Graph Cut

Digital Visual Effects Yung-Yu Chuang

with slides by Fredo Durand, Ramesh Raskar

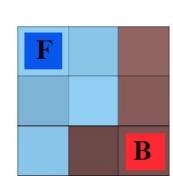
Graph cut

• Interactive image segmentation using graph cut

- Binary label: foreground vs. background
- User labels some pixels
 - similar to trimap, usually sparser
- Exploit

Graph cut

- Statistics of known Fg & Bg
- Smoothness of label
- Turn into discrete graph optimization
 - Graph cut (min cut / max flow)



F

F

B

B

B

B

a cut

 $D_n(s)$

F

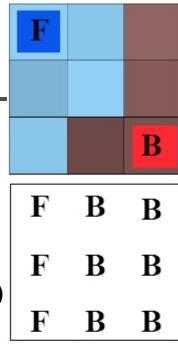
F

F

 $D_p(t)$

Energy function

- Labeling: one value per pixel, F or B
- Energy(labeling) = data + smoothness
 - Very general situation
 - Will be minimized
- Data: for each pixel
 - Probability that this color belongs to F (resp. B)
 - Similar in spirit to Bayesian matting
- Smoothness (aka regularization): per neighboring pixel pair
 - Penalty for having different label
 - Penalty is downweighted if the two pixel colors are very different
 - Similar in spirit to bilateral filter



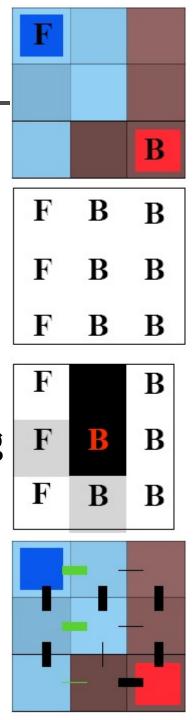
One labeling (ok, not best)

Data term

- A.k.a regional term (because integrated over full region)
- $D(L)=\sum_{i} -\log h[L_i](C_i)$
- Where *i* is a pixel

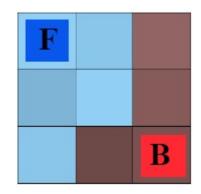
 L_i is the label at *i* (F or B),
 C_i is the pixel value

 h[L_i] is the histogram of the observed Fg
 (resp Bg)
- Note the minus sign



Hard constraints

- The user has provided some labels
- The quick and dirty way to include constraints into optimization is to replace the data term by a huge penalty if not respected.
- D(L_i)=0 if respected
- D(L_i)=K if not respected
 - e.g. K=- #pixels

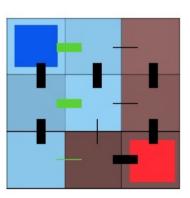


Smoothness term

- a.k.a boundary term, a.k.a. regularization
- $S(L)=\sum_{\{j, i\} \text{ in } N} B(C_i, C_j) \delta(L_i-L_j)$
- Where i, j are neighbors
 - e.g. 8-neighborhood
 (but I show 4 for simplicity)

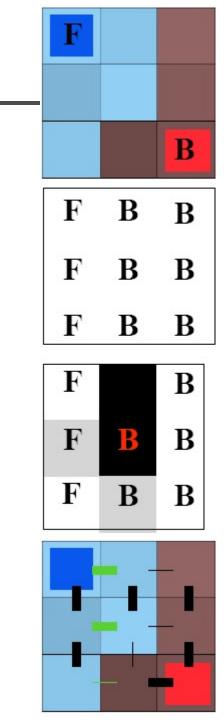
F	В	В
F	В	В
F	В	В

- $\delta(L_i-L_j)$ is 0 if $L_i=L_j$, 1 otherwise
- B(C_i,C_j) is high when C_i and C_j are similar, low if there is a discontinuity between those two pixels
 - e.g. $exp(-||C_i-C_j||^2/2\sigma^2)$
 - where σ can be a constant or the local variance
- Note positive sign



