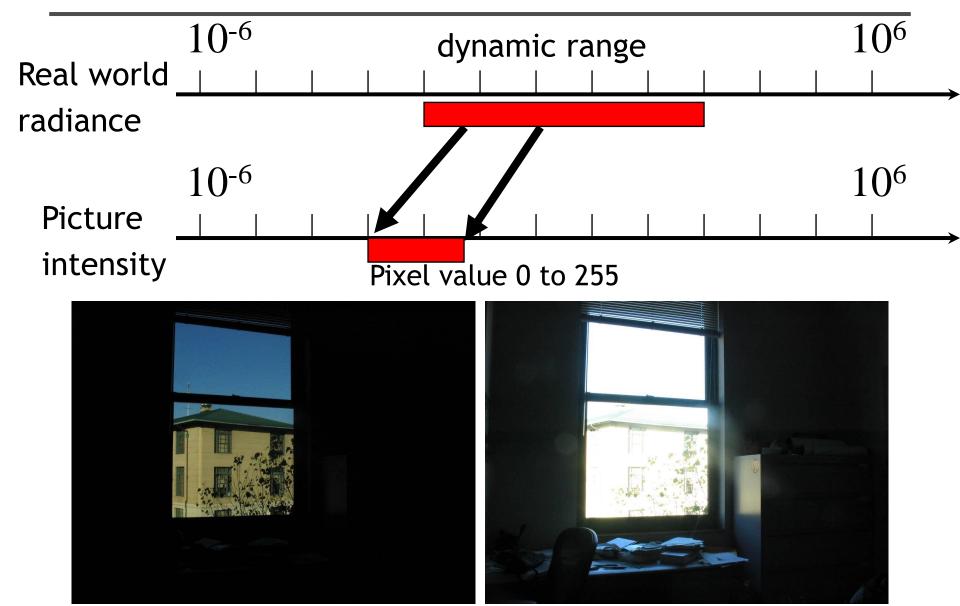
- **DigiVFX**
- Eye can adapt from ~ 10^{-6} to $10^{6}\ cd/m^{2}$
- Often 1 : 100,000 in a scene
- Typical 1:50, max 1:500 for pictures



Short exposure



Long exposure



Camera is not a photometer

- Limited dynamic range
 ⇒ Perhaps use multiple exposures?
- Unknown, nonlinear response
 ⇒ Not possible to convert pixel values to radiance
- Solution:
 - Recover response curve from multiple exposures, then reconstruct the *radiance map*

Varying exposure

- Ways to change exposure
 - Shutter speed
 - Aperture
 - Neutral density filters

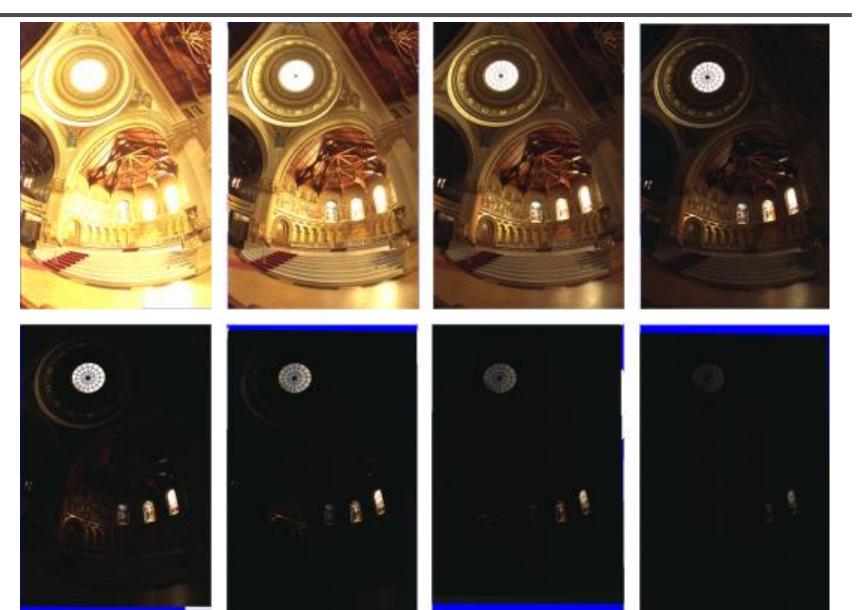
- Note: shutter times usually obey a power series - each "stop" is a factor of 2
- ¹/₄, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Usually really is:

¹/₄, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

DigiVFX

Varying shutter speeds

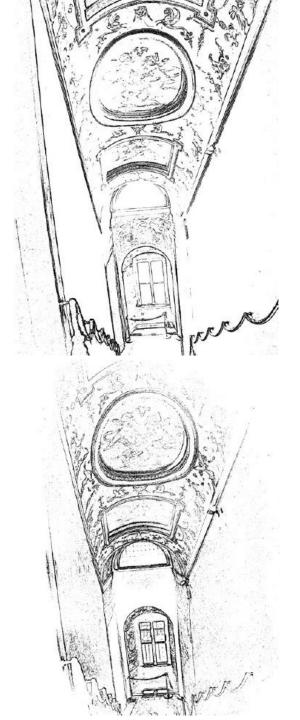


HDRI capturing from multiple exposures

- Capture images with multiple exposures
- Image alignment (even if you use tripod, it is suggested to run alignment)
- Response curve recovery
- Ghost/flare removal

Image alignment

- We will introduce a fast and easy-to-implement method for this task, called Median Threshold Bitmap (MTB) alignment technique.
- Consider only integral translations. It is enough empirically.
- The inputs are N grayscale images. (You can either use the green channel or convert into grayscale by Y=(54R+183G+19B)/256)
- MTB is a binary image formed by thresholding the input image using the median of intensities.



Why is MTB better than gradient?

- Edge-detection filters are dependent on image exposures
- Taking the difference of two edge bitmaps would not give a good indication of where the edges are misaligned.

Search for the optimal offset

- Try all possible offsets.
- Gradient descent
- Multiscale technique
- log(max_offset) levels
- Try 9 possibilities for the top level
- Scale by 2 when passing down; try its 9 neighbors

Threshold noise



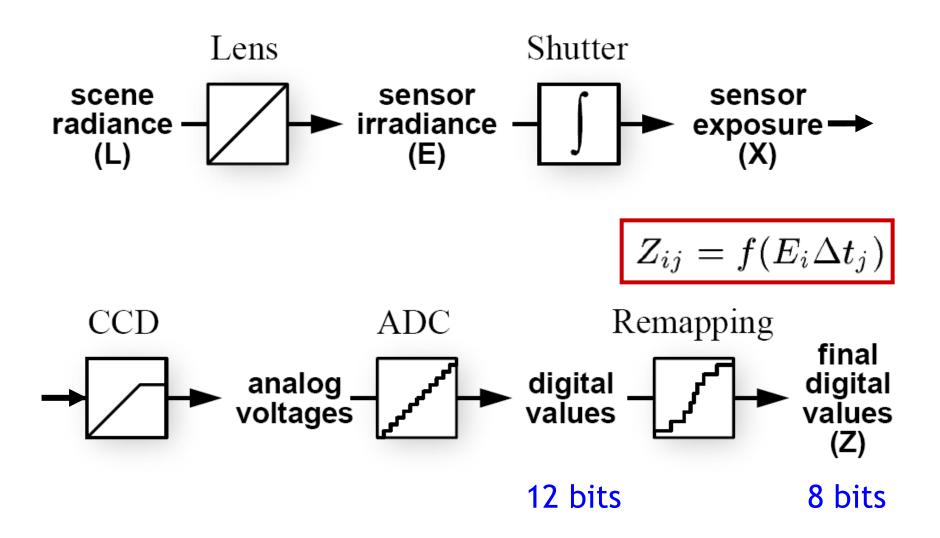
Efficiency considerations

- XOR for taking difference
- AND with exclusion maps
- Bit counting by table lookup

Results

Success rate = 84%. 10% failure due to rotation. 3% for excessive motion and 3% for too much high-frequency content.

