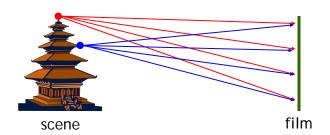
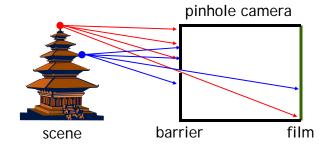
Camera trial #1



Cameras

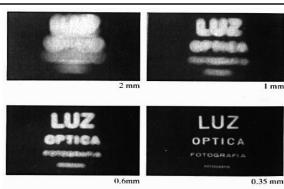
Digital Visual Effects

Yung-Yu Chuang


with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Put a piece of film in front of an object.

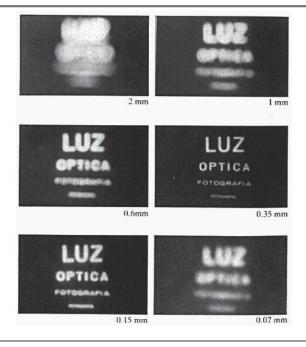
Pinhole camera



Add a barrier to block off most of the rays.

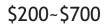
- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Shrinking the aperture



Why not making the aperture as small as possible?

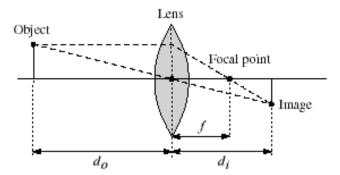
- Less light gets through
- Diffraction effect


Shrinking the aperture

High-end commercial pinhole cameras DigiVFX

DigiVFX

Adding a lens



Lenses

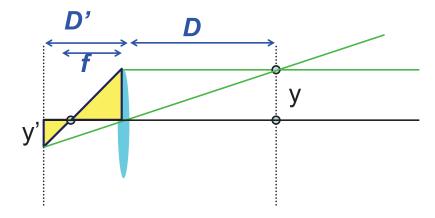

Thin lens equation:
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Thin lens formula

Similar triangles everywhere!

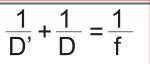
$$y'/y = D'/D$$

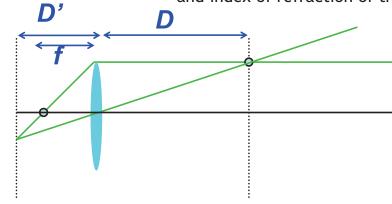
Frédo Durand's slide


Thin lens formula

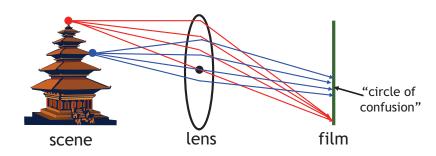
Similar triangles everywhere!

$$y'/y = D'/D$$


$$y'/y = (D'-f)/f$$


Frédo Durand's slide

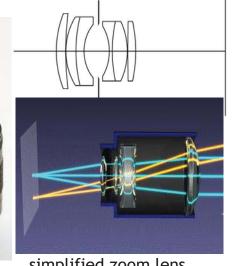
Thin lens formula



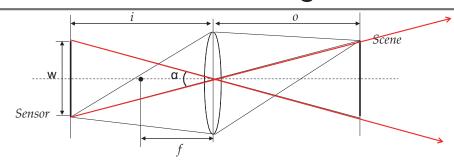
The focal length f determines the lens's ability to bend (refract) light. It is a function of the shape and index of refraction of the lens.

Adding a lens

A lens focuses light onto the film


- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

Zoom lens



simplified zoom lens $in \ operation_{From \ wikipedia}$

24mm

Field of view vs focal length

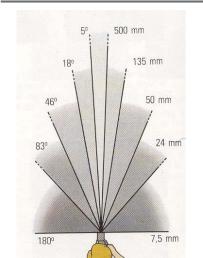
Gaussian Lens Formula:

 $\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$

Field of View:

 $\alpha = 2 \arctan(w/(2i))$

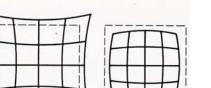
≈ 2arctan(w/(2f))