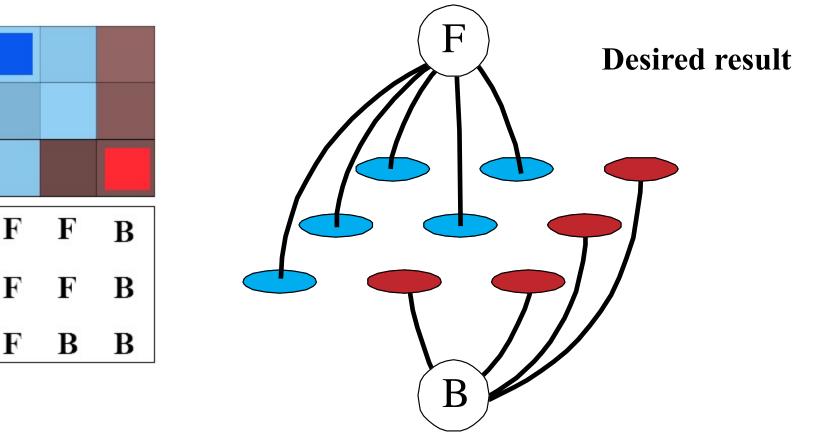
Optimization

- $E(L)=D(L)+\lambda S(L)$
- λ is a black-magic constant
- Find the labeling that minimizes E
- In this case, how many possibilities?
 - 2⁹ (512)
 - We can try them all!
 - What about megapixel images?



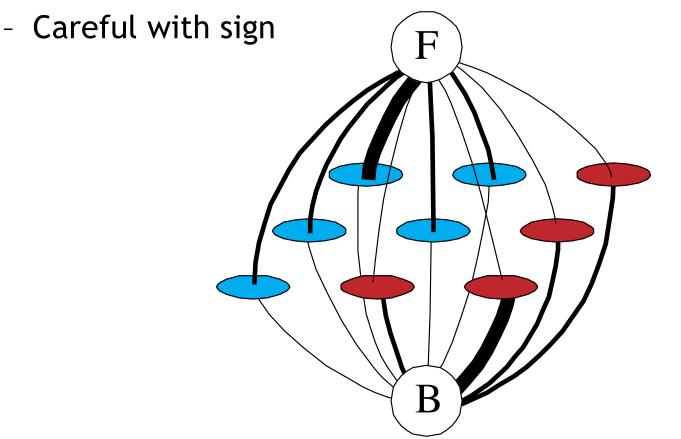
Labeling as a graph problem

- Each pixel = node
- Add two nodes F & B
- Labeling: link each pixel to either F or B



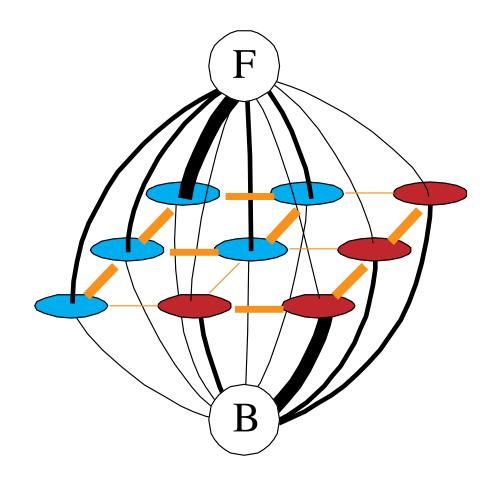
Data term

- Put one edge between each pixel and F & G
- Weight of edge = minus data term
 - Don't forget huge weight for hard constraints