Recovering response curve



DigiVF)

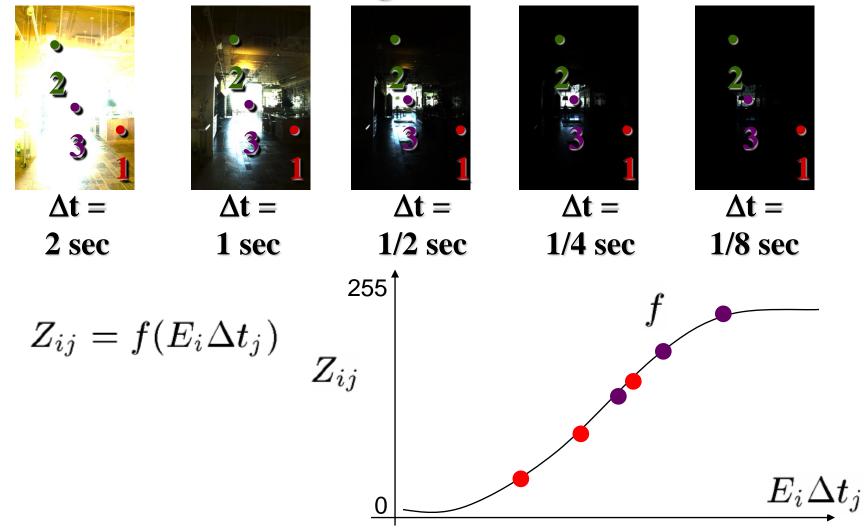
DigiVFX

Recovering response curve

• We want to obtain the inverse of the response curve 255 $Z_{ij} = f(E_i \Delta t_j)$ Z_{ij} ($E_i \Delta t_j$

