Bilateral Filters

Digital Visual Effects

Yung-Yu Chuang

Image Denoising

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

Smoothing an image without blurring its edges.

A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
 - All have their pros and cons.

Bilateral filter

- not always the best result [Buades 05] but often good
- easy to understand, adapt and set up

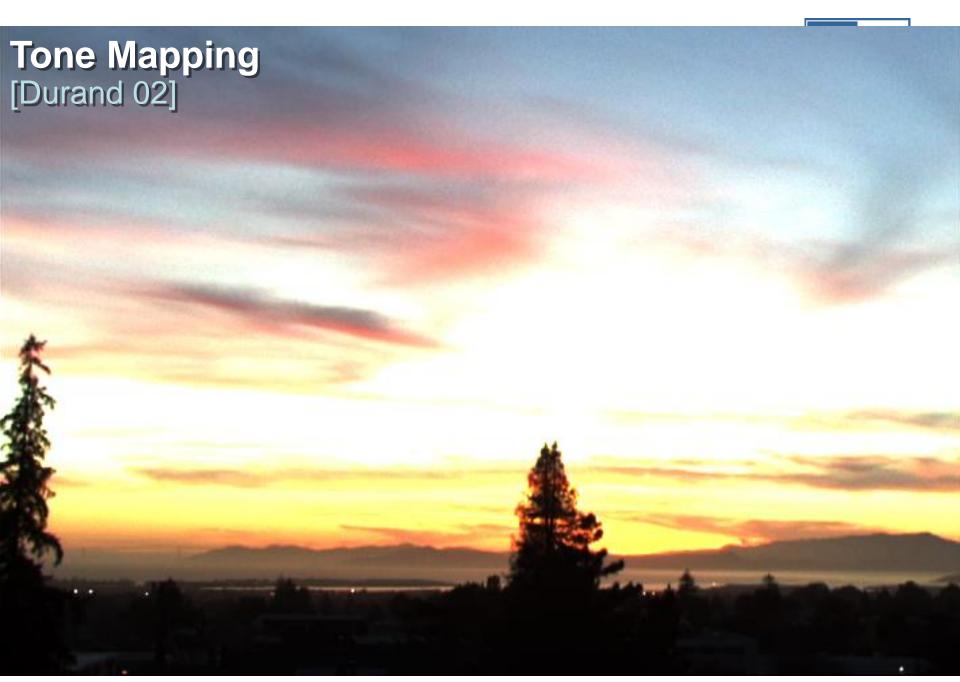
Basic denoising

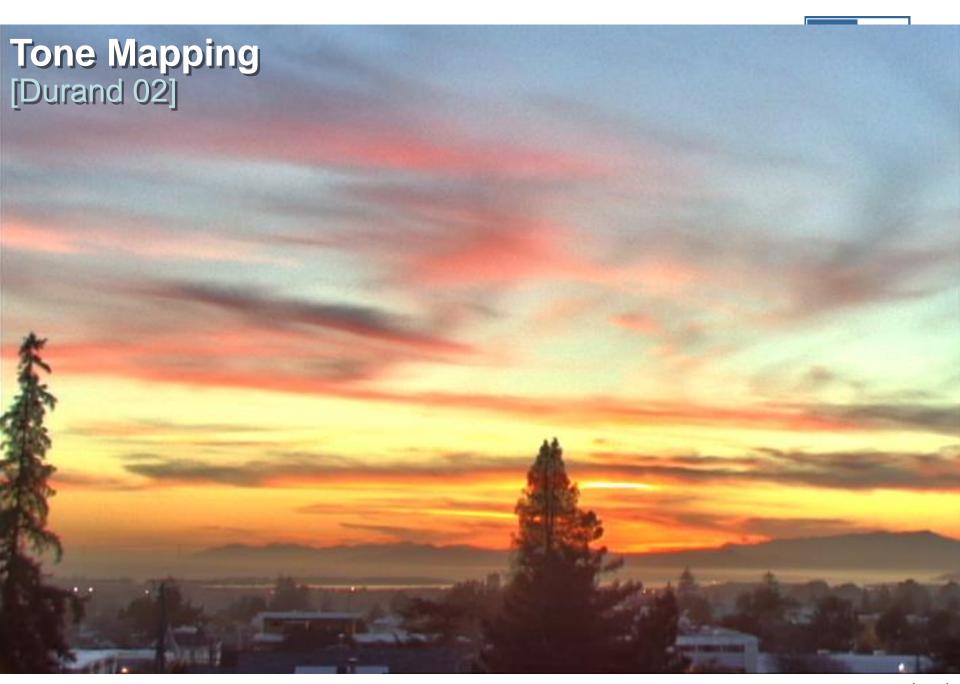
Noisy input ____ Median 5x5

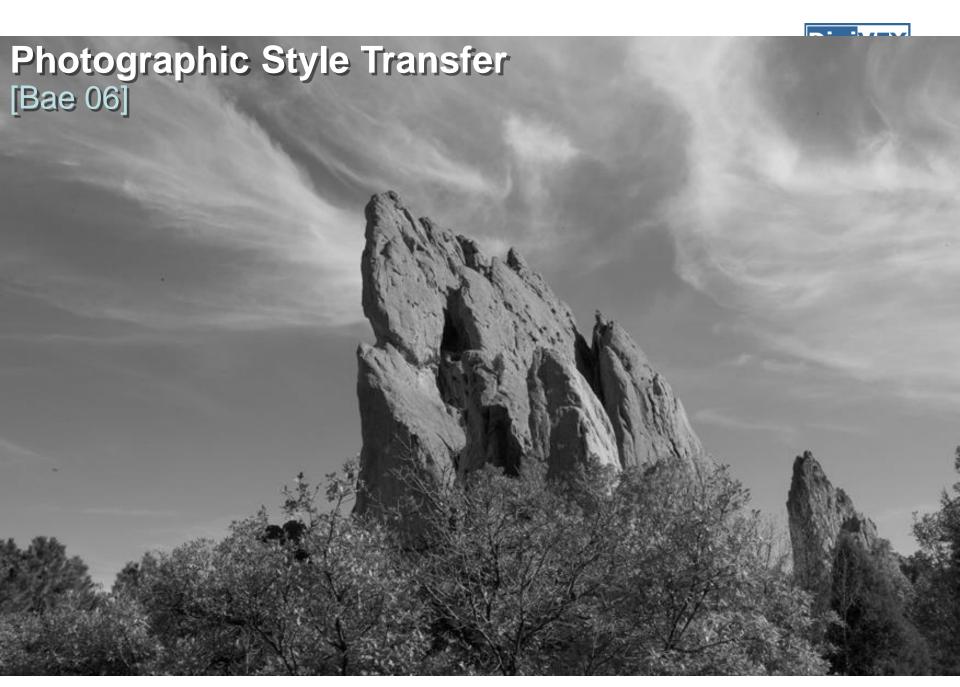
Basic denoising

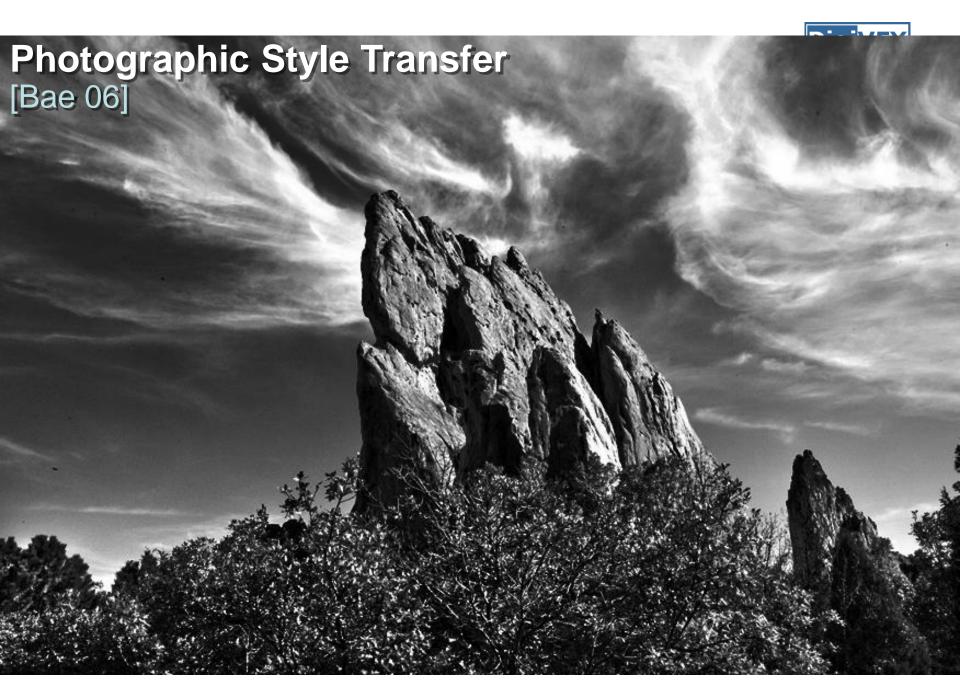
Noisy input

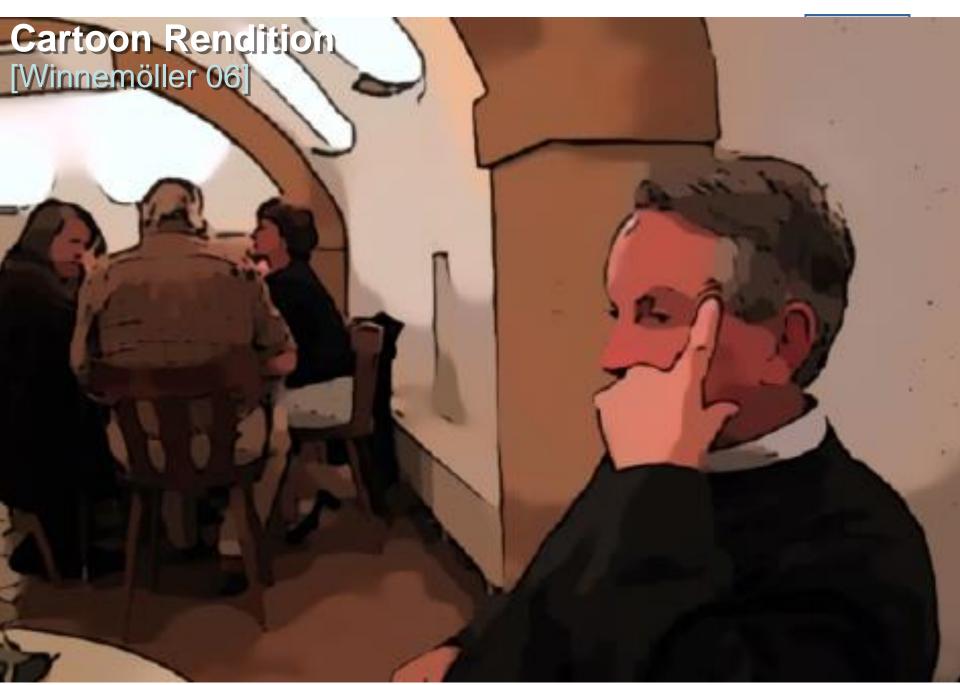
Bilateral filter 7x7 window



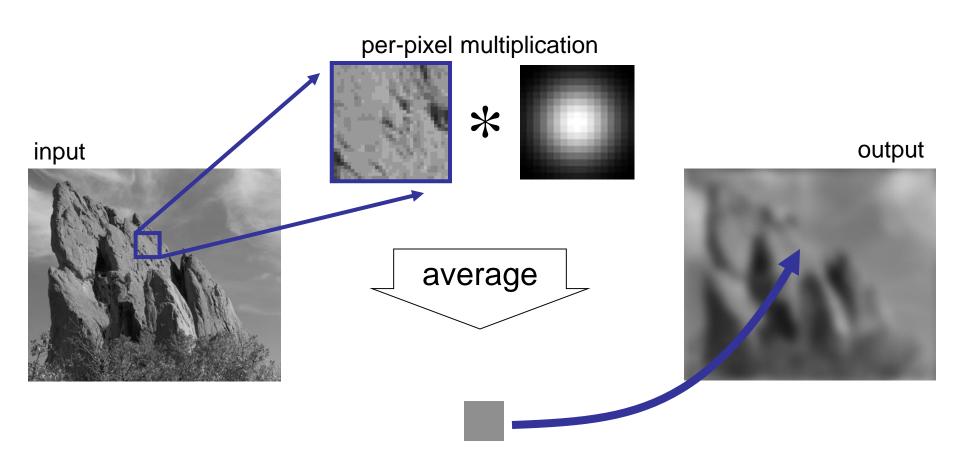








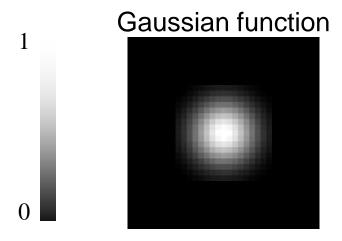
Gaussian Blur



Equation of Gaussian Blur

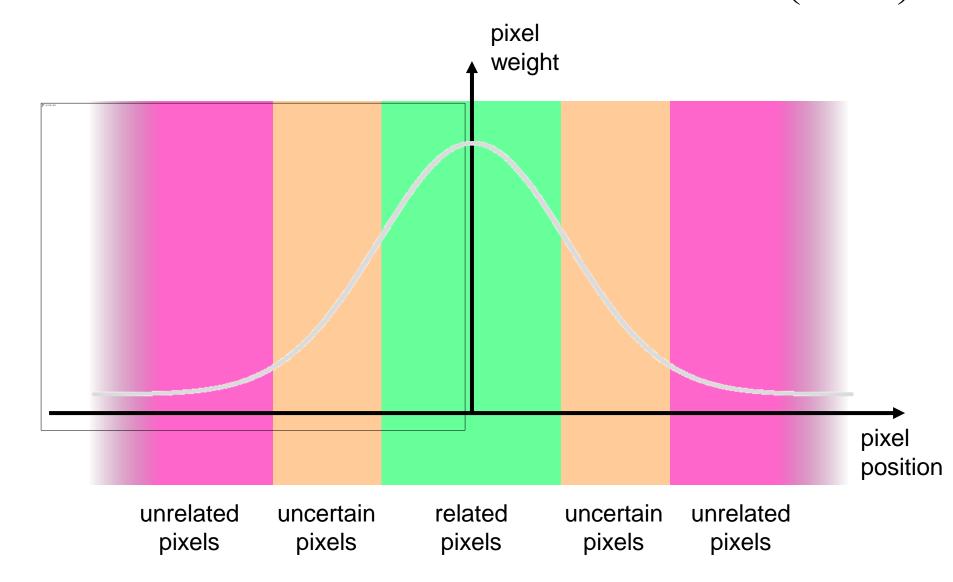
Same idea: weighted average of pixels.