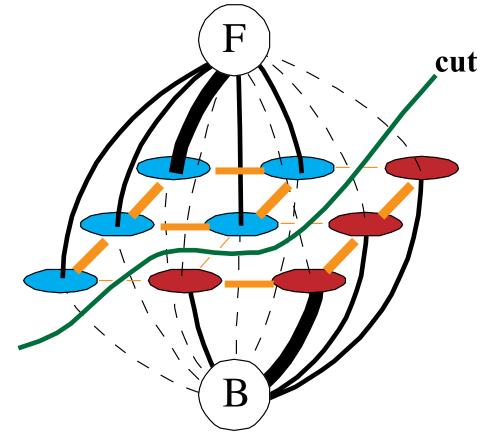
Smoothness term

- Add an edge between each neighbor pair
- Weight = smoothness term



Min cut

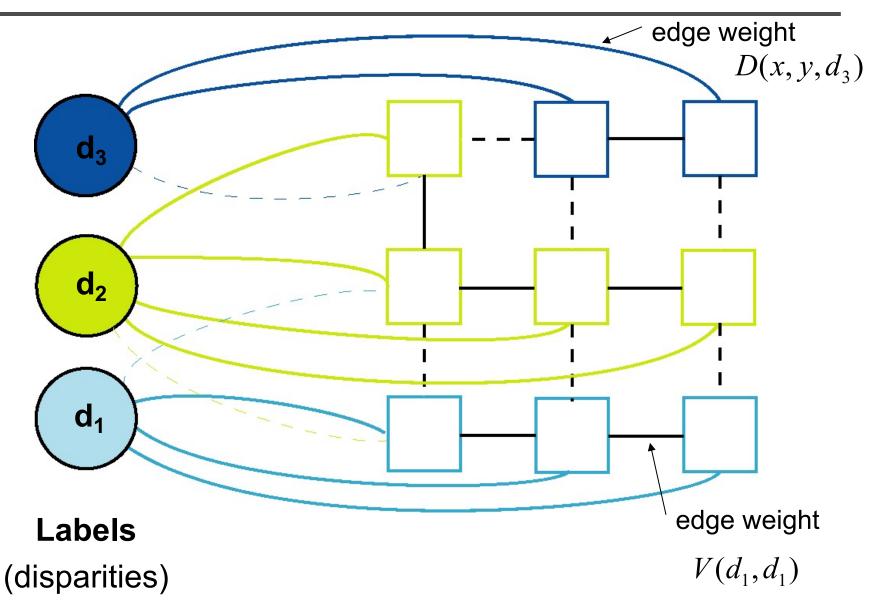
- Energy optimization equivalent to min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight



Min cut <=> labeling

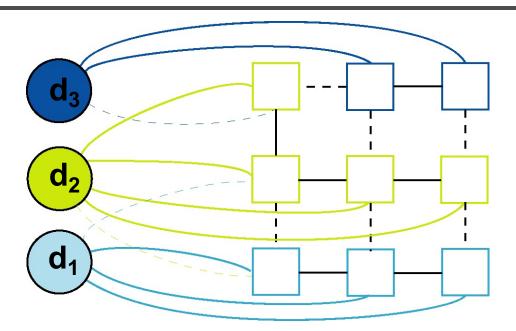
- In order to be a cut:
 - For each pixel, either the F or G edge has to be cut
- In order to be minimal
 - Only one edge label F per pixel can be cut cut (otherwise could be added)

Energy minimization via graph cuts



DigiVFX

Energy minimization via graph cuts

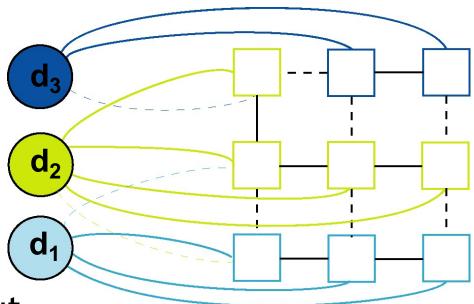


Digi

• Graph Cost

- Matching cost between images
- Neighborhood matching term
- Goal: figure out which labels are connected to which pixels