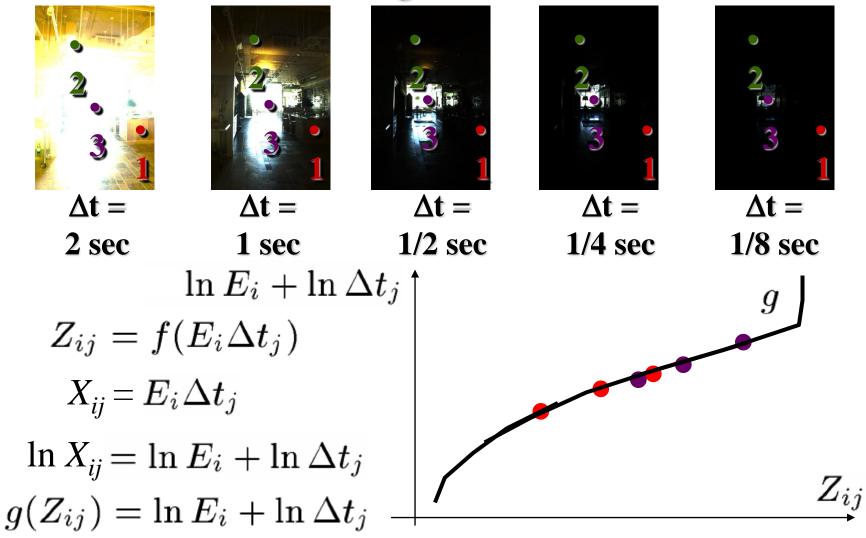
Recovering response curve

Image series

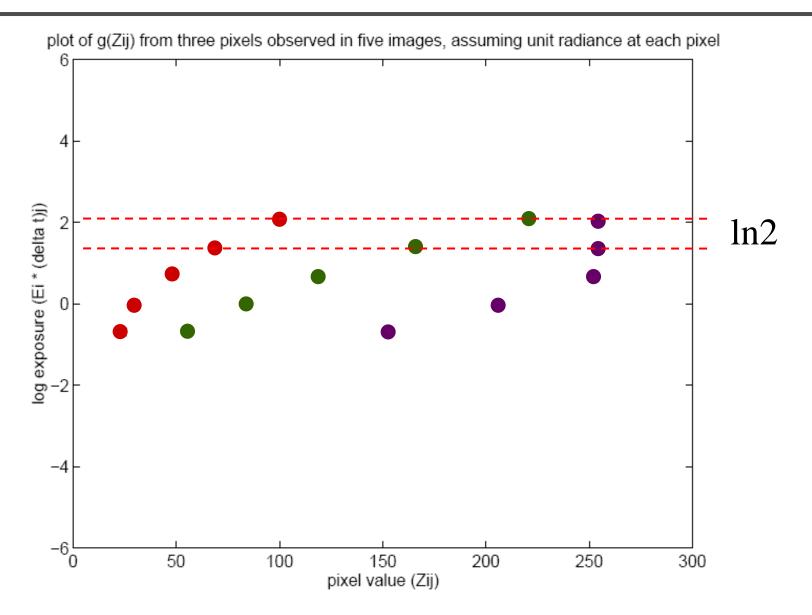


Recovering response curve

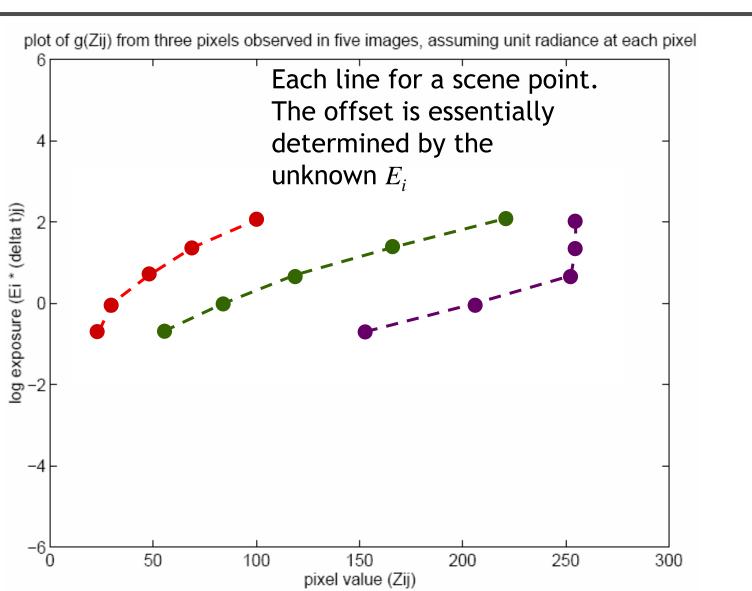
Image series



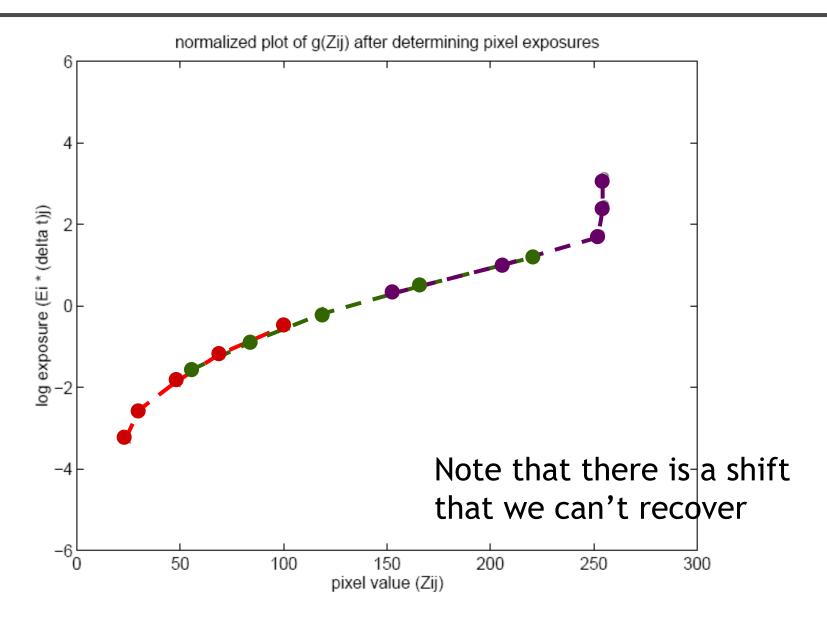
Idea behind the math



Idea behind the math



Idea behind the math



Basic idea

- Design an objective function
- Optimize it

Math for recovering response curve

$$Z_{ij} = f(E_i \Delta t_j)$$

f is monotonic, it is invertible

 $\ln f^{-1}(Z_{ij}) = \ln E_i + \ln \Delta t_j$ let us define function $g = \ln f^{-1}$

$$g(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

minimize the following

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \left[g(Z_{ij}) - \ln E_i - \ln \Delta t_j \right]^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} g''(z)^2$$
$$g''(z) = g(z-1) - 2g(z) + g(z+1)$$

Recovering response curve

• The solution can be only up to a scale, add a constraint

 $g(Z_{mid}) = 0$, where $Z_{mid} = \frac{1}{2}(Z_{min} + Z_{max})$

Add a hat weighting function

 $z = Z_{min} + 1$

$$w(z) = \begin{cases} z - Z_{min} & \text{for } z \leq \frac{1}{2}(Z_{min} + Z_{max}) \\ Z_{max} - z & \text{for } z > \frac{1}{2}(Z_{min} + Z_{max}) \end{cases}$$
$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) \left[g(Z_{ij}) - \ln E_i - \ln \Delta t_j\right]\}^2 + \lambda \sum_{i=1}^{Z_{max}-1} \left[w(z)g''(z)\right]^2$$

Recovering response curve

- We want $N(P-1) > (Z_{max} Z_{min})$ If P=11, N~25 (typically 50 is used)
- We prefer that selected pixels are well distributed and sampled from constant regions. They picked points by hand.
- It is an overdetermined system of linear equations and can be solved using SVD

How to optimize?

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

How to optimize?

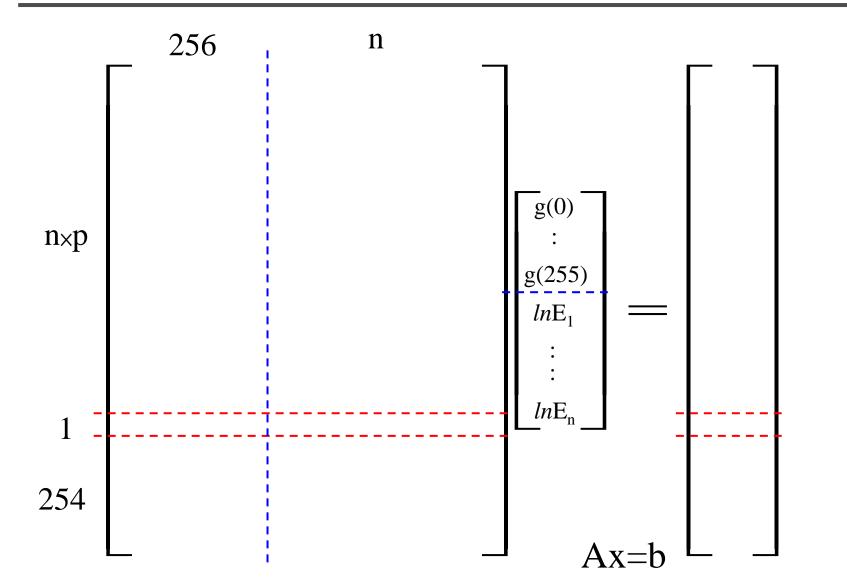
$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

Set partial derivatives to zero
 2.

$$\min \sum_{i=1}^{N} (\mathbf{a}_{i} \mathbf{x} - \mathbf{b}_{i})^{2} \rightarrow \text{least-square solution of}$$

$$\begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_N \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_N \end{bmatrix}$$

Sparse linear system



Questions

- Will g(127)=0 always be satisfied? Why or why not?
- How to find the least-square solution for an over-determined system?

Least-square solution for a linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$m \times n \quad n \quad m$$

$$m > n$$

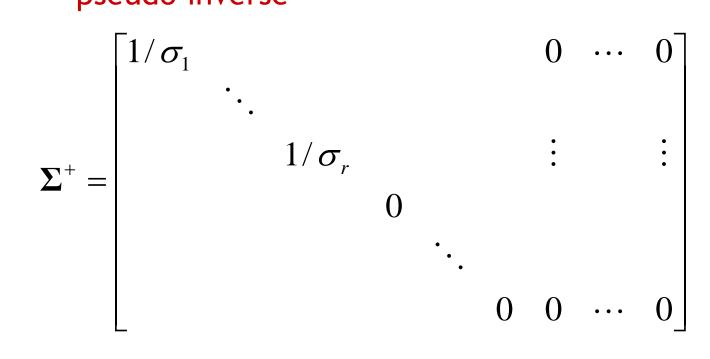
They are often mutually incompatible. We instead find \mathbf{x} to minimize the norm $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ of the residual vector $\mathbf{A}\mathbf{x} - \mathbf{b}$. If there are multiple solutions, we prefer the one with the minimal length $\|\mathbf{x}\|$.

Least-square solution for a linear system

If we perform SVD on ${\bf A}$ and rewrite it as

$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} V^{\mathrm{T}}$

then $\hat{\mathbf{x}} = \mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{T} \mathbf{b}$ is the least-square solution. pseudo inverse