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$



Gaussian Profile

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

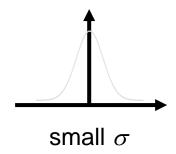


Spatial Parameter

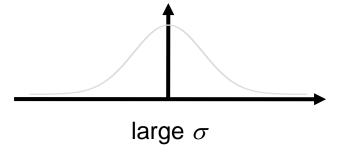
input

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\mathbf{q}}(||\mathbf{p} - \mathbf{q}||) I_{\mathbf{q}}$$

size of the window



limited smoothing



strong smoothing

DigiVFX

Properties of Gaussian Blur

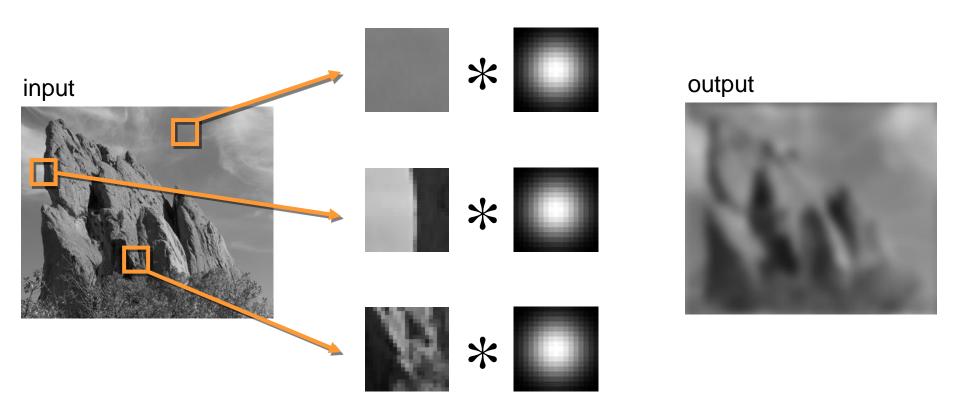
- Weights independent of spatial location
 - linear convolution
 - well-known operation
 - efficient computation (recursive algorithm, FFT...)

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term

output

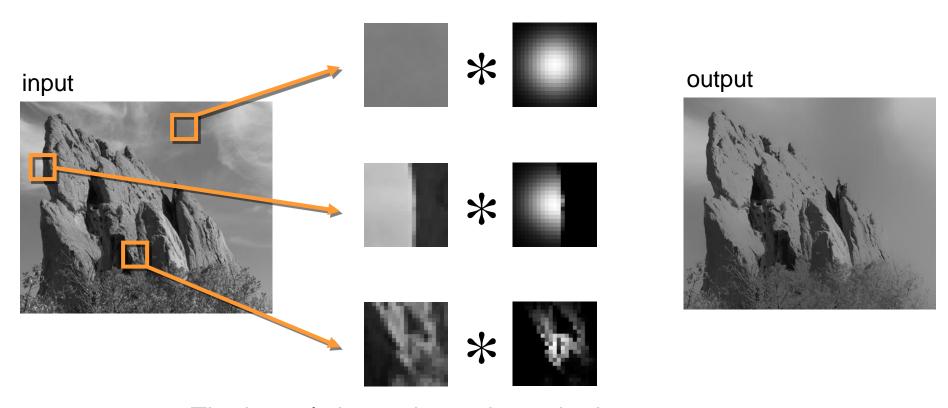
$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(||\mathbf{p} - \mathbf{q}||) I_{\mathbf{q}}$$
space

Blur Comes from Averaging across Edges



Same Gaussian kernel everywhere.

Bilateral Filter No Averaging across Edges



The kernel shape depends on the image content.

Bilateral Filter Definition

Same idea: weighted average of pixels.

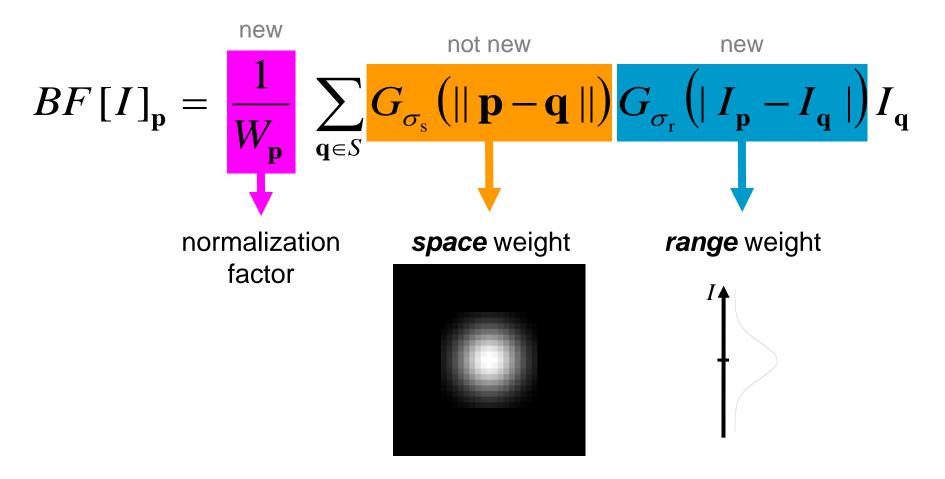
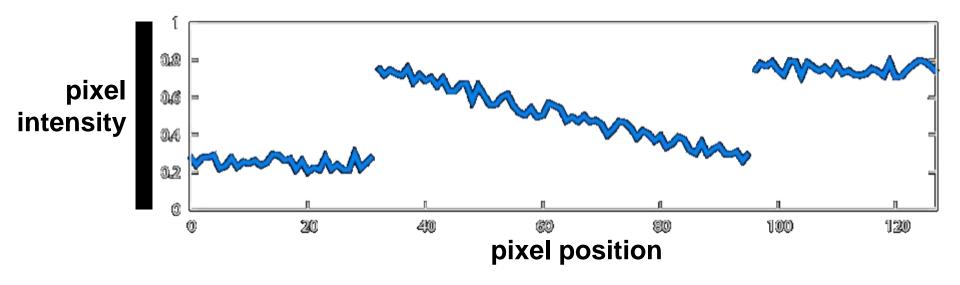


Illustration a 1D Image

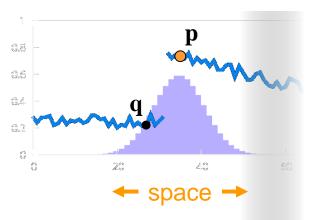
• 1D image = line of pixels

Better visualized as a plot



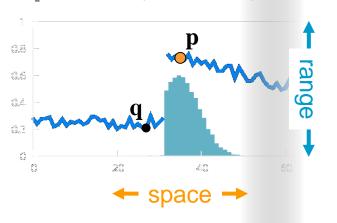
Gaussian Blur and Bilateral Filter Digivex

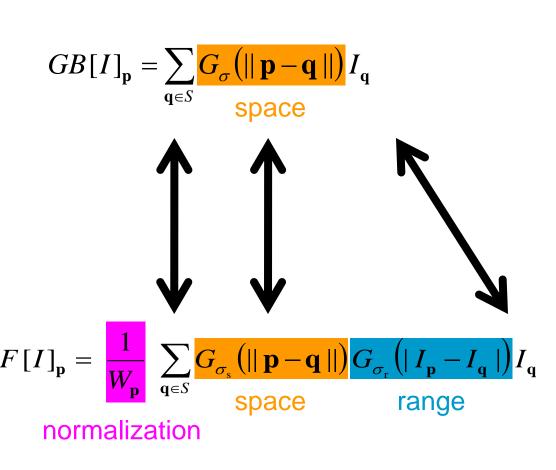
Gaussian blur



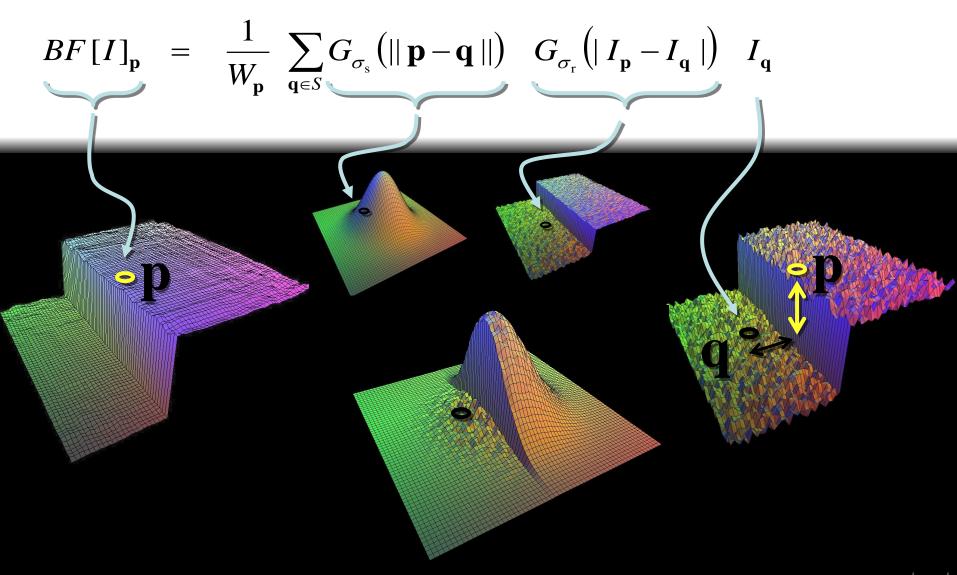
Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]





Bilateral Filter on a Height Field



Space and Range Parameters

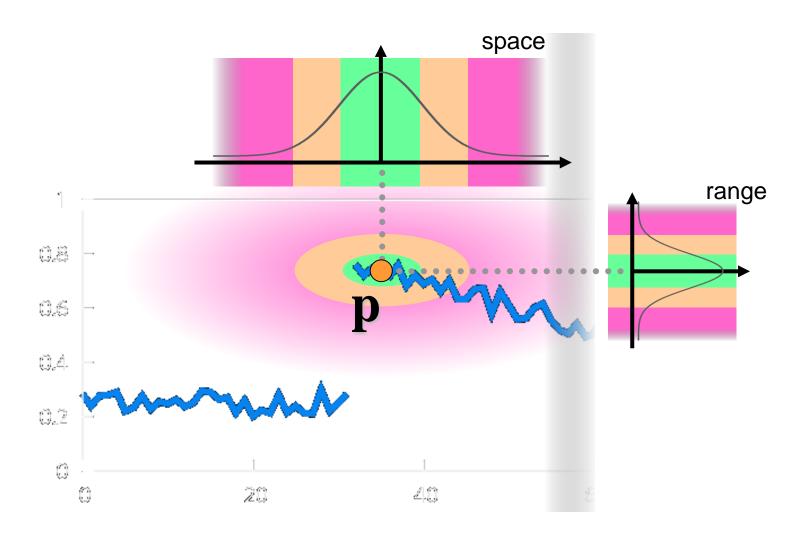
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

• space σ_s : spatial extent of the kernel, size of the considered neighborhood.

• range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Influence of Pixels

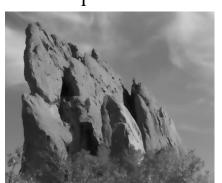
Only pixels close in space and in range are considered.



input

Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$



 $\sigma_{\rm r} = 0.25$

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

 $\sigma_{s} = 2$

Iterating the Bilateral Filter

$$I_{(n+1)} = BF\left[I_{(n)}\right]$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.

Advantages of Bilateral Filter

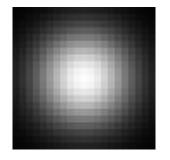
- Easy to understand
 - Weighted mean of nearby pixels
- Easy to adapt
 - Distance between pixel values
- Easy to set up
 - Non-iterative

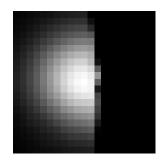
Hard to Compute

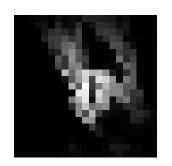
Nonlinear

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} \left(||\mathbf{p} - \mathbf{q}|| \right) G_{\sigma_{r}} \left(|I_{\mathbf{p}} - I_{\mathbf{q}}| \right) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...







