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Camera is an imperfect device

• Camera is an imperfect device for measuring 

the radiance distribution of a scene because it 

cannot capture the full spectral content and 

dynamic range.

• Limitations in sensor design prevent cameras 

from capturing all information passed by lens.



Camera pipeline

lens sensor shutter
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Camera pipeline

12 bits 8 bits



Real-world response functions

In general, the response function is not provided

by camera makers who consider it part of their

proprietary product differentiation. In addition,

they are beyond the standard gamma curves.



The world is high dynamic range
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The world is high dynamic range



Real world dynamic range

• Eye can adapt from ~ 10-6 to 106 cd/m2

• Often 1  :  100,000 in a scene

• Typical 1:50, max 1:500 for pictures

10-6 106

Real world

High dynamic range

spotmeter



Short exposure
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Camera is not a photometer

• Limited dynamic range

 Perhaps use multiple exposures?

• Unknown, nonlinear response 

 Not possible to convert pixel values to radiance

• Solution:

– Recover response curve from multiple exposures, 

then reconstruct the radiance map



Varying exposure

• Ways to change exposure

– Shutter speed

– Aperture

– Neutral density filters



Shutter speed

• Note: shutter times usually obey a power 

series – each “stop” is a factor of 2

• ¼ , 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 

1/1000 sec

Usually really is:

¼ , 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 

1/1024 sec



Varying shutter speeds



HDRI capturing from multiple exposures 

• Capture images with multiple exposures

• Image alignment (even if you use tripod, it is 

suggested to run alignment)

• Response curve recovery

• Ghost/flare removal



Image alignment

• We will introduce a fast and easy-to-implement 

method for this task, called Median Threshold 

Bitmap (MTB) alignment technique.

• Consider only integral translations. It is enough 

empirically. 

• The inputs are N grayscale images. (You can 

either use the green channel or convert into 

grayscale by Y=(54R+183G+19B)/256)

• MTB is a binary image formed by thresholding 

the input image using the median of intensities.





Why is MTB better than gradient?

• Edge-detection filters are dependent on image 

exposures

• Taking the difference of two edge bitmaps 

would not give a good indication of where the 

edges are misaligned.



Search for the optimal offset

• Try all possible 

offsets.

• Gradient descent

• Multiscale technique

• log(max_offset) levels

• Try 9 possibilities for 

the top level

• Scale by 2 when 

passing down; try its 9 

neighbors



Threshold noise

ignore pixels that are 

close to the threshold

exclusion bitmap



Efficiency considerations

• XOR for taking difference

• AND with exclusion maps

• Bit counting by table lookup



Results

Success rate = 84%. 10% failure due to rotation. 

3% for excessive motion and 3% for too much 

high-frequency content.



Recovering response curve

12 bits 8 bits



Recovering response curve

• We want to obtain the inverse of the response 

curve

0

255
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Idea behind the math

ln2



Idea behind the math

Each line for a scene point.

The offset is essentially 

determined by the 

unknown Ei



Idea behind the math

Note that there is a shift 

that we can’t recover



Basic idea 

• Design an objective function 

• Optimize it



Math for recovering response curve



Recovering response curve

• The solution can be only up to a scale, add a 

constraint 

• Add a hat weighting function



Recovering response curve

• We want 

If P=11, N~25 (typically 50 is used)

• We prefer that selected pixels are well 

distributed and sampled from constant regions. 

They picked points by hand.

• It is an overdetermined system of linear 

equations and can be solved using SVD



How to optimize?



How to optimize?

1. Set partial derivatives to zero

2.
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Sparse linear system
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Questions

• Will g(127)=0 always be satisfied? Why or why 

not?

• How to find the least-square solution for an 

over-determined system?



Least-square solution for a linear system

bAx 
nm n m
nm 

They are often mutually incompatible. We instead find x to 

minimize the norm              of the residual vector           .