Example: w = 30mm, f = 50mm => $\alpha \approx 33.4^{\circ}$

Slides from Li Zhang

DigiVFX

Focal length in practice



Distortion

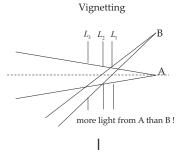
No distortion

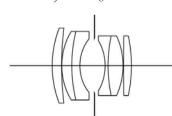
Pin cushion

Barrel

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion





from Helmut Dersch

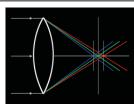
Vignetting

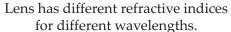
Slides from Li Zhang

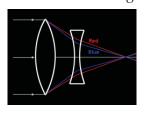
DigiVFX

Vignetting

Vignetting L₃ L₂ L₁ B A more light from A than B!

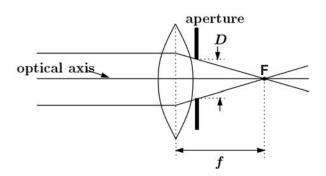

original corrected




Goldman & Chen ICCV 2005

Slides from Li Zhang

Chromatic Aberration



Special lens systems using two or more pieces of glass with different refractive indexes can reduce or eliminate this problem.

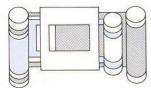
Slides from Li Zhang

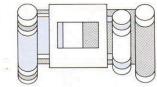
Exposure = aperture + shutter speed

- Aperture of diameter D restricts the range of rays (aperture may be on either side of the lens)
- Shutter speed is the amount of time that light is allowed to pass through the aperture

Exposure

- Two main parameters:
 - Aperture (in f stop)


Medium aperture


Stopped down

- Shutter speed (in fraction of a second)

Blade (closing) Blade (open) Focal plane (closed)

Focal plane (open)

Effects of shutter speeds

• Slower shutter speed => more light, but more motion blur

• Faster shutter speed freezes motion

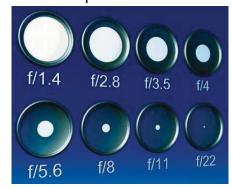
From Photography, London et al.

Walking people

Running people

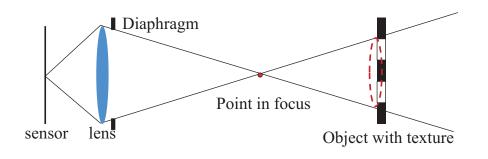
Car

Fast train


1/125 1/250 1/500 1/1000

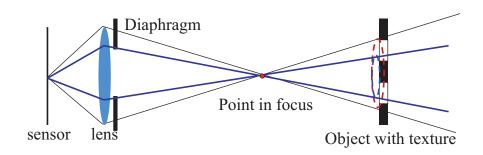
Aperture

DigiVFX

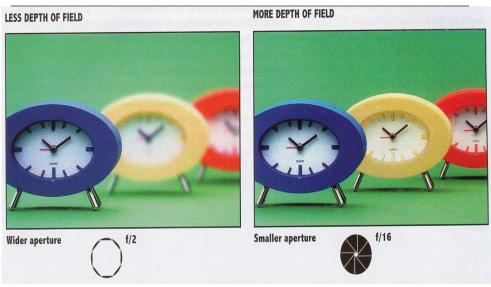

- Aperture is the diameter of the lens opening, usually specified by f-stop, f/D, a fraction of the focal length.
 - f/2.0 on a 50mm means that the aperture is 25mm
 - f/2.0 on a 100mm means that the aperture is 50mm
- When a change in f-stop occurs, the light is either doubled or cut in half.
- Lower f-stop, more light (larger lens opening)
- Higher f-stop, less light (smaller lens opening)

Depth of field

Digi<mark>VFX</mark>

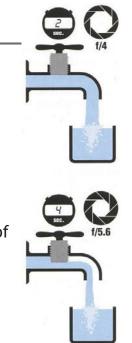

Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

Depth of field



Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

Depth of field



Exposure

- Two main parameters:
 - Aperture (in f stop)
 - Shutter speed (in fraction of a second)
- Reciprocity

The same exposure is obtained with an exposure twice as long and an aperture *area* half as big

- Hence square root of two progression of f stops vs. power of two progression of shutter speed
- Reciprocity can fail for very long exposures

From Photography, London et al.