• Brute-force implementation is slow > 10min

But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
 - [Elad 02]: Gauss-Seidel iterations
 - Only for many iterations

- [Durand 02, Weiss 06]: fast approximation
 - No formal understanding of accuracy versus speed
 - [Weiss 06]: Only **box function** as spatial kernel

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
 - Gaussian on space distance
 - Gaussian on range distance
 - sum to 1

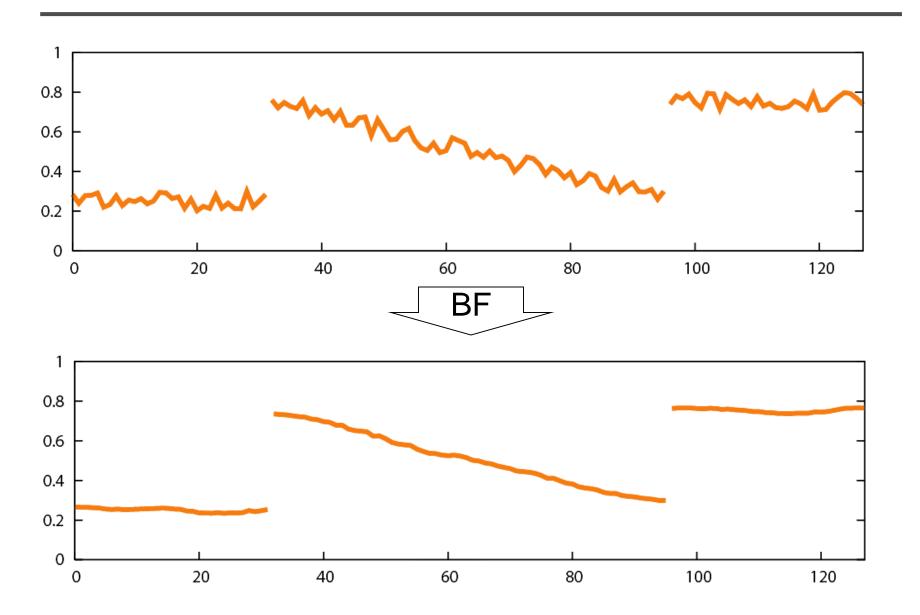
$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

Contributions

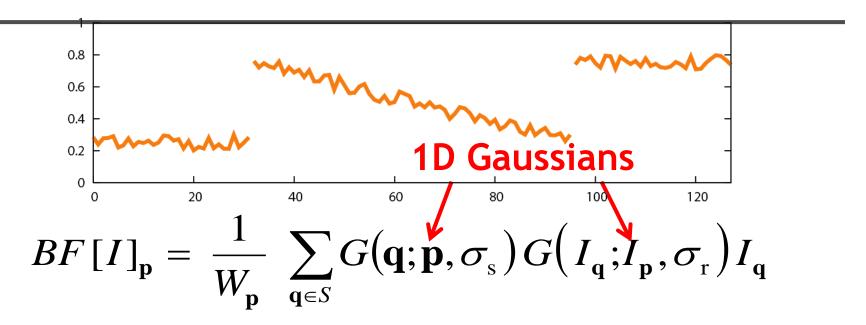
Link with linear filtering

• Fast and accurate approximation

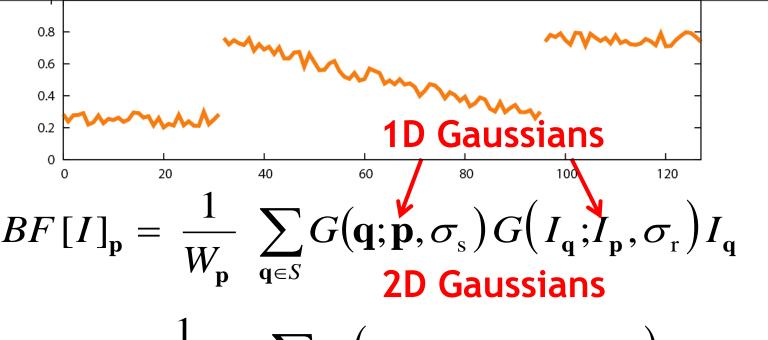
Intuition on 1D Signal



Basic idea

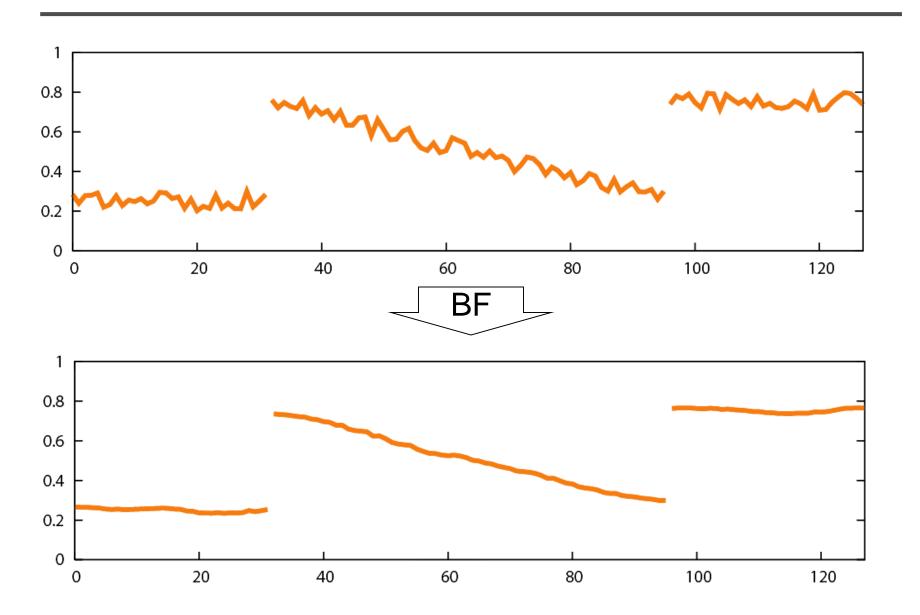


Basic idea

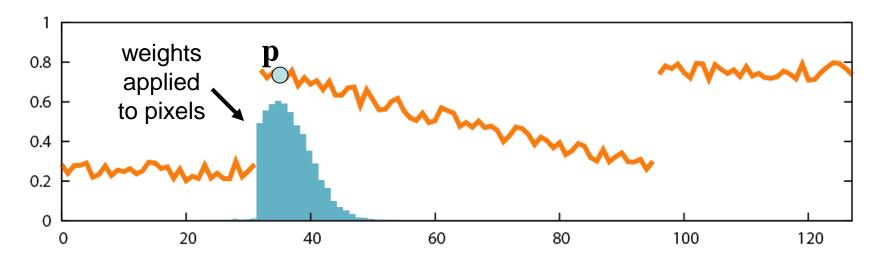


$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle \in S'} \mathbf{G}(\mathbf{q}, I_{\mathbf{q}}; \mathbf{p}, I_{\mathbf{p}}, \sigma_{s}, \sigma_{r}) I_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle}$$

Intuition on 1D Signal



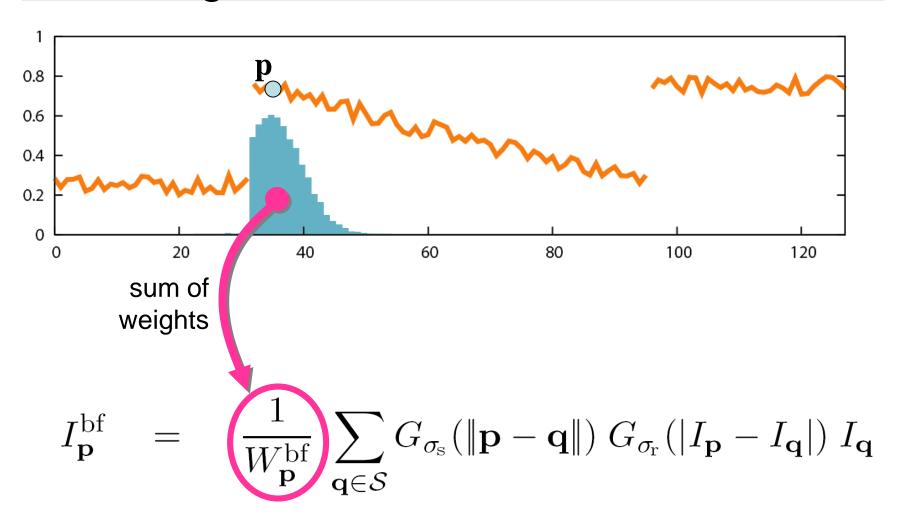
Intuition on 1D Signal Weighted Average of Neighbors



- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.

DigiVFX

1. Handling the Division



Handling the division with a **projective space**.

Formalization: Handling the Division

$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}}^{\mathrm{bf}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

- Normalizing factor as homogeneous coordinate
 - ullet Multiply both sides by $W_{f p}^{
 m bf}$

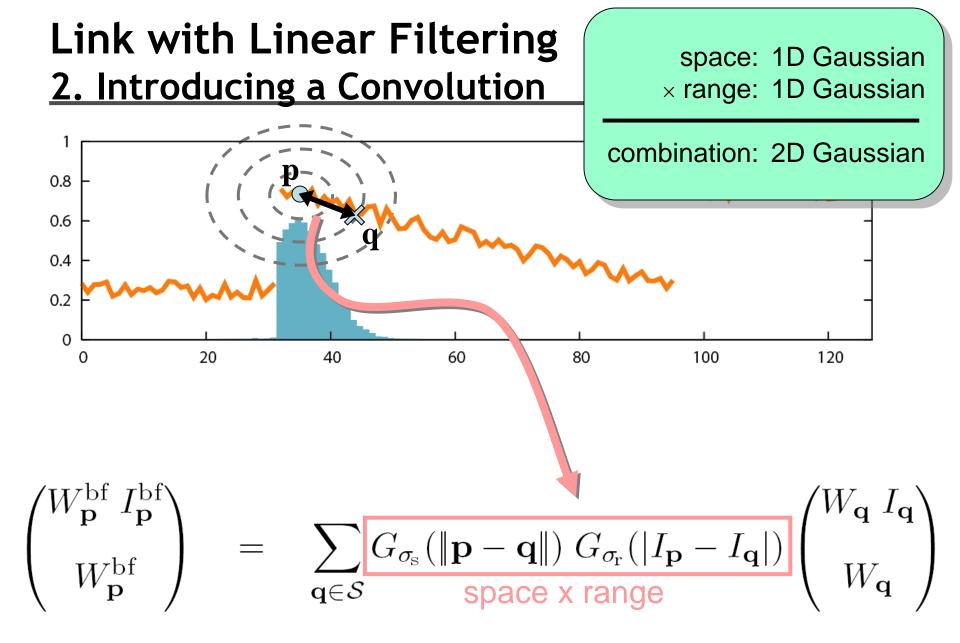
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} I_{\mathbf{q}} \\ 1 \end{pmatrix}$$

Formalization: Handling the Division

$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix} \text{ with } W_{\mathbf{q}} = 1$$

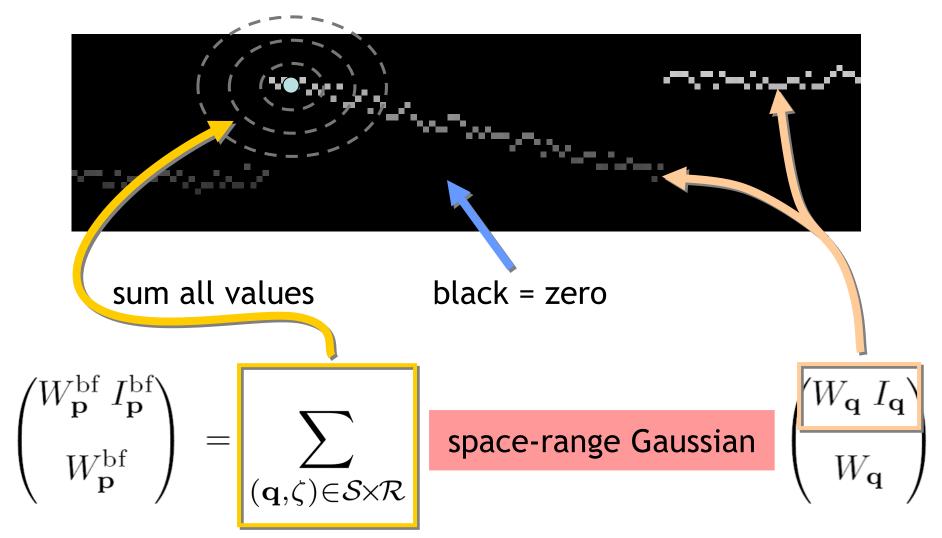
- Similar to homogeneous coordinates in projective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

Link with Linear Filtering space: 1D Gaussian 2. Introducing a Convolution × range: 1D Gaussian combination: 2D Gaussian 0.8 0.6 0.4 0.2 0 20 40 60 80 00 120 space



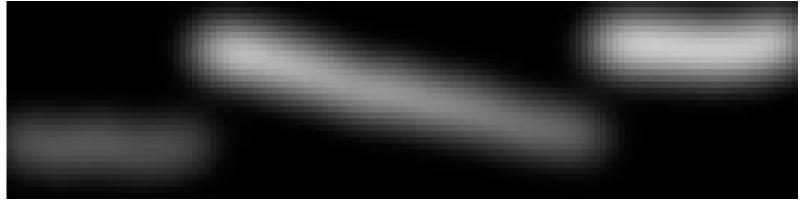
Corresponds to a 3D Gaussian on a 2D image.