If there are multiple solutions, we prefer the one with the

minimal length     .

bAxbAx 

x



Least-square solution for a linear system

If we perform SVD on A and rewrite it as 

then                     is the least-square solution.
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Proof



Proof



Libraries for SVD

• Matlab

• GSL

• Boost

• LAPACK

• ATLAS



Matlab code



Matlab code
function [g,lE]=gsolve(Z,B,l,w)

n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

k = 1;              %% Include the data-fitting equations
for i=1:size(Z,1)
for j=1:size(Z,2)

wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end

A(k,129) = 1;       %% Fix the curve by setting its middle value to 0
k=k+1;

for i=1:n-2         %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end

x = A\b;            %% Solve the system using SVD

g = x(1:n);
lE = x(n+1:size(x,1));



Recovered response function



Constructing HDR radiance map

combine pixels to reduce noise and obtain a more 

reliable estimation



Reconstructed radiance map



What is this for?

• Human perception

• Vision/graphics applications



Automatic ghost removal

before after



Weighted variance

Moving objects and high-contrast edges render high variance.



Region masking

Thresholding; dilation; identify regions;   



Best exposure in each region



Lens flare removal

before after



Easier HDR reconstruction

raw image = 

12-bit CCD snapshot



Easier HDR reconstruction

Xij=Ei* Δtj

Exposure (X)

Δt



• 12 bytes per pixel, 4 for each channel

sign exponent mantissa

PF

768 512

1

<binary image data>

Floating Point TIFF similar

Text header similar to Jeff Poskanzer’s .ppm

image format:

Portable floatMap (.pfm)



(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Radiance format (.pic, .hdr, .rad)

Red Green Blue Exponent

32 bits/pixel



ILM’s OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

• Several lossless compression options, 2:1 typical

• Compatible with the “half” datatype in NVidia's Cg

• Supported natively on GeForce FX and Quadro FX

• Available at http://www.openexr.net/

http://www.openexr.net/


Radiometric self calibration

• Assume that any 

response function 

can be modeled 

as a high-order 

polynomial

• No need to know 

exposure time in 

advance. Useful 

for cheap 

cameras

Z

X





M

m

m

mZcZgX
0

)(



Mitsunaga and Nayar 

• To find the coefficients cm to minimize the 

following
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Mitsunaga and Nayar

• Again, we can only solve up to a scale. Thus, 

add a constraint f(1)=1. It reduces to M 

variables.

• How to solve it?



Mitsunaga and Nayar

• We solve the above iteratively and update the 

exposure ratio accordingly

• How to determine M? Solve up to M=10 and pick 

up the one with the minimal error. Notice that 

you prefer to have the same order for all 

channels. Use the combined error.
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Space of response curves



Space of response curves



Robertson et. al.
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Robertson et. al.

repeat

assuming           is known, optimize for 

assuming      is known, optimize for

until converge
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Robertson et. al.

repeat

assuming           is known, optimize for 

assuming      is known, optimize for

until converge
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Robertson et. al.

repeat

assuming           is known, optimize for 

assuming      is known, optimize for

until converge
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Robertson et. al.

repeat

assuming           is known, optimize for 

assuming      is known, optimize for

until converge
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Patch-Based HDR



Deep learning HDR assembly



Deep learning HDR assembly



Deep single-image HDR reconstruction

DrTMO

HDRCNN

ExpandNet



Learning to reverse the pipeline

Camera pipeline

Learning to reverse the camera pipeline



Comparison

input DrTMO HDRCNN

ExpandNet OursTruth
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HDR Video

• High Dynamic Range Video

Sing Bing Kang, Matthew Uyttendaele, Simon 

Winder, Richard Szeliski

SIGGRAPH 2003

video

HDRVideo.mp4


Assorted pixel



Assorted pixel 



Assorted pixel



A Versatile HDR Video System

video

VersatileHDRVideo.mp4


A Versatile HDR Video System



HDR becomes common practice

• Many cameras has bracket exposure modes

• For example, since iPhone 4, iPhone has HDR 

option. But, it could be more exposure blending 

rather than true HDR.
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