Proof

Proof

Libraries for SVD

DigiVFX

- Matlab
- GSL
- Boost
- LAPACK
- ATLAS

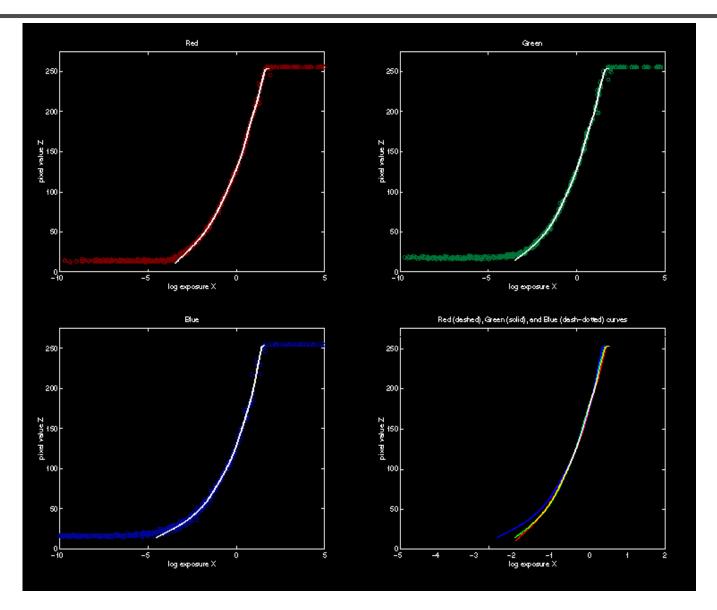
Matlab code


```
÷
% gsolve.m - Solve for imaging system response function
% Given a set of pixel values observed for several pixels in several
 images with different exposure times, this function returns the
 imaging system's response function q as well as the log film irradiance
% values for the observed pixels.
%
% Assumes:
%
%
  Zmin = 0
  Zmax = 255
%
%
% Arguments:
%
%
  Z(i,j) is the pixel values of pixel location number i in image j
         is the log delta t, or log shutter speed, for image j
÷
  B(1)
÷
          is lamdba, the constant that determines the amount of smoothness
   1
÷
         is the weighting function value for pixel value z
  w(z)
%
÷
 Returns:
%
%
  g(z) is the log exposure corresponding to pixel value z
  lE(i) is the log film irradiance at pixel location i
%
%
```

Matlab code


```
function [q,lE]=gsolve(Z,B,l,w)
n = 256;
A = \operatorname{zeros}(\operatorname{size}(Z,1) \times \operatorname{size}(Z,2) + n + 1, n + \operatorname{size}(Z,1));
b = zeros(size(A,1),1);
k = 1;
                       %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(j);
    k=k+1;
  end
end
A(k, 129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
  A(k,i) = 1*w(i+1); A(k,i+1) = -2*1*w(i+1); A(k,i+2) = 1*w(i+1);
  k=k+1;
end
x = A b;
                       %% Solve the system using SVD
q = x(1:n);
lE = x(n+1:size(x,1));
```

Recovered response function

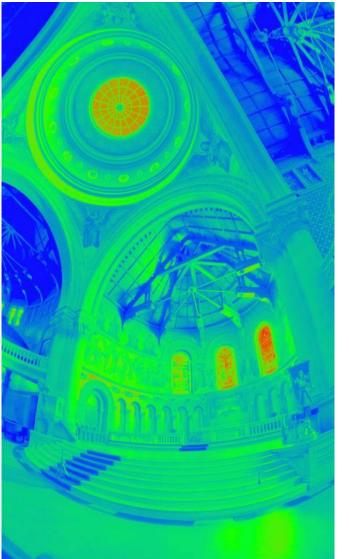


$$\ln E_i = g(Z_{ij}) - \ln \Delta t_j$$

combine pixels to reduce noise and obtain a more reliable estimation

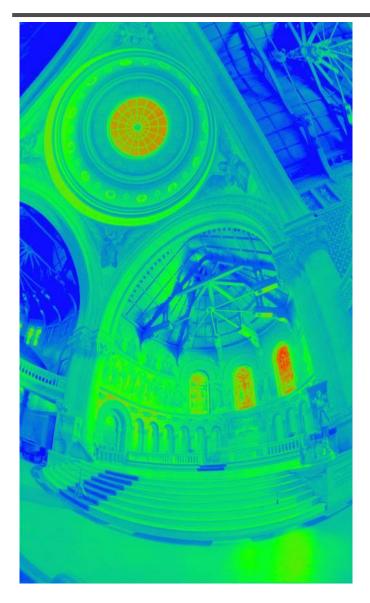
$$\ln E_{i} = \frac{\sum_{j=1}^{P} w(Z_{ij})(g(Z_{ij}) - \ln \Delta t_{j})}{\sum_{j=1}^{P} w(Z_{ij})}$$

Reconstructed radiance map



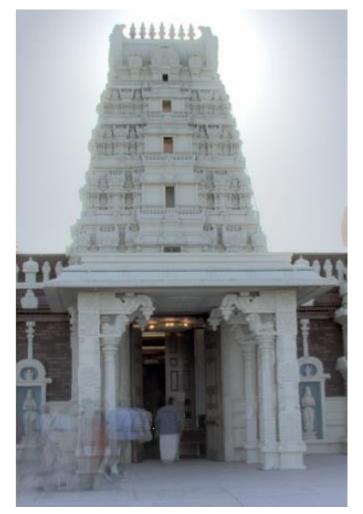
W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

What is this for?



- Human perception
- Vision/graphics applications

Automatic ghost removal



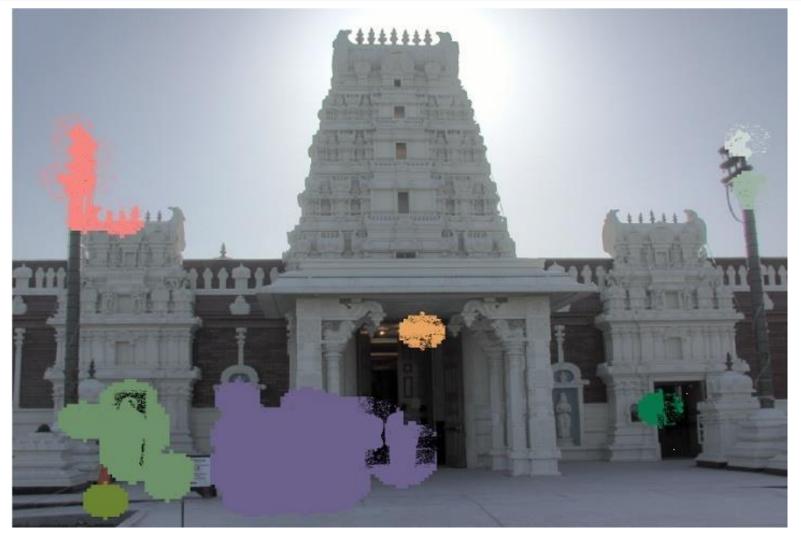
before

after

Weighted variance

Moving objects and high-contrast edges render high variance.

Region masking



Thresholding; dilation; identify regions;