2. Introducing a Convolution



sum all values multiplied by kernel ⇒ convolution

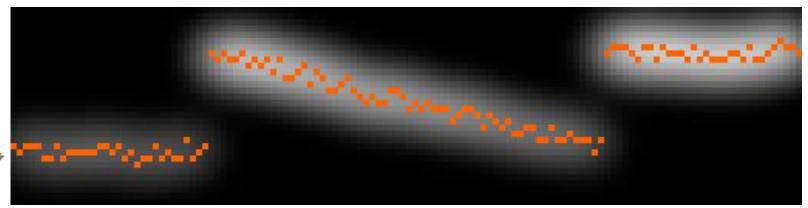
2. Introducing a Convolution



result of the convolution

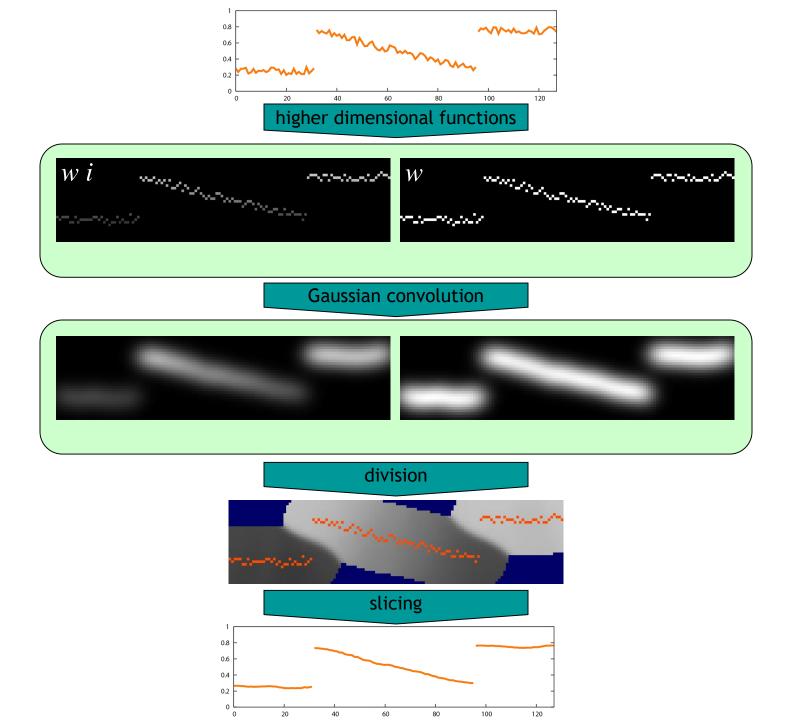
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \ I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} \ = \ \sum_{(\mathbf{q}, \zeta) \in \mathcal{S} \times \mathcal{R}} \quad \text{space-range Gaussian} \quad \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$

2. Introducing a Convolution



result of the convolution

$$egin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \ I_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q},\zeta) \in \mathcal{S} imes \mathcal{R}} \quad ext{space-range Gaussian} \ \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \end{pmatrix}$$



linear:
$$(w^{\mathrm{bf}}\ i^{\mathrm{bf}}, w^{\mathrm{bf}}) = g_{\sigma_{\!\!\mathbf{s}}, \sigma_{\!\!\mathbf{r}}} \otimes (wi, w)$$
nonlinear: $I^{\mathrm{bf}}_{\mathbf{p}} = \frac{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})\ i^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}$

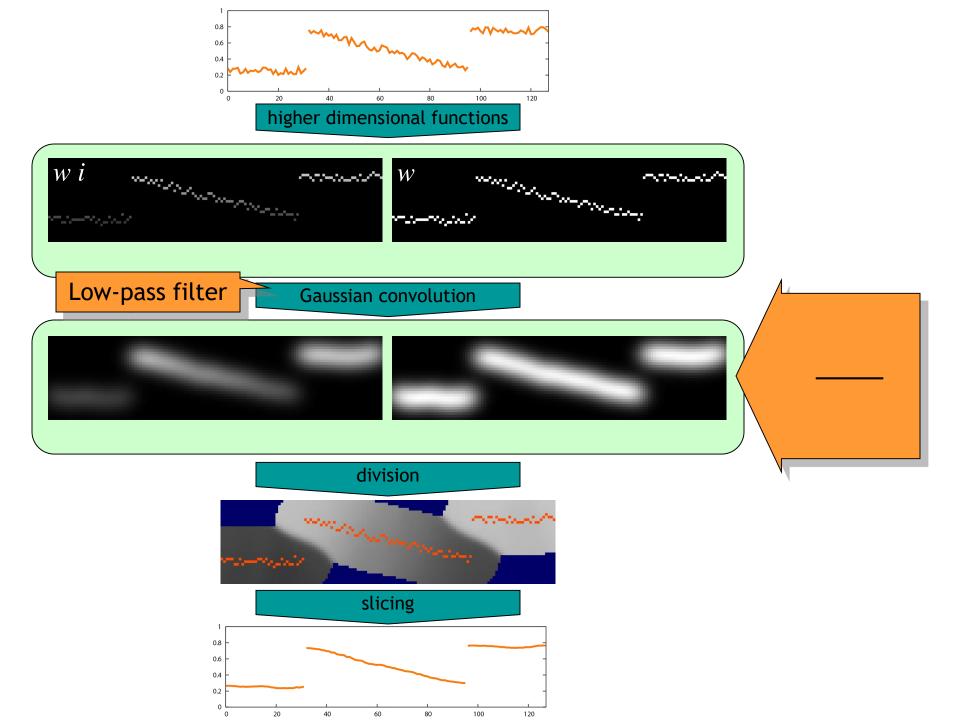
1. Convolution in higher dimension

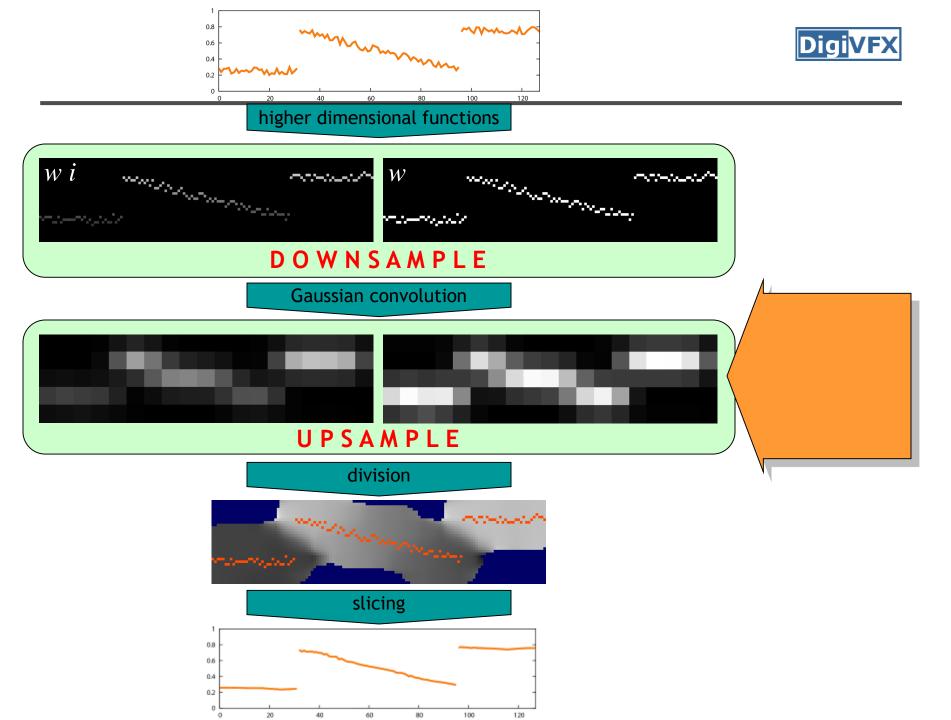
expensive but well understood (linear, FFT, etc)

2. Division and slicing

nonlinear but simple and pixel-wise

Exact reformulation





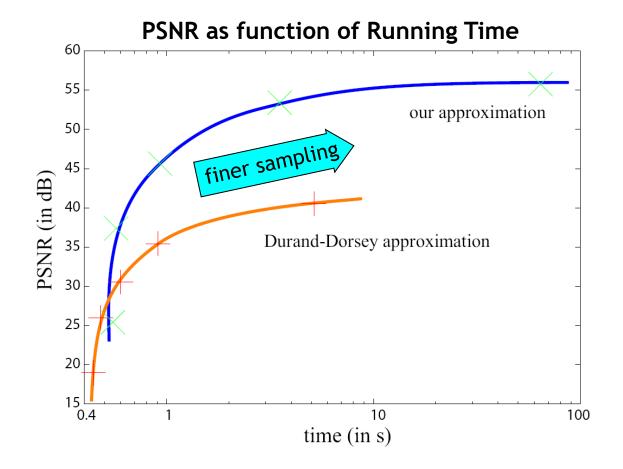
Fast Convolution by Downsampling

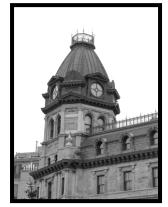
- Downsampling cuts frequencies above Nyquist limit
 - Less data to process
 - But induces error

- Evaluation of the approximation
 - Precision versus running time
 - Visual accuracy

Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.



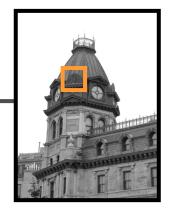


Digital photograph 1200 × 1600

Straightforward implementation is over 10 minutes.

Visual Results

- Comparison with previous work [Durand 02]
 - running time = 1s for both techniques



 1200×1600

input

prev. work

difference with exact computation (intensities in [0:1])

Two-scale Tone Management for Photographic Look

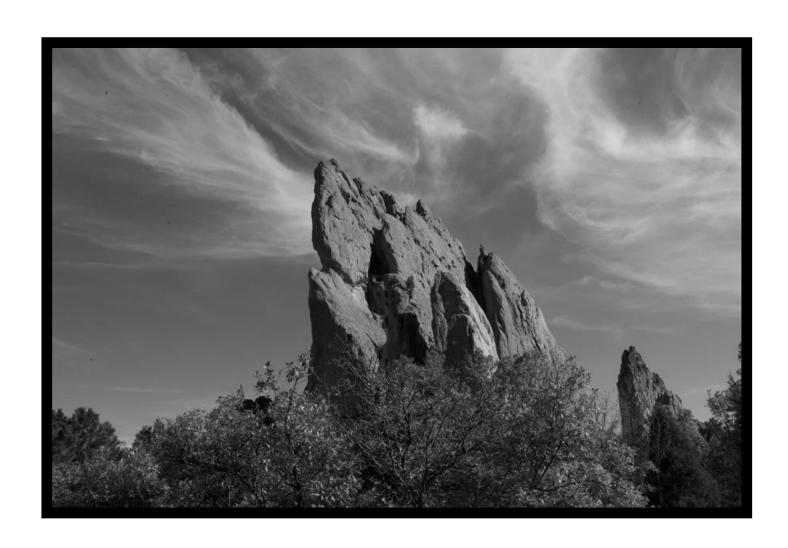
Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

SIGGRAPH2006

Ansel Adams

Ansel Adams, Clearing Winter Storm

An Amateur Photographer



A Variety of Looks

Goals

- Control over photographic look
- Transfer "look" from a model photo

For example,

we want

with the look of

(

Aspects of Photographic Look

- Subject choice
- Framing and composition
- Specified by input photos
- Tone distribution and contrast
- → Modified based on model photos