Energy minimization via graph cuts

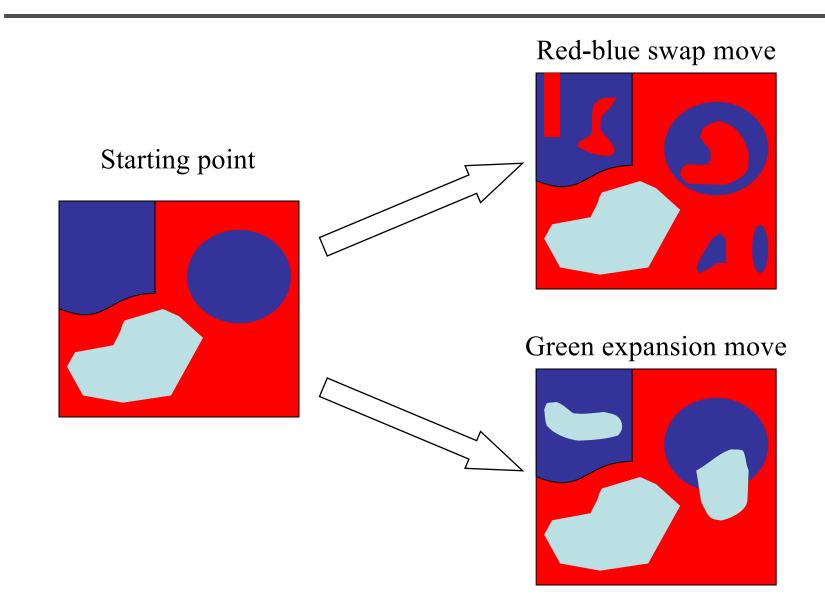


- Graph Cut
 - Delete enough edges so that
 - each pixel is (transitively) connected to exactly one label node
 - Cost of a cut: sum of deleted edge weights
 - Finding min cost cut equivalent to finding global minimum of energy function

Computing a multiway cut

- With 2 labels: classical min-cut problem
 - Solvable by standard flow algorithms
 - polynomial time in theory, nearly linear in practice
 - More than 2 terminals: NP-hard [Dahlhaus *et al.*, STOC '92]
- Efficient approximation algorithms exist
 - Within a factor of 2 of optimal
 - Computes local minimum in a strong sense
 - even very large moves will not improve the energy
 - Yuri Boykov, Olga Veksler and Ramin Zabih, <u>Fast Approximate Energy</u> <u>Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Move examples



The swap move algorithm

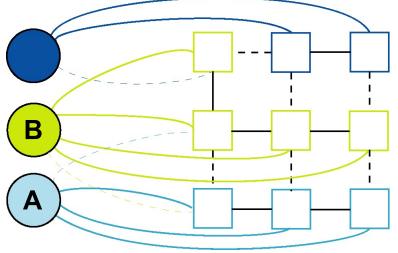
- 1. Start with an arbitrary labeling
- 2. Cycle through every label pair (A,B) in some order

2.1 Find the lowest *E* labeling within a single *AB*-swap

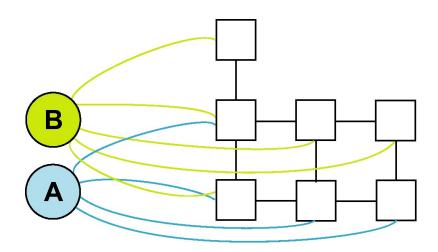
2.2 Go there if *E* is lower than the current labeling

3. If *E* did not decrease in the cycle, we're done

Otherwise, go to step 2



Original graph



AB subgraph (run min-cut on this graph)

The expansion move algorithm

- 1. Start with an arbitrary labeling
- 2. Cycle through every label A in some order
 - 2.1 Find the lowest *E* labeling within a single *A*-expansion2.2 Go there if it *E* is lower than the current labeling
- 3. If *E* did not decrease in the cycle, we're done Otherwise, go to step 2

GrabCut Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother Vladimir Kolmogorov Andrew Blake

Microsoft Research Cambridge-UK

GrabCut

Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother Vladimir Kolmogorov Andrew Blake

Microsoft Research Cambridge

• Find seams using graph cuts

• Combine gradients and integrate

Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David Salesin, Michael Cohen, "Interactive Digital Photomontage", SIGGRAPH 2004