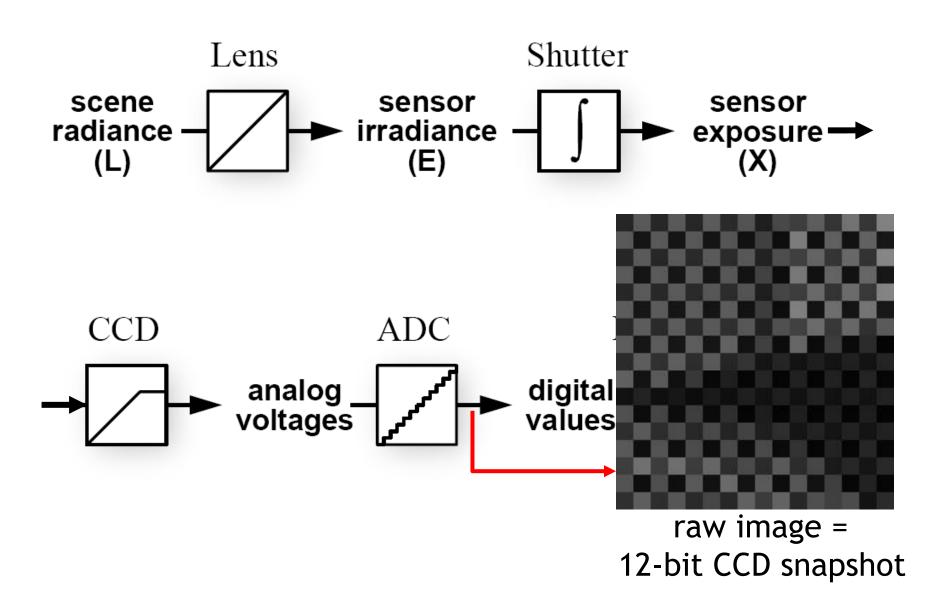
Best exposure in each region

Lens flare removal

before

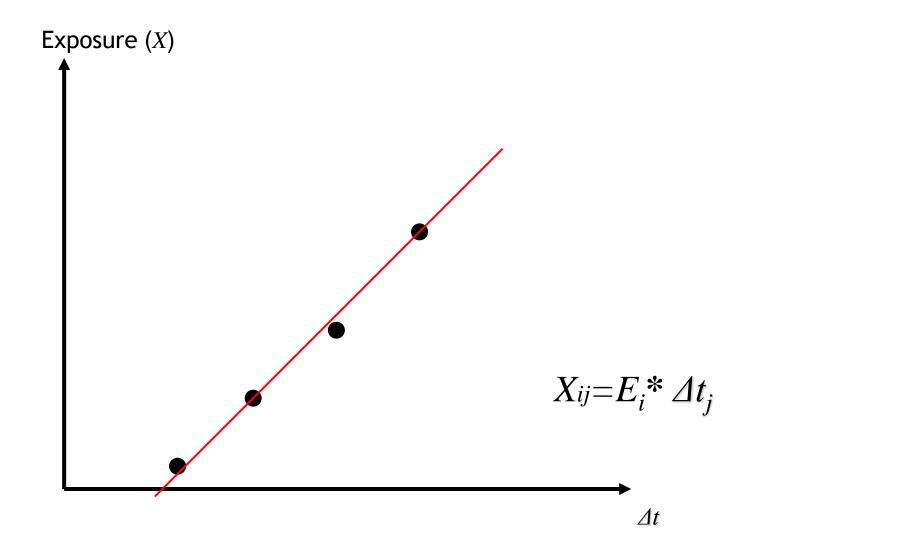
after

Easier HDR reconstruction



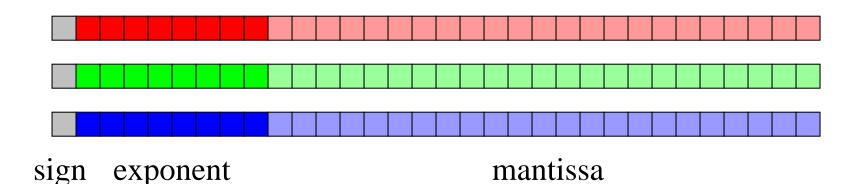
DigiVF)

Easier HDR reconstruction



Digi

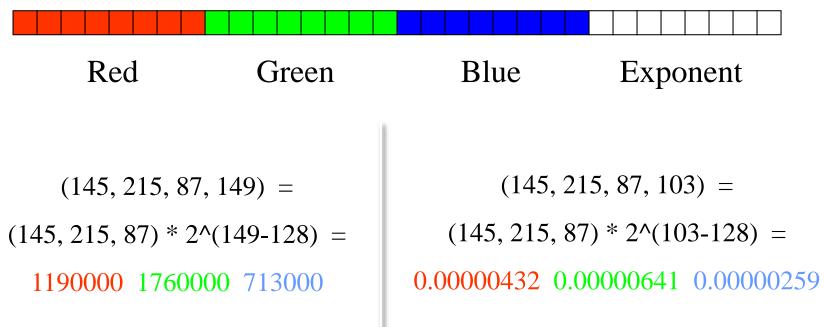
Portable floatMap (.pfm)



Text header similar to Jeff Poskanzer's .ppm image format:

```
PF
768 512
1
<binary image data>
```

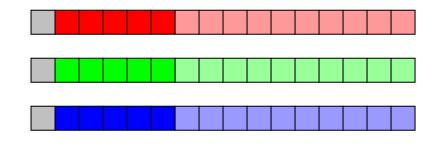
Floating Point TIFF similar



Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

ILM's OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed



sign exponent mantissa

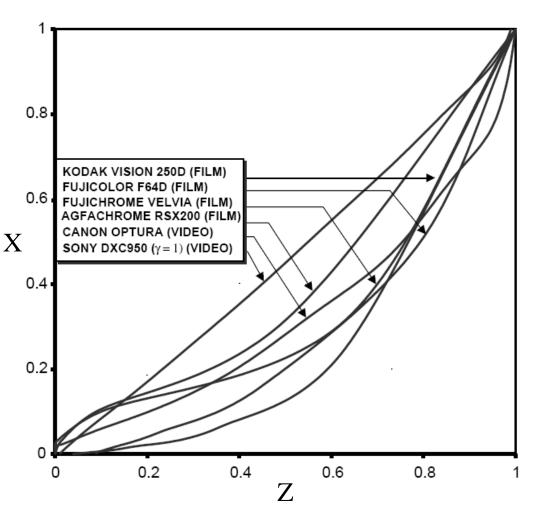
- Several lossless compression options, 2:1 typical
- Compatible with the "half" datatype in NVidia's Cg
- Supported natively on GeForce FX and Quadro FX
- Available at http://www.openexr.net/

Radiometric self calibration

 Assume that any response function can be modeled as a high-order polynomial

$$X = g(Z) = \sum_{m=0}^{M} c_m Z^m$$

 No need to know exposure time in advance. Useful for cheap cameras



Mitsunaga and Nayar

• To find the coefficients c_m to minimize the following

$$\varepsilon = \sum_{i=1}^{N} \sum_{j=1}^{P} \left[\sum_{m=0}^{M} c_m Z_{ij}^m - R_{j,j+1} \sum_{m=0}^{M} c_m Z_{i,j+1}^m \right]^2$$
A guess for the ratio of
$$\frac{X_{ij}}{X_{i,j+1}} = \frac{E_i \Delta t_j}{E_i \Delta t_{j+1}} = \frac{\Delta t_j}{\Delta t_{j+1}}$$

Mitsunaga and Nayar

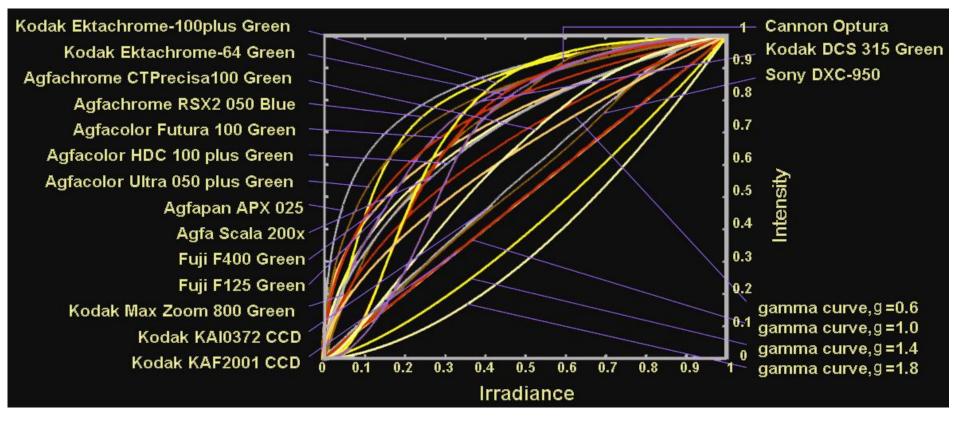
- Again, we can only solve up to a scale. Thus, add a constraint f(1)=1. It reduces to M variables.
- How to solve it?