Reciprocity

- Assume we know how much light we need
- We have the choice of an infinity of shutter speed/aperture pairs

- What will guide our choice of a shutter speed?
 - Freeze motion vs. motion blur, camera shake
- What will guide our choice of an aperture?
 - Depth of field, diffraction limit
- Often we must compromise
 - Open more to enable faster speed (but shallow DoF)

DigiVFX

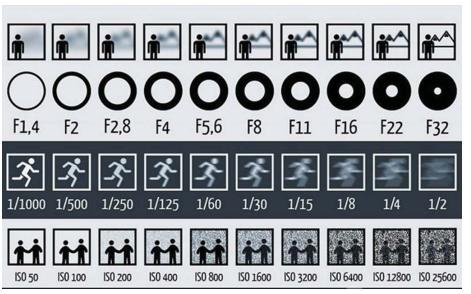
Pros and cons of various modes

- Aperture priority
 - Direct depth of field control
 - Cons: can require impossible shutter speed (e.g. with f/1.4 for a bright scene)
- Shutter speed priority
 - Direct motion blur control
 - Cons: can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark scene)
 - · Note that aperture is somewhat more restricted
- Program
 - Almost no control, but no need for neurons
- Manual
 - Full control, but takes more time and thinking

Exposure & metering

- The camera metering system measures how bright the scene is
- In Aperture priority mode, the photographer sets the aperture, the camera sets the shutter speed
- In Shutter-speed priority mode, photographers sets the shutter speed and the camera deduces the aperture
- In Program mode, the camera decides both exposure and shutter speed (middle value more or less)
- In Manual mode, the user decides everything (but can get feedback)

Sensitivity (ISO)


- Third variable for exposure
- Linear effect (200 ISO needs half the light as 100 ISO)
- Film photography: trade sensitivity for grain

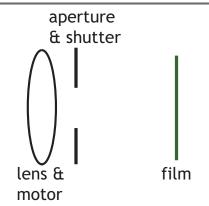
Digital photography: trade sensitivity for noise

Summary in a picture

Demo

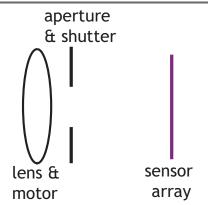
DigiVFX

DigiVFX

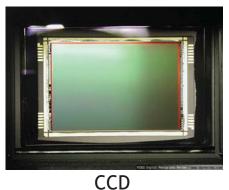

See http://www.photonhead.com/simcam/

source hamburgerfotospots.de

Film camera



scene

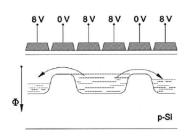


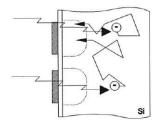
Digital camera

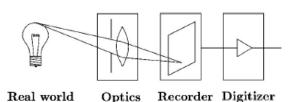
- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons

CCD v.s. CMOS

- Digi<mark>VFX</mark>
- CCD is less susceptible to noise (special process, higher fill factor)
- CMOS is more flexible, less expensive (standard process), less power consumption

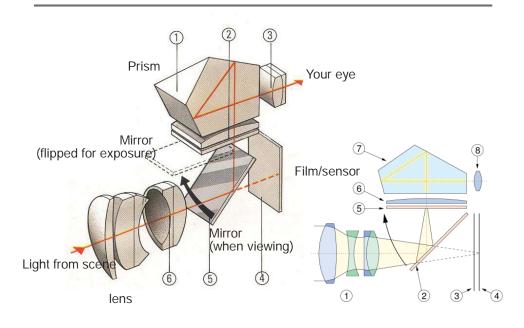



Sensor noise



- Blooming
- Diffusion
- Dark current
- Photon shot noise
- Amplifier readout noise

SLR (Single-Lens Reflex)


- Reflex (R in SLR) means that we see through the same lens used to take the image.
- Not the case for compact cameras