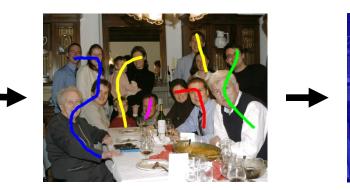
set ofa**otigi**hals

placetoiveenhtage

Source images

Brush strokes

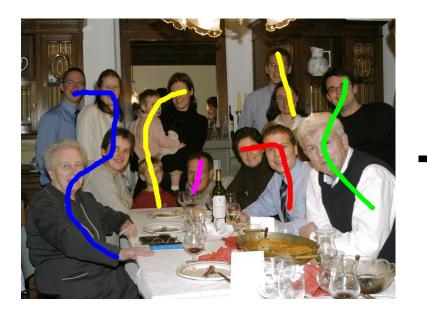
Computed labeling



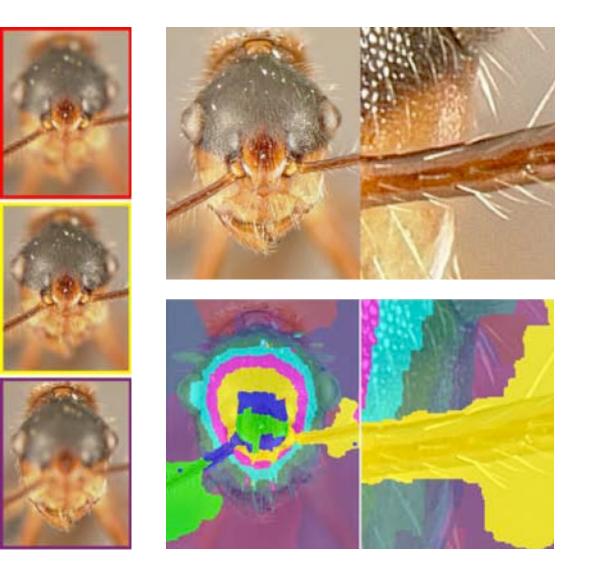
Composite

Brush strokes

Computed labeling

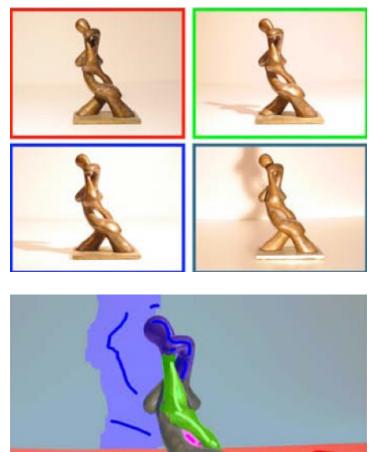


 Extended depth of field

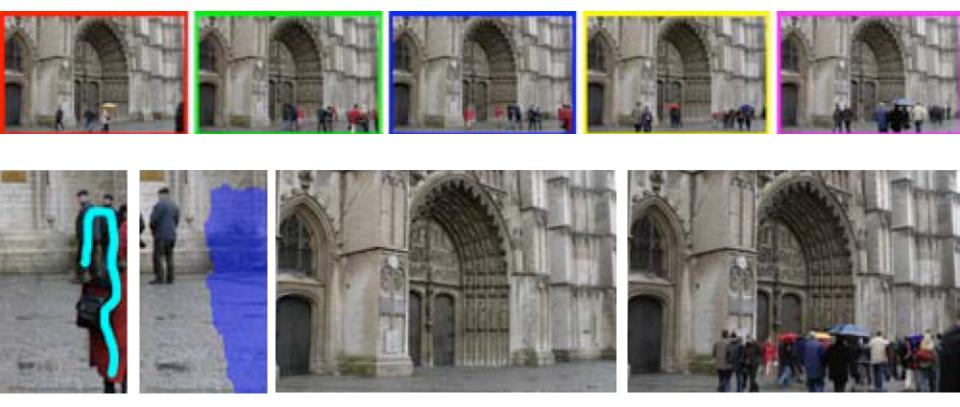


DigiVFX

• Relighting



DigiVFX



Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