• We solve the above iteratively and update the exposure ratio accordingly

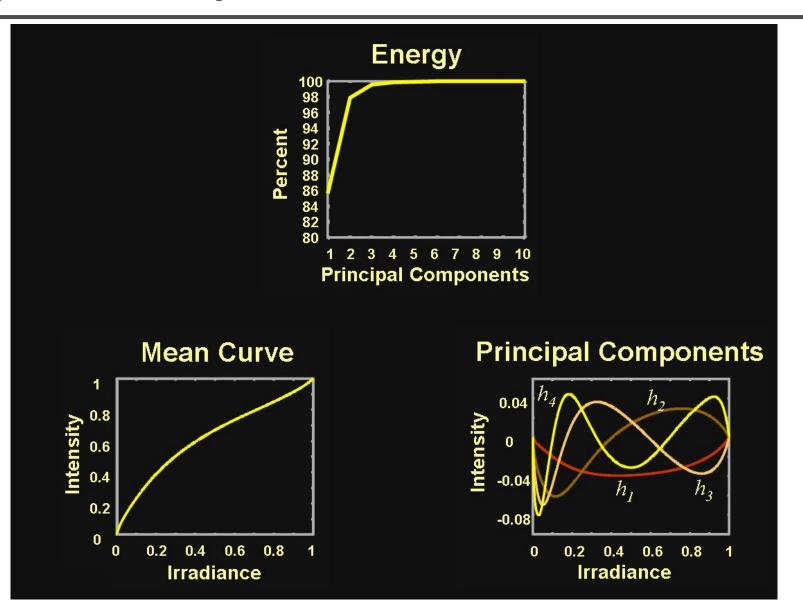
$$R_{j,j+1}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{m=0}^{M} c_{m,k}^{(k)} Z_{ij}^{m}}{\sum_{m=0}^{M} c_{m}^{(k)} Z_{i,j+1}^{m}}$$

• How to determine M? Solve up to M=10 and pick up the one with the minimal error. Notice that you prefer to have the same order for all channels. Use the combined error.

Space of response curves



Space of response curves



$$Z_{ij} = f(E_i \Delta t_j)$$
$$g(Z_{ij}) = f^{-1}(Z_{ij}) = E_i \Delta t_j$$

Given Z_{ij} and Δt_{j} , the goal is to find both E_i and $g(Z_{ij})$

Maximum likelihood

$$\Pr(E_i, g \mid Z_{ij}, \Delta t_j) \propto \exp\left(-\frac{1}{2} \sum_{ij} w(Z_{ij}) \left(g(Z_{ij}) - E_i \Delta t_j\right)^2\right)$$
$$\hat{g}, \hat{E}_i = \arg\min_{g, E_i} \sum_{ij} w(Z_{ij}) \left(g(Z_{ij}) - E_i \Delta t_j\right)^2$$

$$\hat{g}, \hat{E}_i = \arg\min_{g, E_i} \sum_{ij} w(Z_{ij}) \left(g(Z_{ij}) - E_i \Delta t_j\right)^2$$

repeat

assuming $g(Z_{ij})$ is known, optimize for E_i assuming E_i is known, optimize for $g(Z_{ij})$ until converge

$$\hat{g}, \hat{E}_i = \arg\min_{g, E_i} \sum_{ij} w(Z_{ij}) \left(g(Z_{ij}) - E_i \Delta t_j\right)^2$$

repeat

assuming $g(Z_{ij})$ is known, optimize for E_i

assuming E_i is known, optimize for $g(Z_{ij})$ until converge

$$\hat{g}, \hat{E}_i = \arg\min_{g, E_i} \sum_{ij} w(Z_{ij}) \left(g(Z_{ij}) - E_i \Delta t_j\right)^2$$

repeat

assuming $g(Z_{ij})$ is known, optimize for E_i assuming E_i is known, optimize for $g(Z_{ij})$ until converge

$$E_{i} = \frac{\sum_{j} w(Z_{ij}) g(Z_{ij}) \Delta t_{j}}{\sum_{j} w(Z_{ij}) \Delta t_{j}^{2}}$$

$$\hat{g}, \hat{E}_i = \arg\min_{g, E_i} \sum_{ij} w(Z_{ij}) \Big(g(Z_{ij}) - E_i \Delta t_j\Big)^2$$

repeat

assuming $g(Z_{ij})$ is known, optimize for E_i assuming E_i is known, optimize for $g(Z_{ij})$