SLR view finder

Color

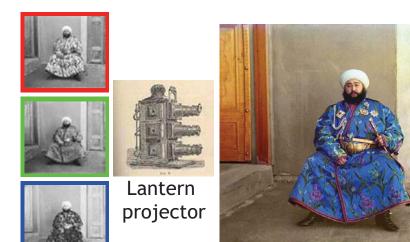

Digi<mark>VFX</mark>

Field sequential

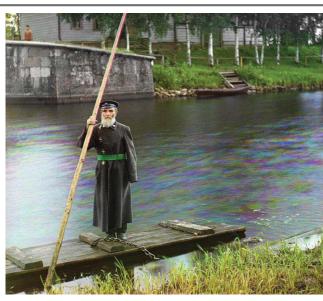
So far, we've only talked about monochrome sensors. Color imaging has been implemented in a number of ways:

- Field sequential
- Multi-chip
- Color filter array
- X3 sensor

Field sequential

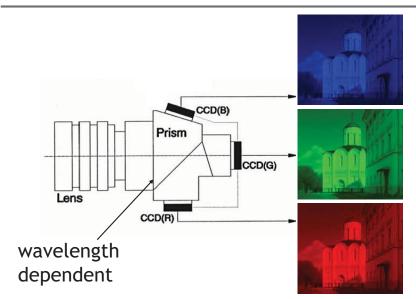


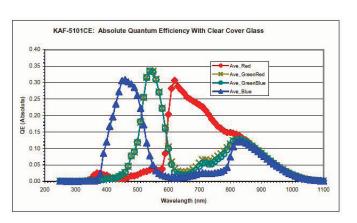
Prokudin-Gorskii (early 1900's)



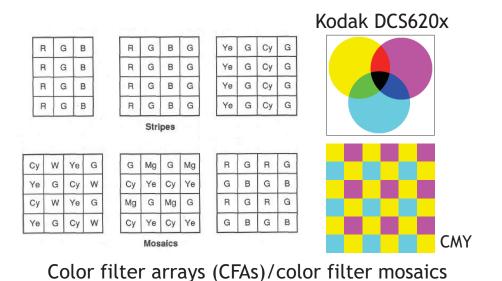
http://www.loc.gov/exhibits/empire/

Prokudin-Gorskii (early 1900's)

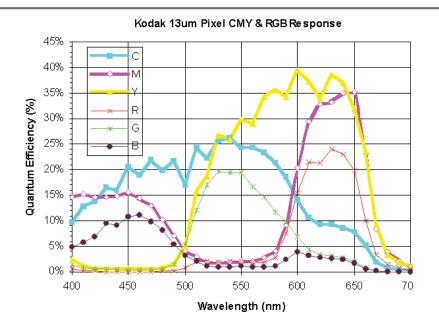


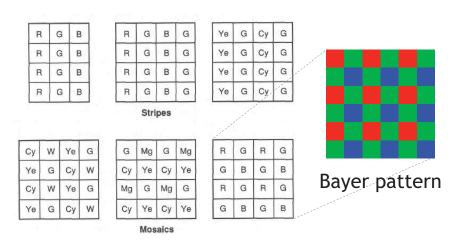

Multi-chip

Embedded color filters

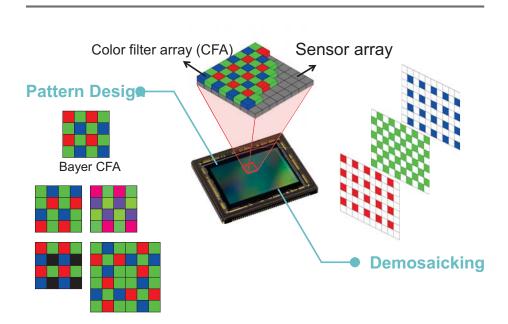


Color filters can be manufactured directly onto the photodetectors.