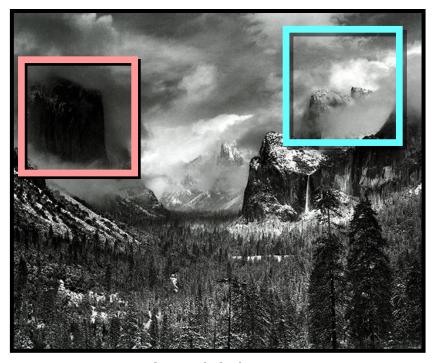
Input

Model

Tonal Aspects of Look

Ansel Adams Kenro Izu

Tonal aspects of Look - Global Contrast



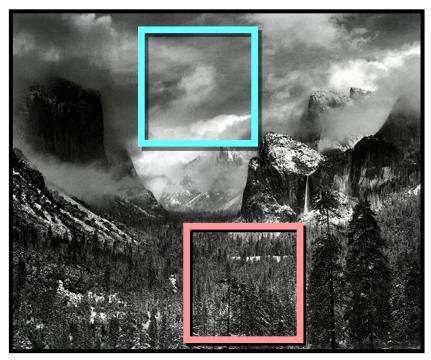
Ansel Adams

Kenro Izu

High Global Contrast

Low Global Contrast

Tonal aspects of Look - Local Contrast



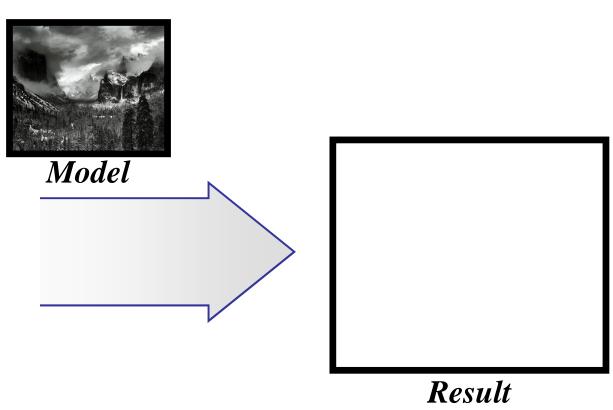
Ansel Adams

Kenro Izu

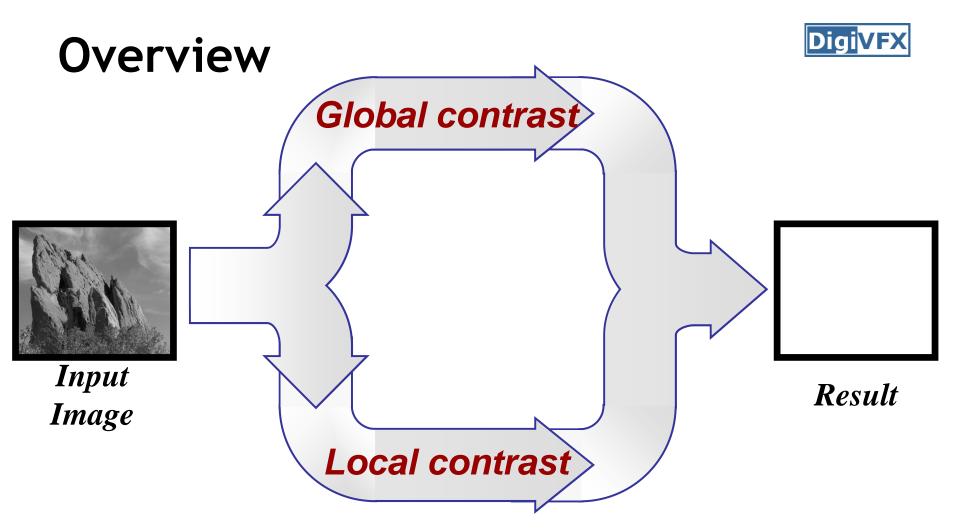
Variable amount of texture

Texture everywhere

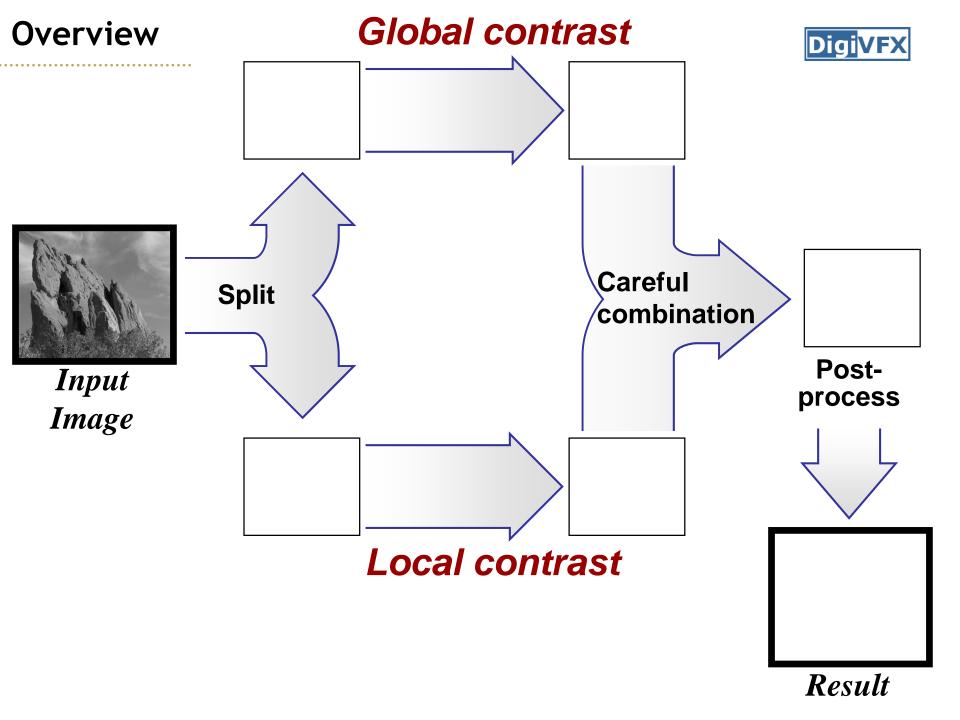
Overview

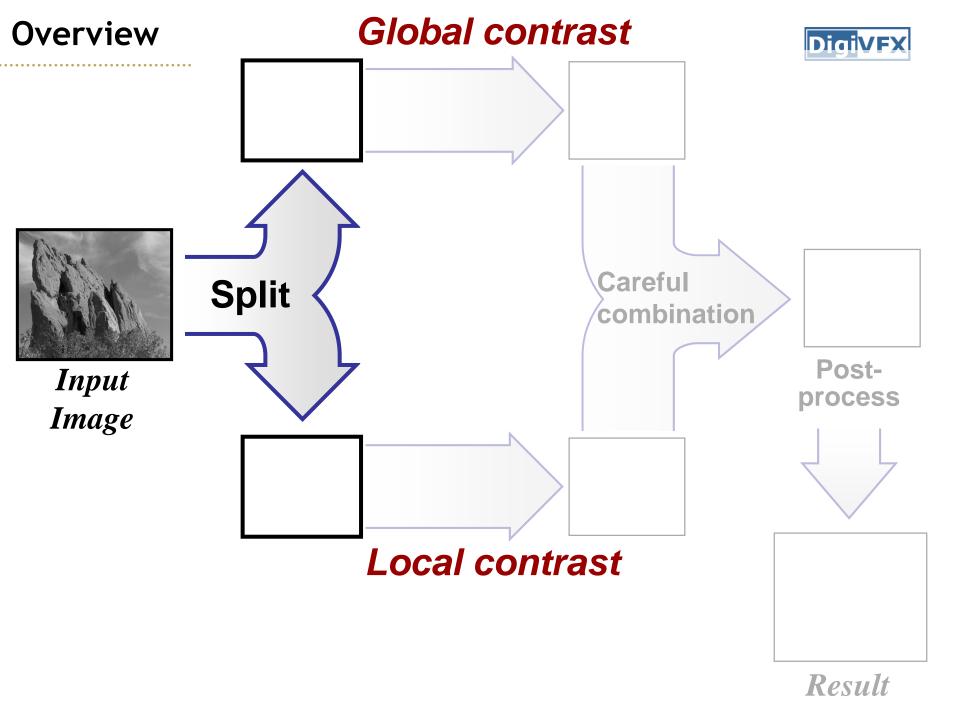


- Transfer look between photographs
 - Tonal aspects



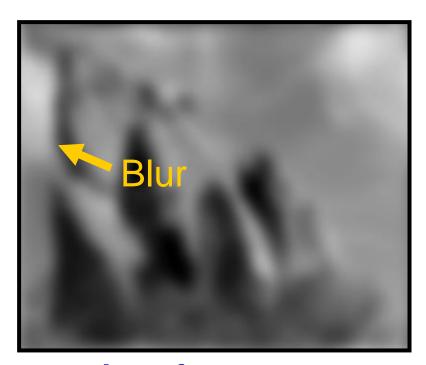
Separate global and local contrast





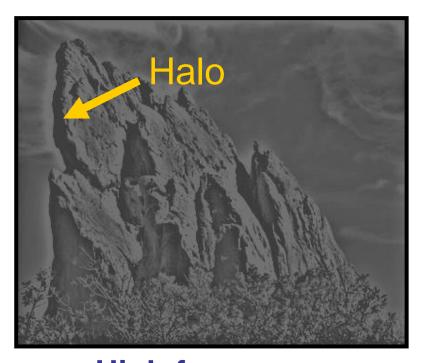
Split Global vs. Local Contrast

- Naïve decomposition: low vs. high frequency
 - Problem: introduce blur & halos



Low frequency

Global contrast



High frequency Local contrast

Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering

Global contrast

Residual after filtering Local contrast

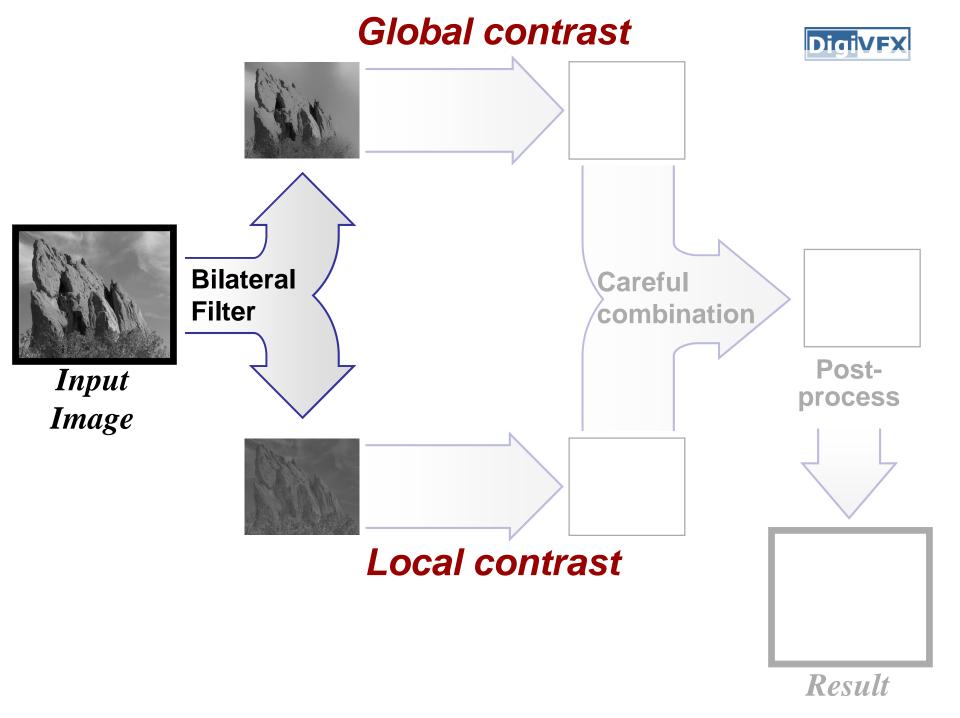
Bilateral Filter

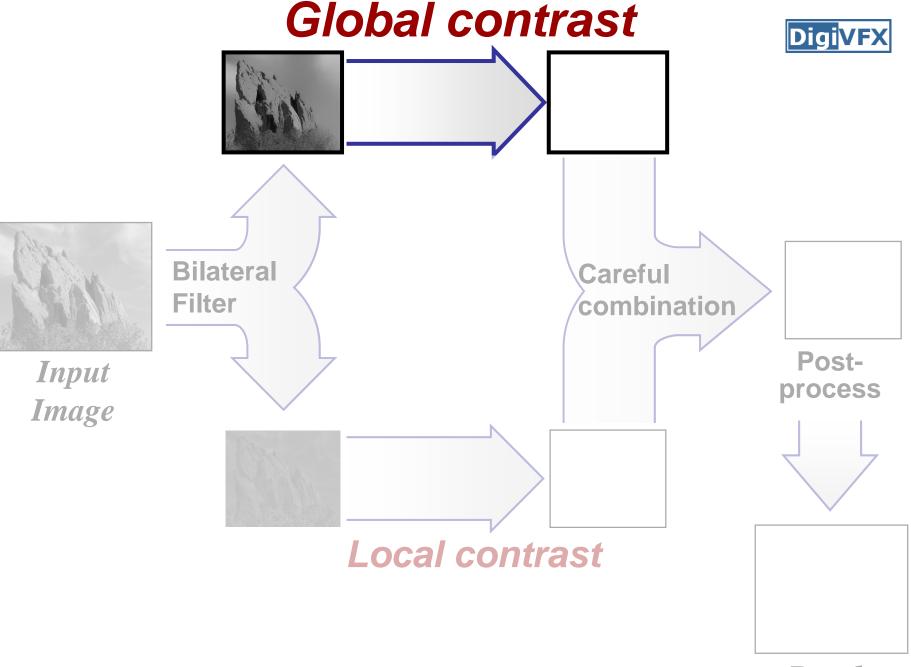
- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering

Global contrast

Residual after filtering Local contrast

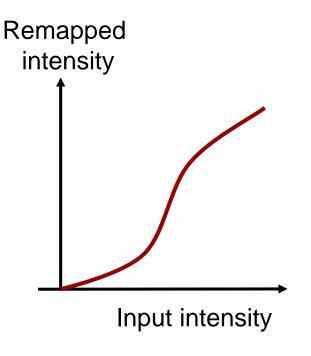




Global Contrast

Intensity remapping of base layer

Input base



After remapping

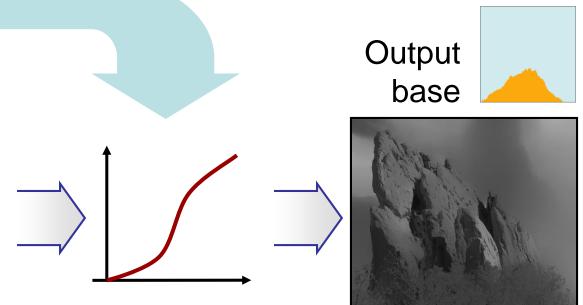
Global Contrast (Model Transfer)