until converge

$$g(m) = \frac{1}{|E_m|} \sum_{ij \in E_m} E_i \Delta t_j$$

normalize so that g(128) = 1

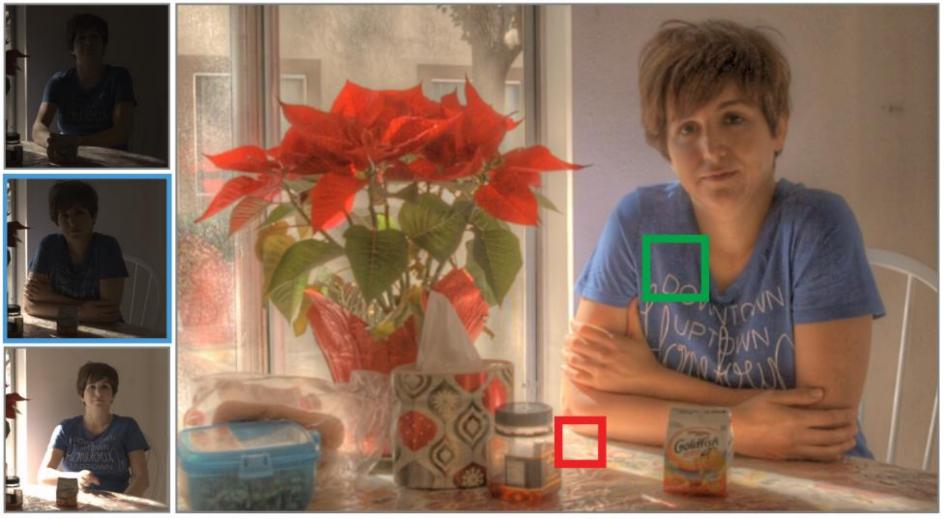
Patch-Based HDR

Input LDR sources

Reconstructed LDR images

Final tonemapped HDR result

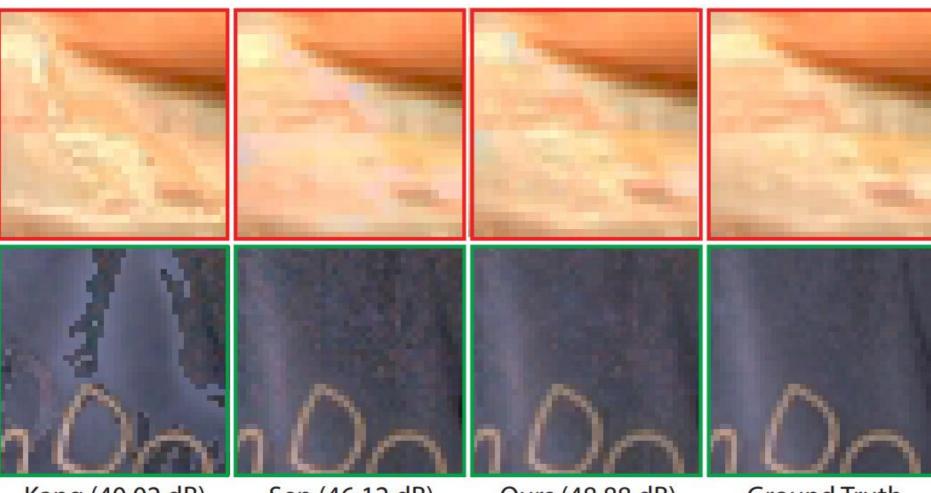
Deep learning HDR assembly



LDR Images

Our Tonemapped HDR Image

Deep learning HDR assembly



Kang (40.02 dB) S

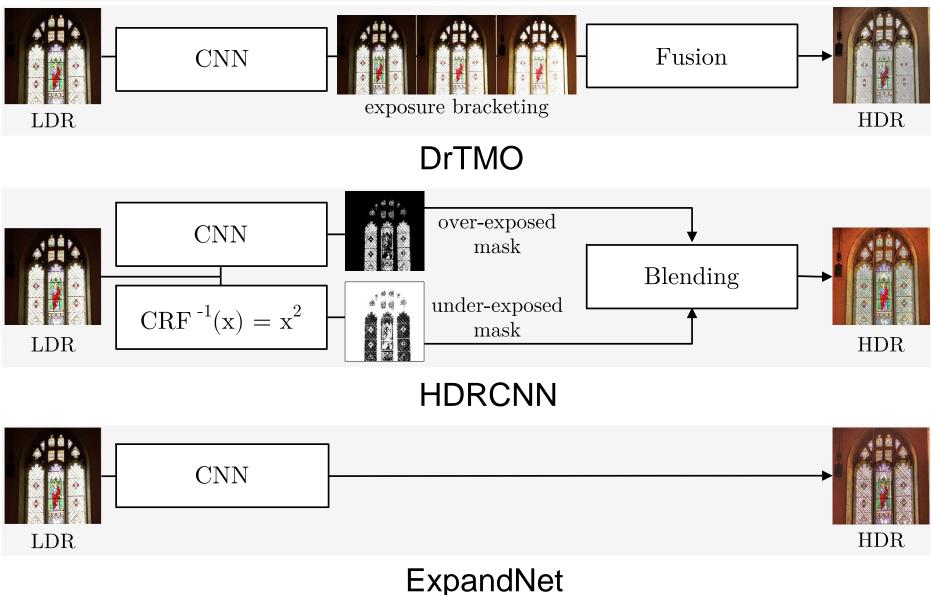
Sen (46.12 dB)

Ours (48.88 dB)

Ground Truth

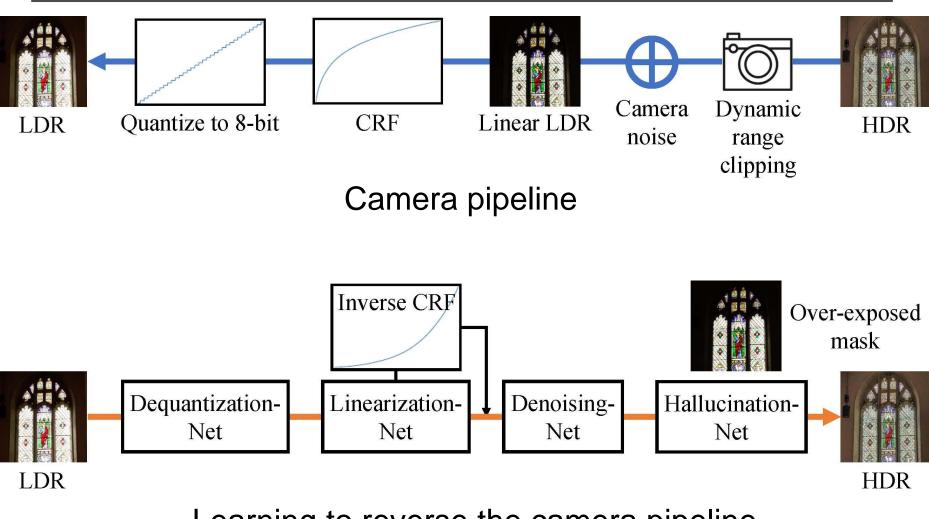
DigiVFX

Deep single-image HDR reconstruction



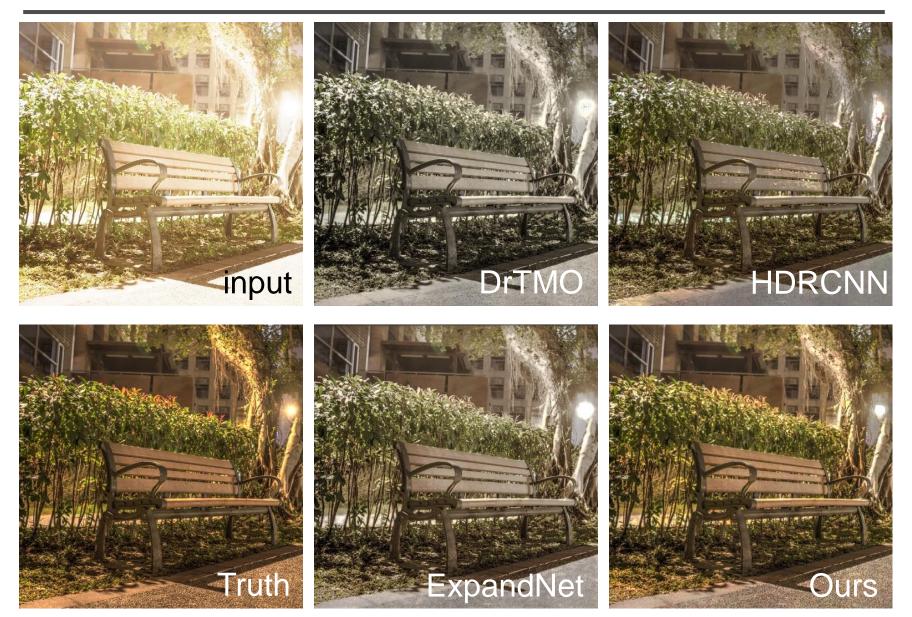
Learning to reverse the pipeline

Digi<mark>VFX</mark>



Learning to reverse the camera pipeline

Comparison



Input

Result



Input

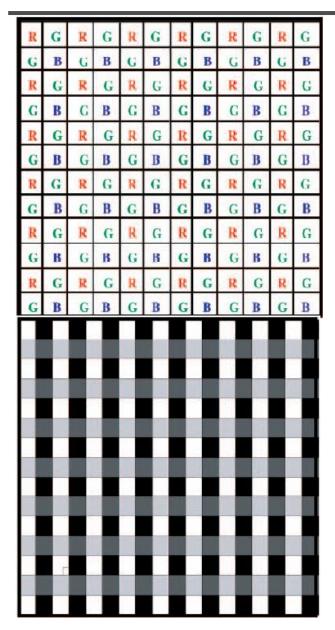
Result

HDR Video

High Dynamic Range Video
 Sing Bing Kang, Matthew Uyttendaele, Simon
 Winder, Richard Szeliski