Color filter array

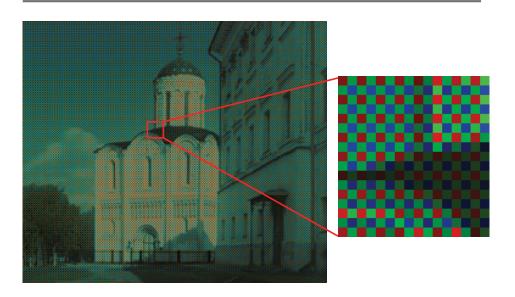

Why CMY CFA might be better

Color filter array



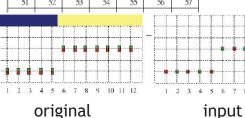
Color filter arrays (CFAs)/color filter mosaics

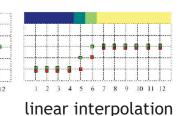
Demosaicking



Bayer's pattern

Demosaicking CFA's




R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B 22	G	B	G	B	G
21		23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
	1				20100000000	0.0000000000000000000000000000000000000

bilinear interpolation

$$G_{44} = (G_{34} + G_{43} + G_{45} + G_{54})/4$$

$$R_{44} = (R_{33} + R_{35} + R_{53} + R_{55})/4$$

Demosaicking CFA's

Demosaicking CFA's

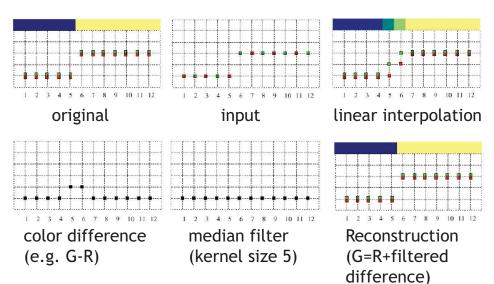
R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	B	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Constant hue-based interpolation (Cok)

Hue: (R/G,B/G)Interpolate G first

$$R_{44} = \mathbf{G}_{44} \frac{R_{33}}{\mathbf{G}_{33}} + \frac{R_{35}}{\mathbf{G}_{35}} + \frac{R_{53}}{\mathbf{G}_{53}} + \frac{R_{55}}{\mathbf{G}_{55}}$$

$$B_{33} = \mathbf{G}_{33} + \frac{B_{22}}{\mathbf{G}_{22}} + \frac{B_{24}}{\mathbf{G}_{24}} + \frac{B_{42}}{\mathbf{G}_{42}} + \frac{B_{44}}{\mathbf{G}_{44}}$$



- 1. Linear interpolation
- 2. Median filter on color differences

Demosaicking CFA's

Median-based interpolation (Freeman)

Demosaicking CFA's

DigiVFX

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	B	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Gradient-based interpolation (LaRoche-Prescott)

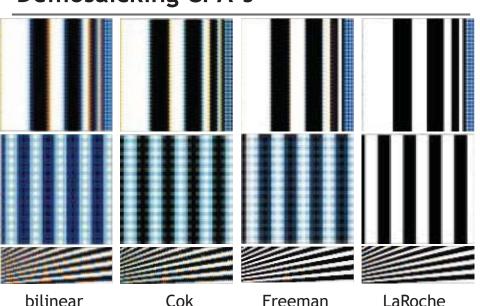
1. Interpolation on G $\alpha = abs[(B_{42} + B_{46})/2 - B_{44}]$ $\beta = abs[(B_{24} + B_{64})/2 - B_{44}]$

$$\mathbf{G}_{44} = \begin{cases} \frac{G_{43} + G_{45}}{2} & \text{if } \alpha < \beta \\ \\ \frac{G_{34} + G_{54}}{2} & \text{if } \alpha > \beta. \\ \\ \frac{G_{43} + G_{45} + G_{34} + G_{54}}{4} & \text{if } \alpha = \beta \end{cases}$$

Demosaicking CFA's

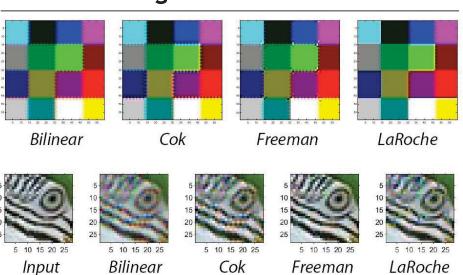
R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	B	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Gradient-based interpolation (LaRoche-Prescott)