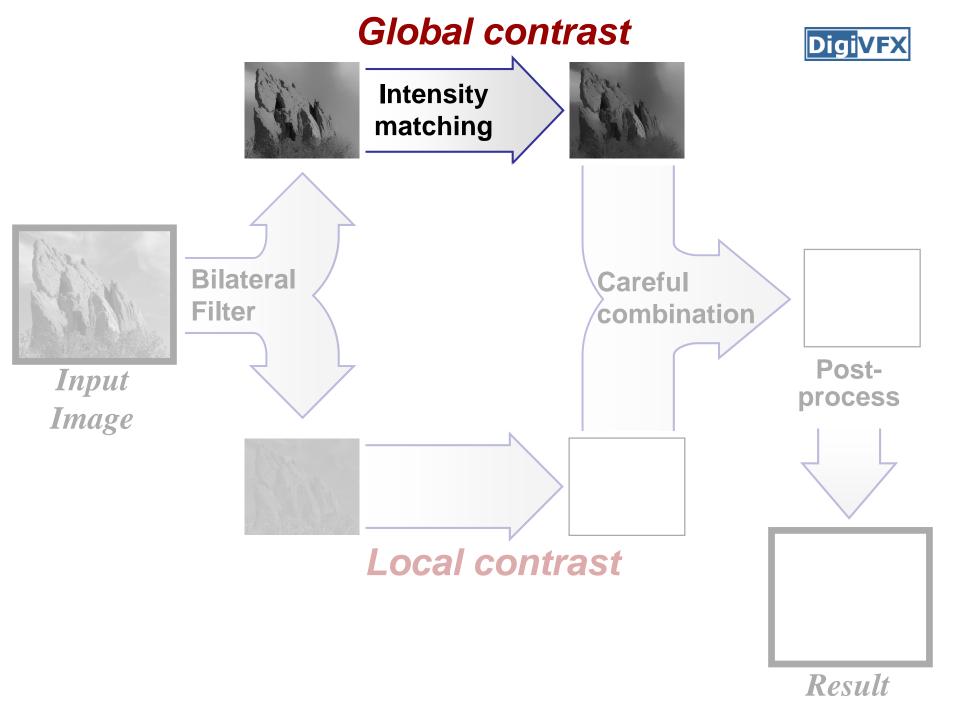
Model base

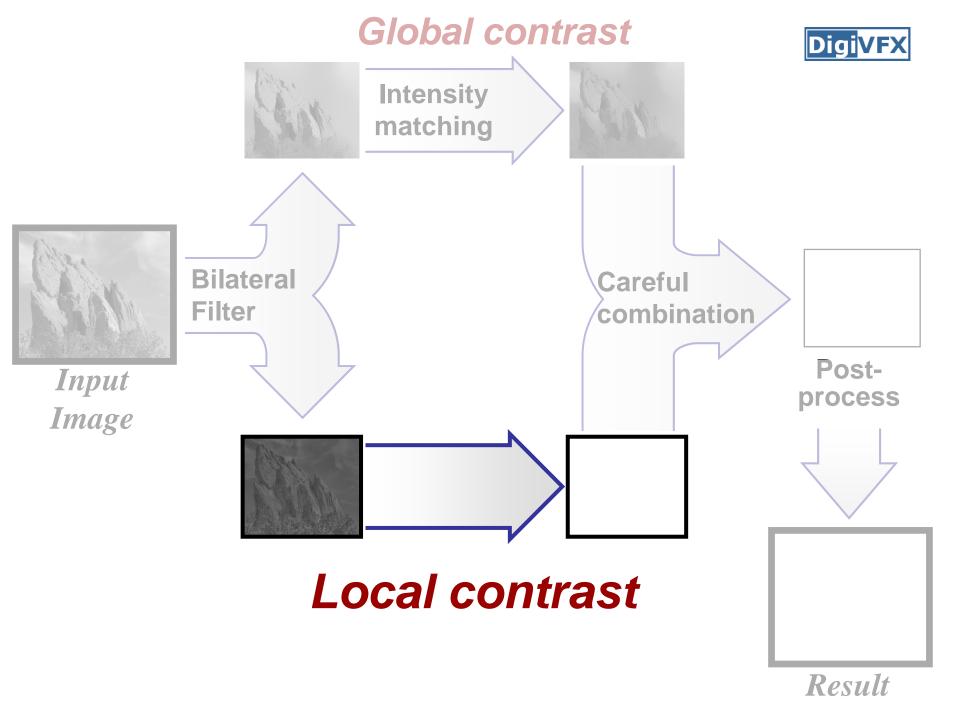
Input base

Histogram matching

 Remapping function given input and model histogram

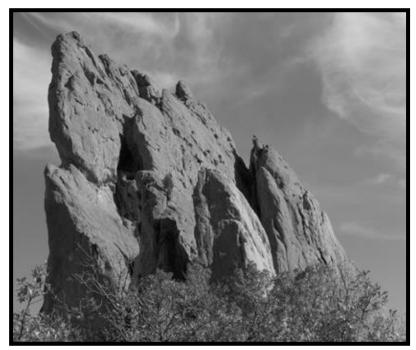




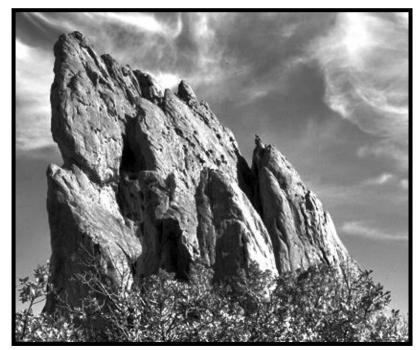


Local Contrast: Detail Layer

- Uniform control:
 - Multiply all values in the detail layer

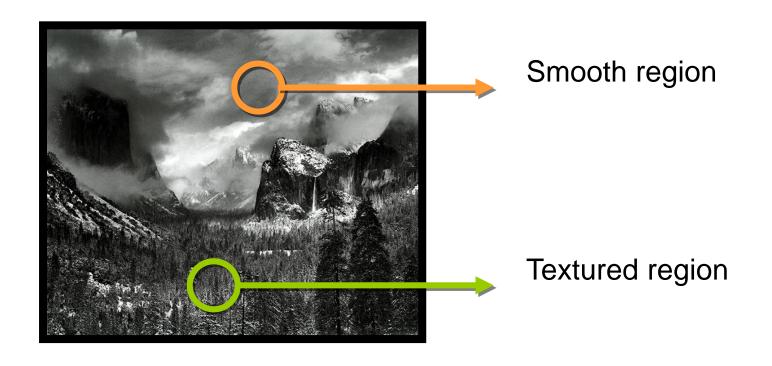


Input



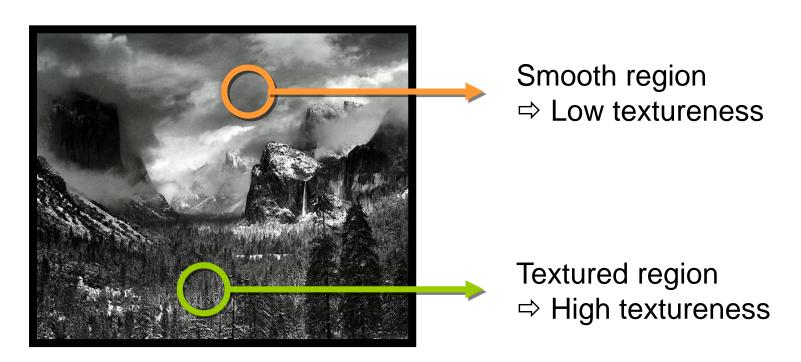
Base + 3 × Detail

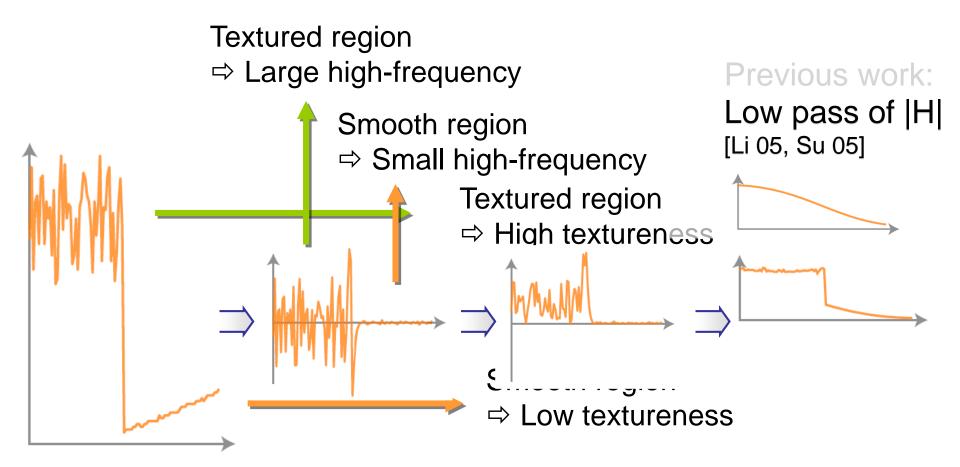
The amount of local contrast is not uniform



Local Contrast Variation

- We define "textureness": amount of local contrast
 - at each pixel based on surrounding region





Input signal High frequency H Amplitude |H| Edge-preserving filter

Textureness



Input Textureness

Textureness Transfer

Step 1: Histogram transfer Model textureness

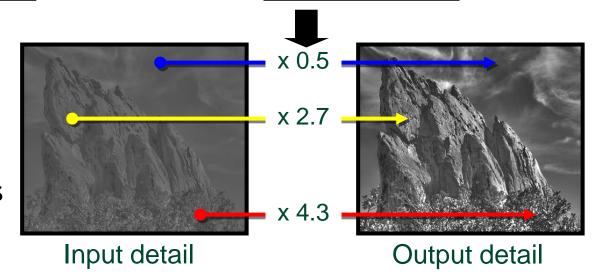
Input textureness

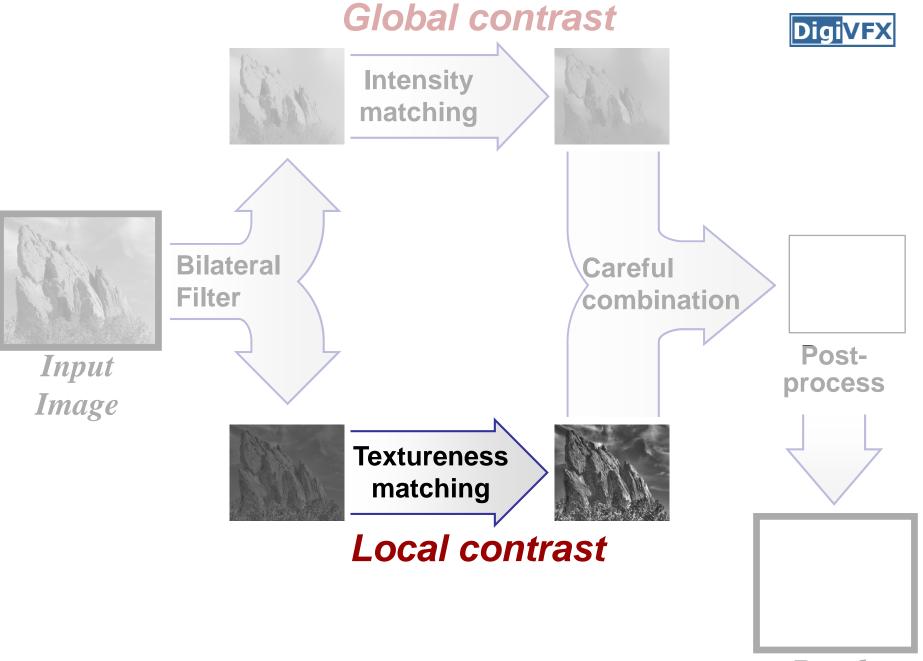
Hist. transfer

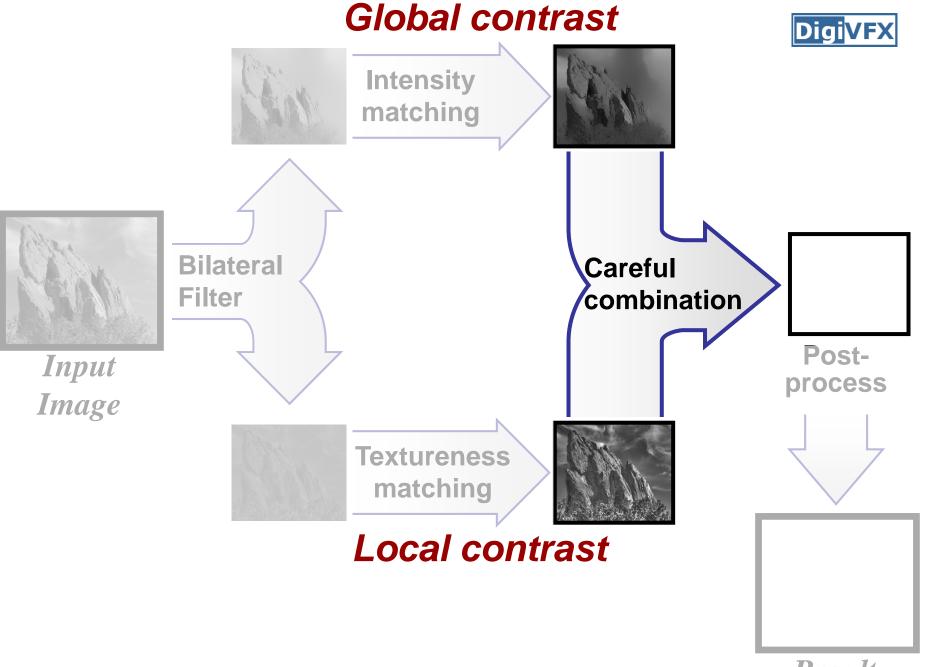
textureness

Desired

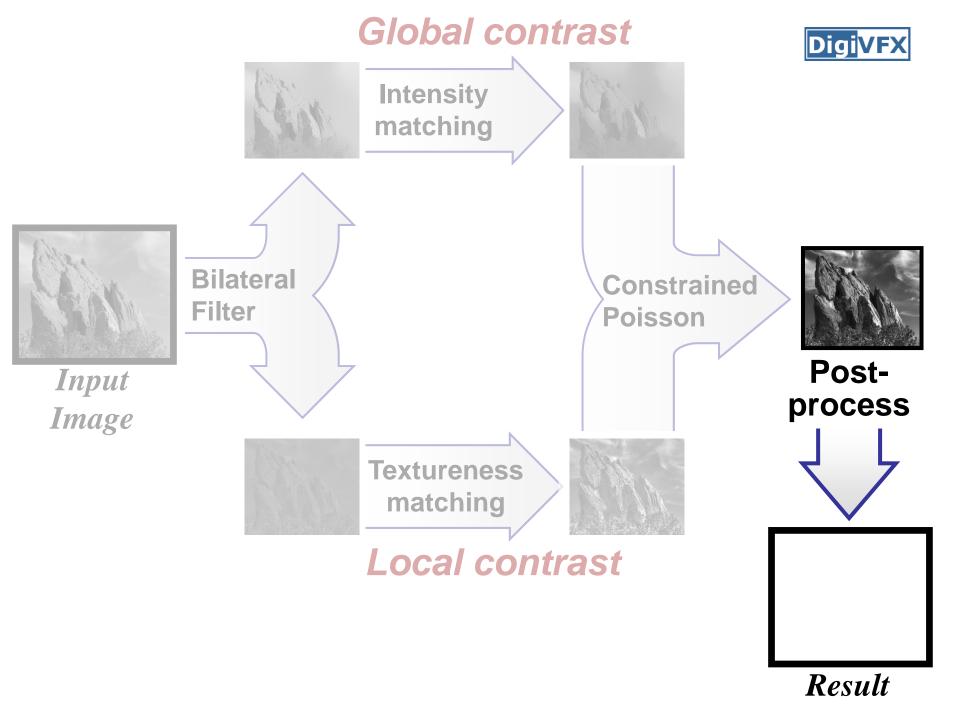
Step 2: Scaling detail layer (per pixel) to match desired textureness







Global contrast **DigiVFX Intensity** matching **Bilateral** Constrained **Filter Poisson** Post-Input process *Image* **Textureness** matching Local contrast



model

Additional Effects

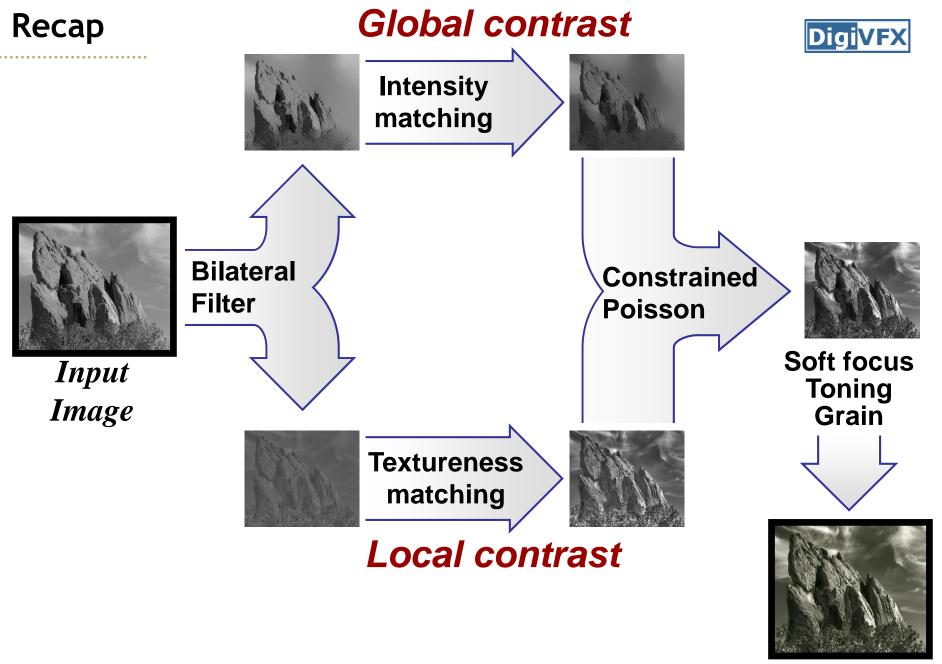
- Soft focus (high frequency manipulation)
- Film grain (texture synthesis [Heeger 95])
- Color toning (chrominance = f (luminance))

before effects

after effects

Global contrast **DigiVFX Intensity** matching **Bilateral** Constrained **Filter** Poisson Soft focus Input **Toning** *Image* Grain **Textureness** matching Local contrast