 SIGGRAPH 2003

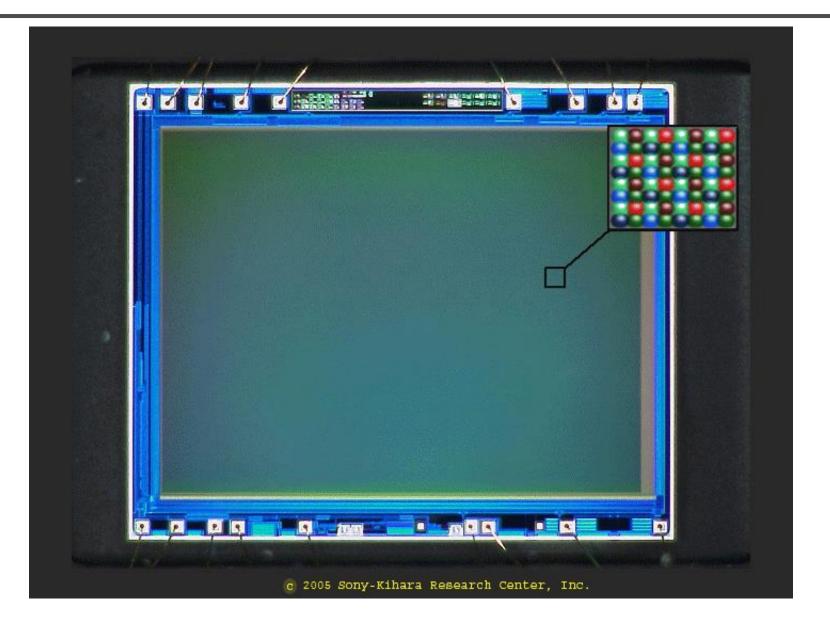
Assorted pixel



R	G	R	G	R	G	R	G	R	G	R	G
G	B	6	B	G	B	G	B	G	B	6	B
R	G	R	G	R	G	R	G	R	G	R	G
G	B	G	B	G	B	G	B	6	B	G	B
R	G	R	G	R	G	R	G	R	G	R	G
G	B	6	B	G	B	6	B	G	B	6	B
R	G	R	G	R	G	R	G	1	G	R	G
G	B	G	B	G	B	G	B	G	B	G	B
R	G	R	G	R	G	R	G	R	G	R	G
G	B	6	B	G	B	G	B	G	B	6	B
18	G	R	G	R	G	R	G	R	G	R	G
G	B	G	B	6	B	G	B	G.	B	G	B

Digi<mark>VFX</mark>

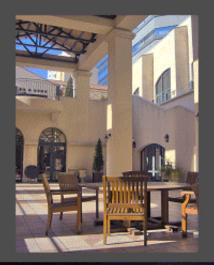
Assorted pixel



Assorted pixel

Normal Camera

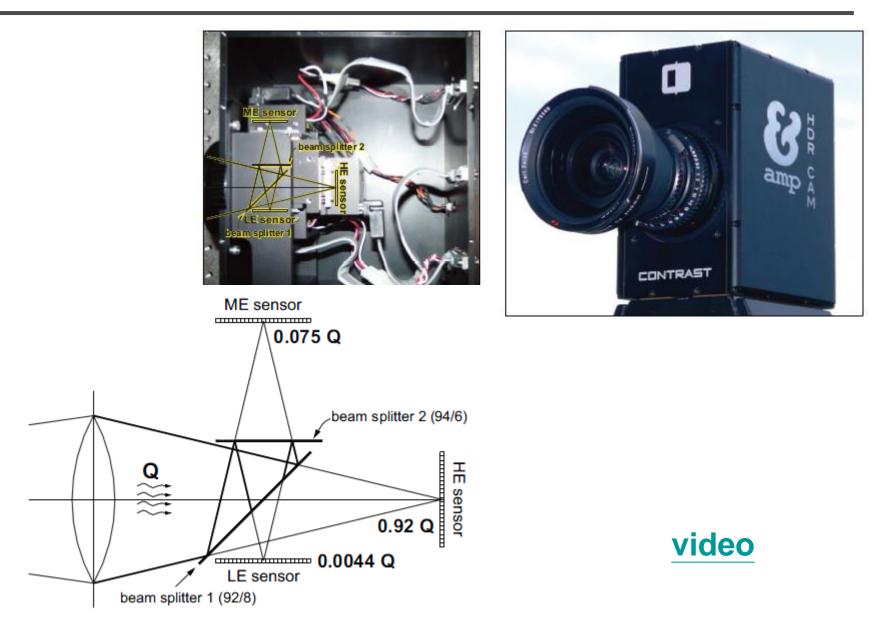
Assorted Pixel Camera



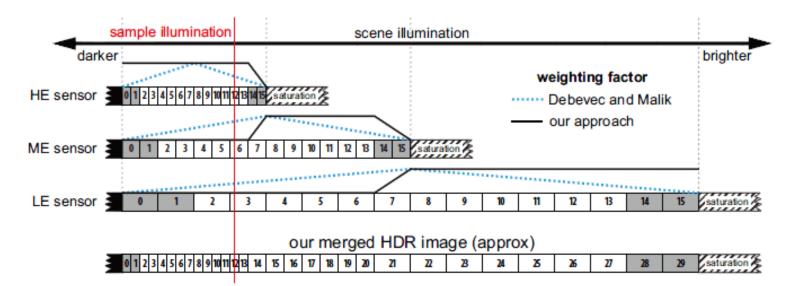
c 2005 Sony-Kihara Research Center, Inc.

DigiVFX

A Versatile HDR Video System



A Versatile HDR Video System



DigiVF)

HDR becomes common practice

- **DigiVFX**
- Many cameras has bracket exposure modes
- For example, since iPhone 4, iPhone has HDR option. But, it could be more exposure blending rather than true HDR.

References

Second Edition

HIGH DYNAMIC RANGE IMAGING

Acquisition, Display and Image-Based Lighting

Erik Reinhard • Greg Ward • Sumanta Pattanaik Paul Debevec • Wolfgang Heidrich • Karol Myszkowski

References

- Digi<mark>VFX</mark>
- Paul E. Debevec, Jitendra Malik, <u>Recovering High Dynamic Range</u> <u>Radiance Maps from Photographs</u>, SIGGRAPH 1997.
- Tomoo Mitsunaga, Shree Nayar, <u>Radiometric Self Calibration</u>, CVPR 1999.
- Mark Robertson, Sean Borman, Robert Stevenson, <u>Estimation-</u> <u>Theoretic Approach to Dynamic Range Enhancement using Multiple</u> <u>Exposures</u>, Journal of Electronic Imaging 2003.
- Michael Grossberg, Shree Nayar, <u>Determining the Camera Response</u> from Images: What Is Knowable, PAMI 2003.
- Michael Grossberg, Shree Nayar, <u>Modeling the Space of Camera</u> <u>Response Functions</u>, PAMI 2004.
- Srinivasa Narasimhan, Shree Nayar, <u>Enhancing Resolution Along</u> <u>Multiple Imaging Dimensions Using Assorted Pixels</u>, PAMI 2005.
- G. Krawczyk, M. Goesele, H.-P. Seidel, <u>Photometric Calibration of</u> <u>High Dynamic Range Cameras</u>, MPI Research Report 2005.
- G. Ward, <u>Fast Robust Image Registration for Compositing High</u> Dynamic Range Photographs from Hand-held Exposures, jgt 2003.