Result



Result

Results

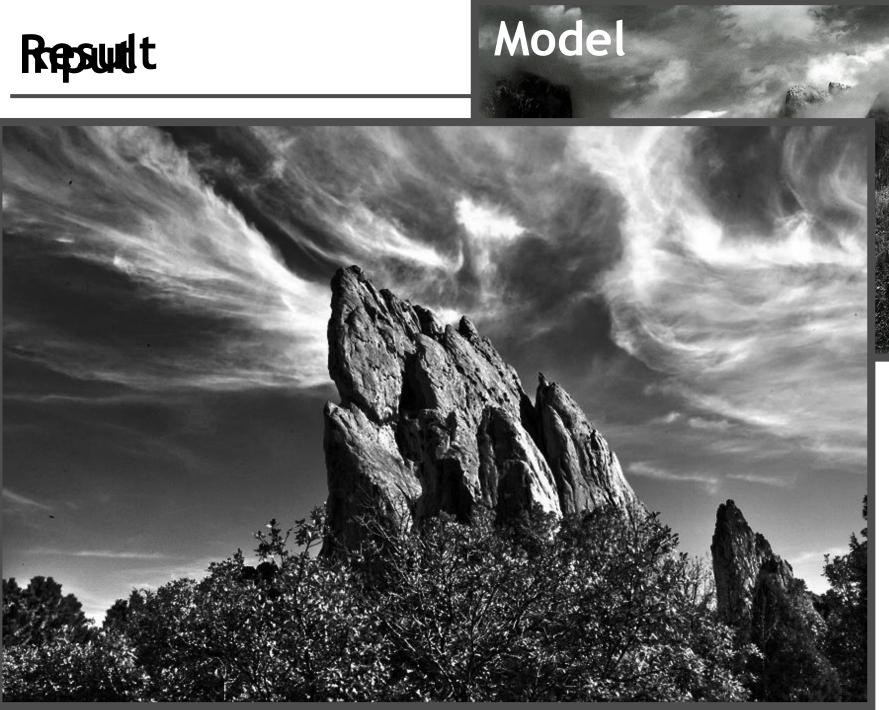
User provides input and model photographs.

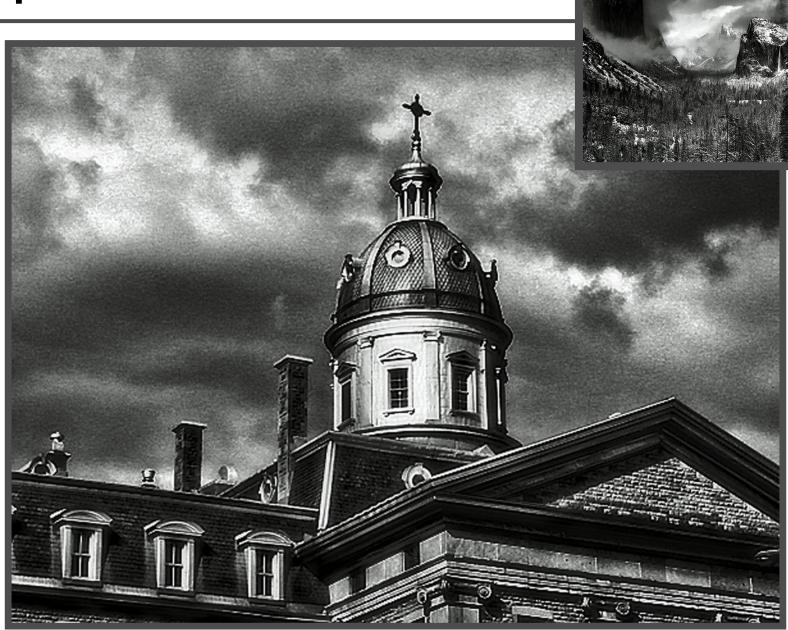
→ Our system automatically produces the result.

Running times:

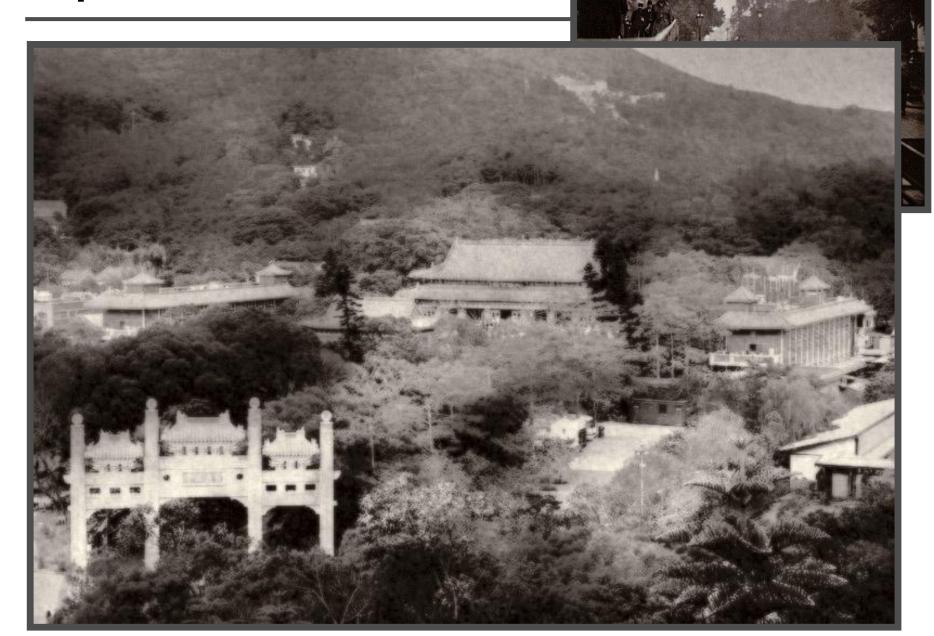
- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

Repoudt



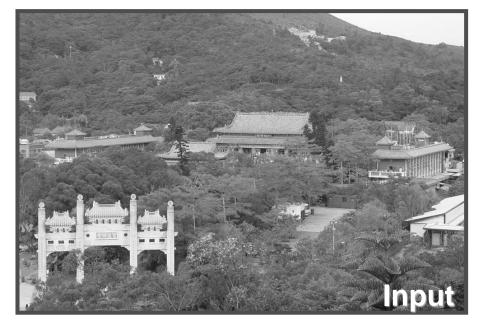


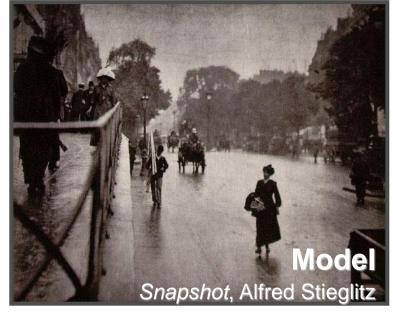
Repoundt

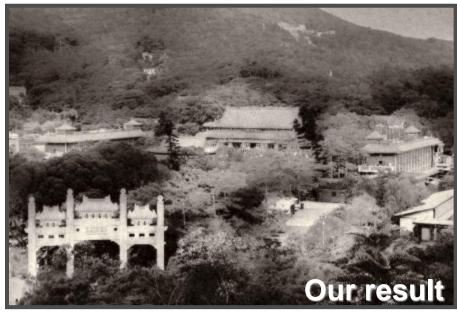


Model

Comparison with Naïve Histogram Matching







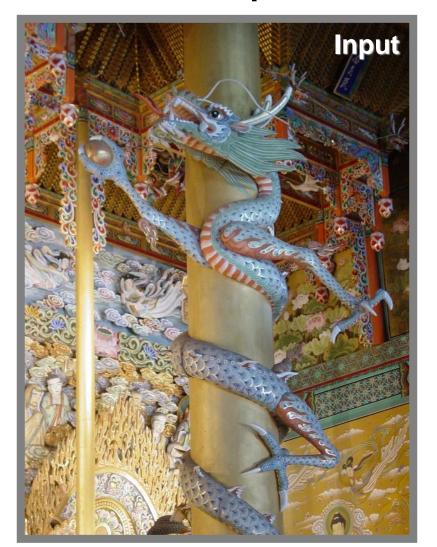
Local contrast, sharpness unfaithful

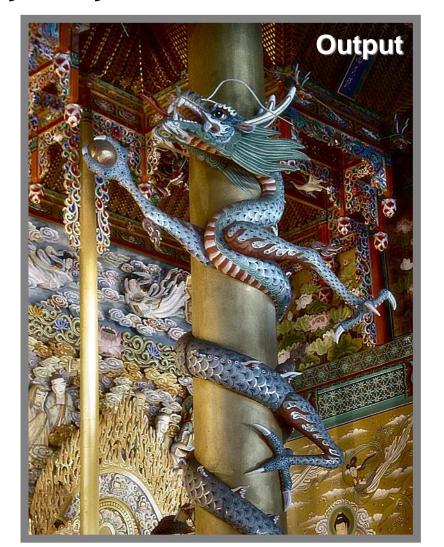
Comparison with Naive Histogram Matching

Local contrast too low

Color Images

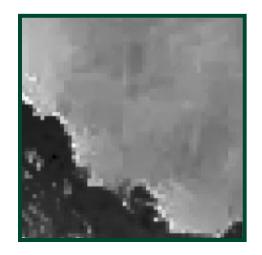
• Lab color space: modify only luminance





Limitations

- Noise and JPEG artifacts
 - amplified defects



- Can lead to unexpected results if the image content is too different from the model
 - Portraits, in particular, can suffer

Conclusions

• Transfer "look" from a model photo

- Two-scale tone management
 - Global and local contrast
 - New edge-preserving textureness
 - Constrained Poisson reconstruction
 - Additional effects

Joint bilateral filtering

$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

Flash / No-Flash Photo Improvement Digivex (Petschnigg04) (Eisemann04)

Merge best features: warm, cozy candle light (no-flash) low-noise, detailed flash image

Overview

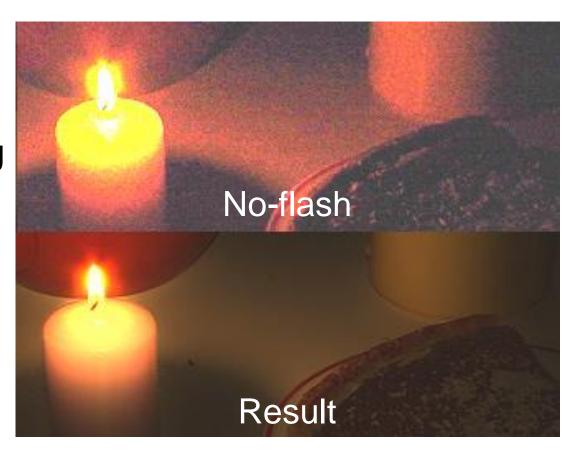
Basic approach of both flash/noflash papers

Remove noise + details from image A,

Keep as image A Lighting

Obtain noise-free details from image B,

Discard Image B Lighting



Petschnigg:

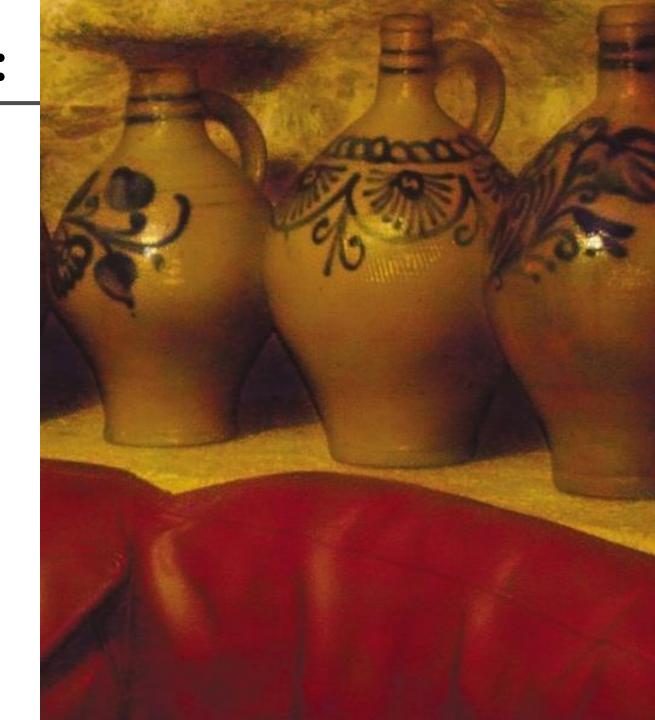
• Flash

Petschnigg:

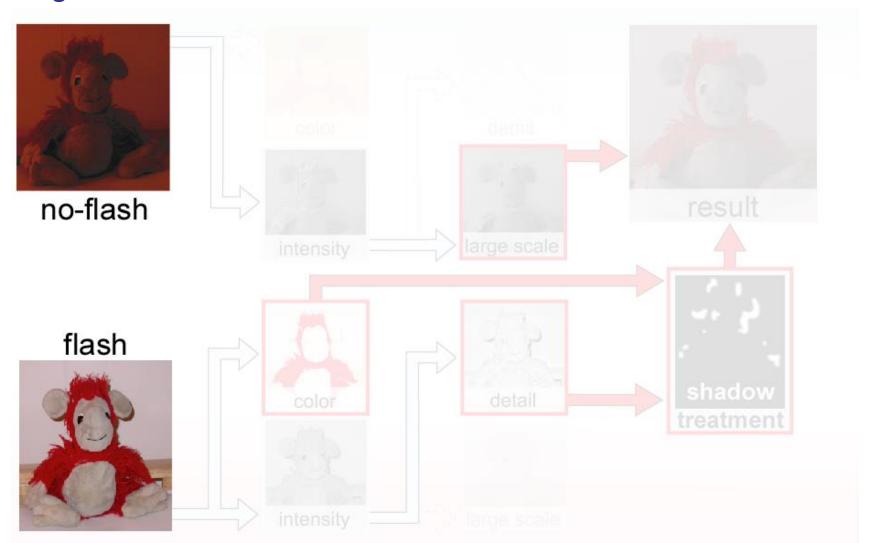
• No Flash,

Petschnigg:

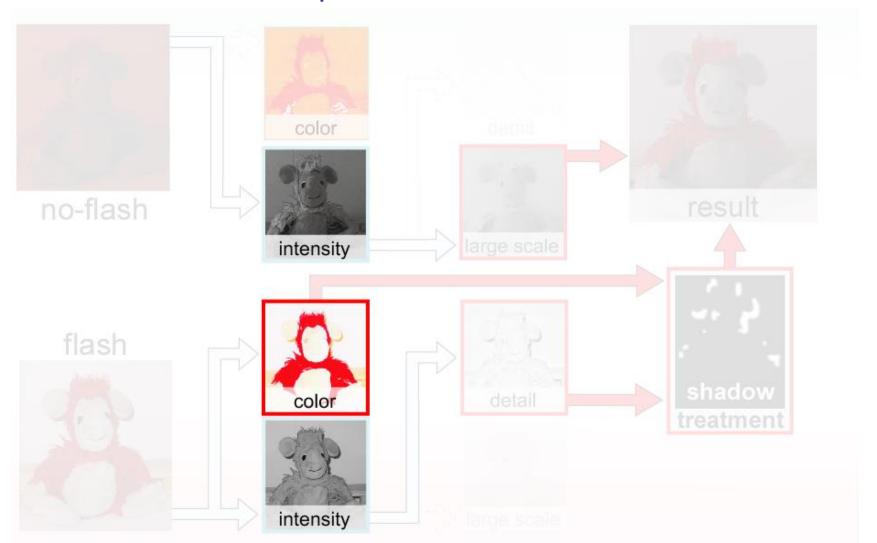
• Result



Registration

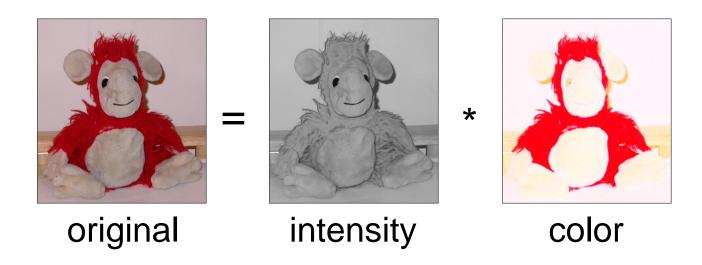


Decomposition

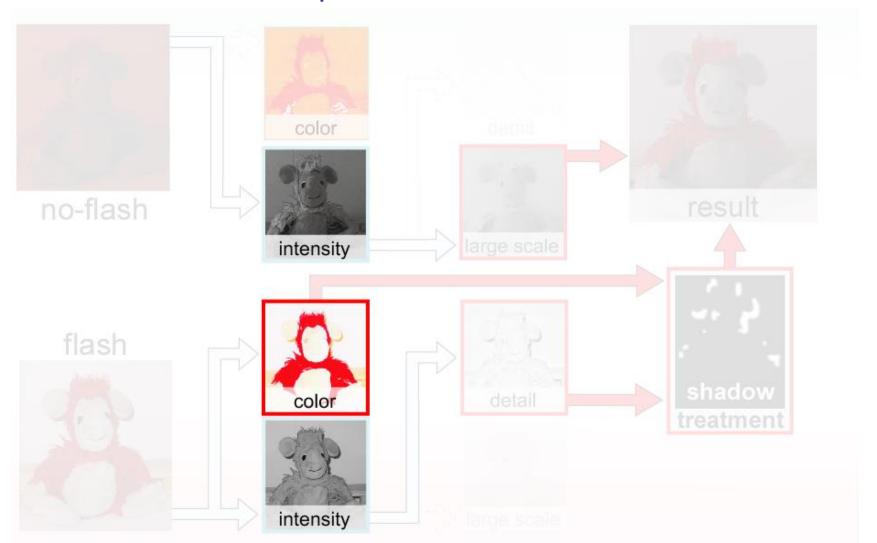


Decomposition

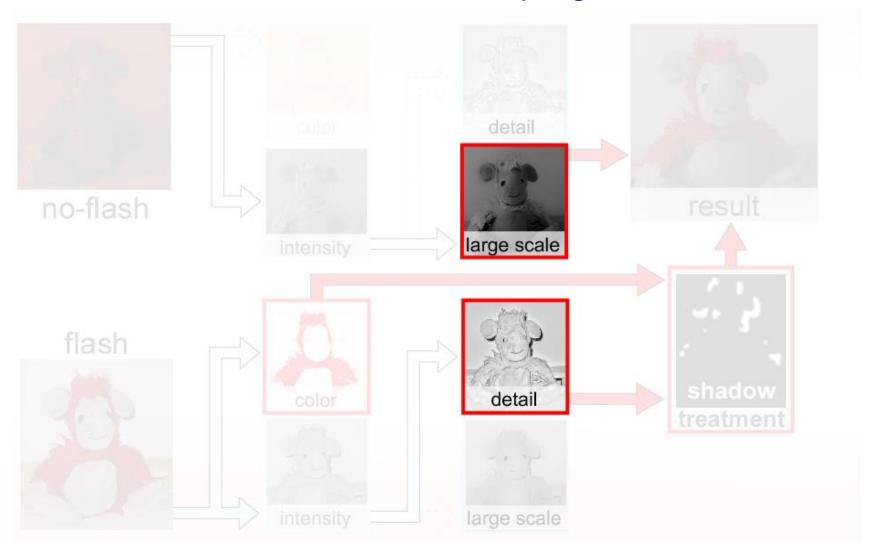
Color / Intensity:



Decomposition



Decoupling



Decoupling

- Lighting: Large-scale variation
- Texture: Small-scale variation

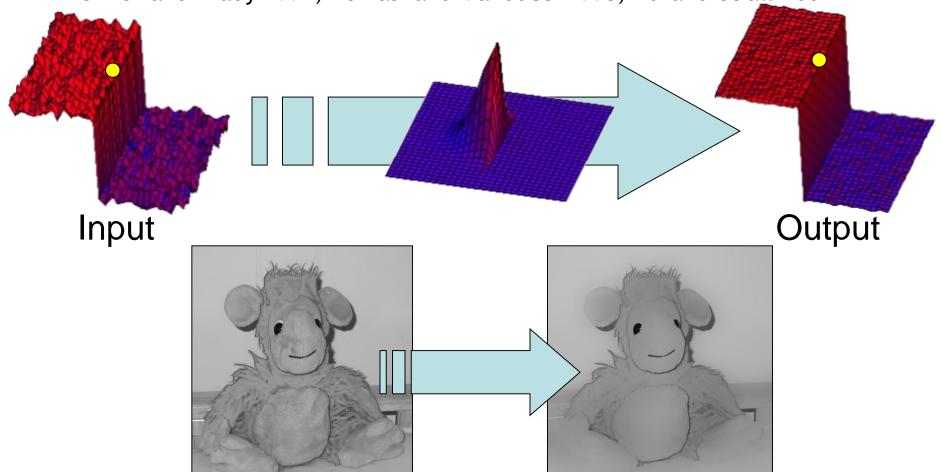
Lighting

Texture

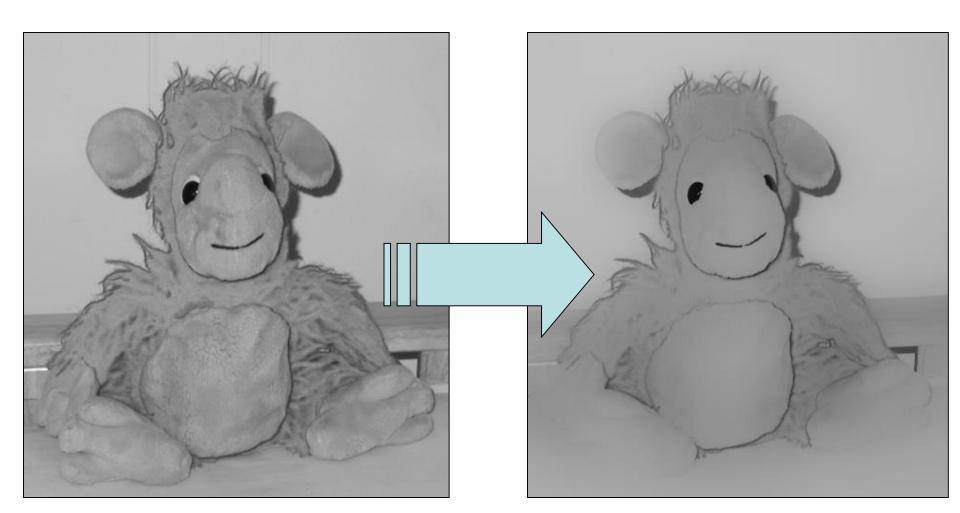
Large-scale Layer

Bilateral filter – edge preserving filter

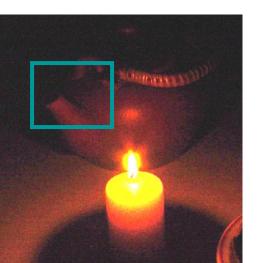
Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002



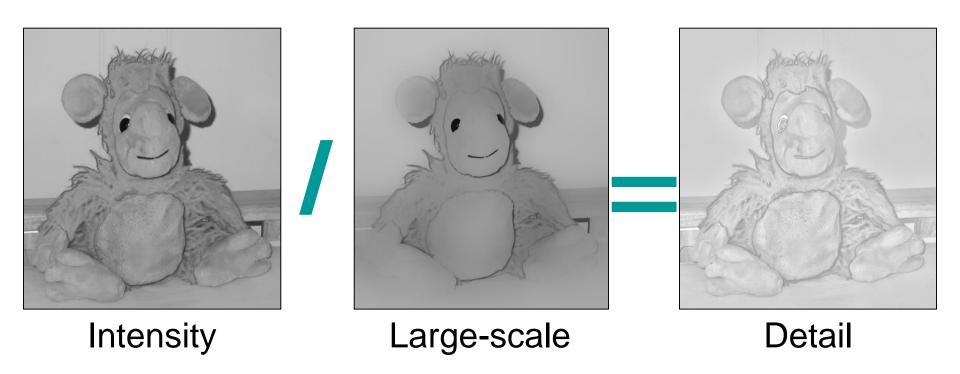
• Bilateral filter



- Similar to joint bilateral filter by Petschnigg et al.
- When no-flash image is too noisy
- Borrow similarity from flash image
 - > edge stopping from flash image

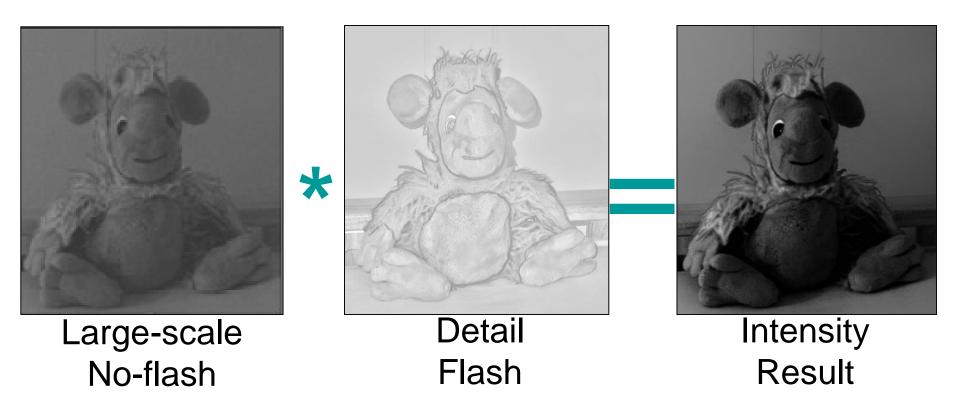


Detail Layer



Recombination: Large scale * Detail = Intensity

Recombination



Recombination: Large scale * Detail = Intensity

Recombination

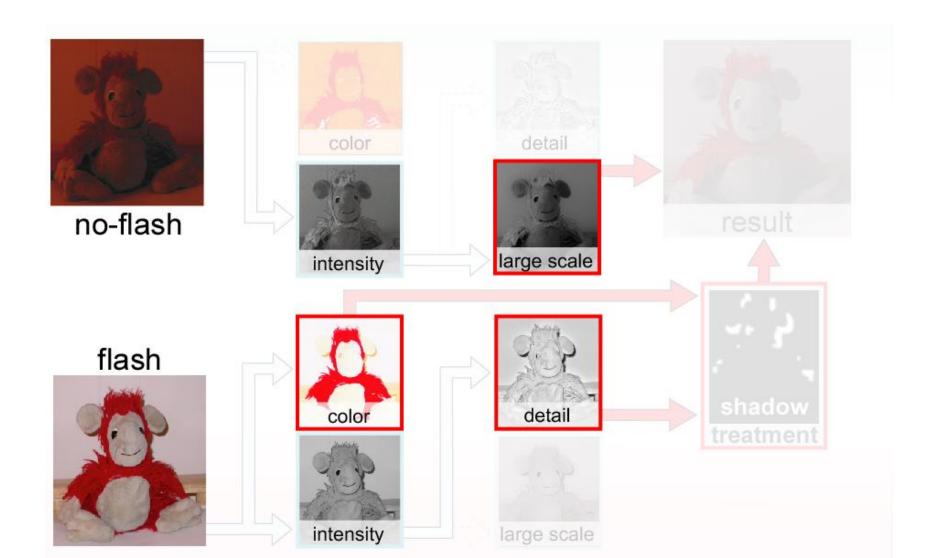
shadows

Intensity Result

Color Flash

Result

Recombination: Intensity * Color = Original



Results

No-flash

Flash