2. Interpolation of color differences

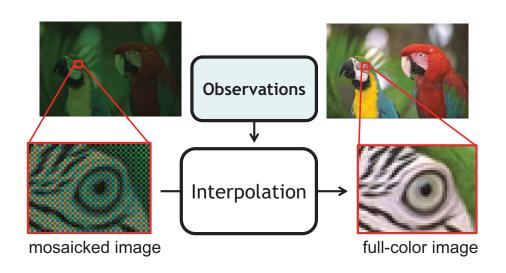
$$R_{34} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35})}{2} + G_{34},$$

$$R_{43} \! = \! \frac{(R_{33} \! - \! \mathbf{G}_{33}) + (R_{53} \! - \! \mathbf{G}_{53})}{2} + G_{43} \, ,$$

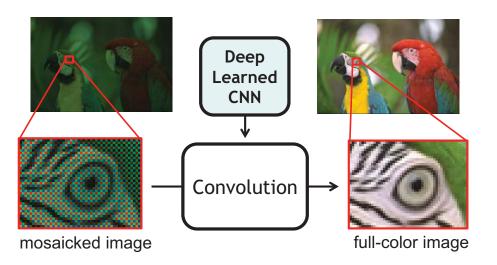

$$R_{44} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35}) + (R_{53} - \mathbf{G}_{53}) + (R_{55} - \mathbf{G}_{55})}{4} + G_{44}.$$

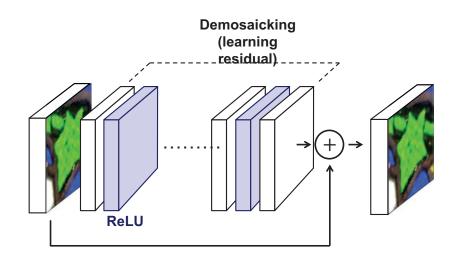
Demosaicking CFA's

Demosaicking CFA's



Generally, Freeman's is the best, especially for natural images.


Interpolation-based methods


Deep learning approach

CNN-based demosaicking

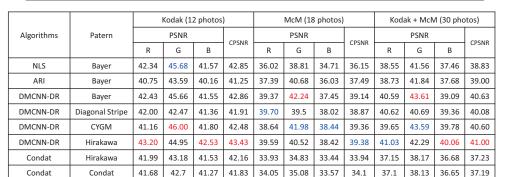
evaluation

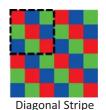
Kodak (12 photos)		McM (18	photos)		Kodak + McM (30 photos)				
Algorithm		PSNR		CPSNR		PSNR CPSNR				CPSNR		
	R	G	В	CFSINIC	R	G	В	CFSINK	R	G	В	CFSINIC
SA	39.8	43.31	39.5	40.54	32.73	34.73	32.1	32.98	35.56	38.16	35.06	36.01
SSD	38.83	40.51	39.08	39.4	35.02	38.27	33.8	35.23	36.54	39.16	35.91	36.9
NLS	42.34	45.68	41.57	42.85	36.02	38.81	34.71	36.15	38.55	41.56	37.46	38.83
CS	41.01	44.17	40.12	41.43	35.56	38.84	34.58	35.92	37.74	40.97	36.8	38.12
ECC	39.87	42.17	39.00	40.14	36.67	39.99	35.31	36.78	37.95	40.86	36.79	38.12
RI	39.64	42.17	38.87	39.99	36.07	39.99	35.35	36.48	37.5	40.86	36.76	37.88
MLRI	40.59	42.97	39.86	40.94	36.35	39.9	35.36	36.62	38.04	41.13	37.16	38.35
ARI	40.81	43.66	40.21	41.31	37.41	40.72	36.05	37.52	38.77	41.9	37.72	39.03
PAMD	41.88	45.21	41.23	42.44	34.12	36.88	33.31	34.48	37.22	40.21	36.48	37.66
AICC	42.04	44.51	40.57	42.07	35.66	39.21	34.34	35.86	38.21	41.33	36.83	38.34
DMCNN	39.86	42.97	39.18	40.37	36.50	39.34	35.21	36.62	37.85	40.79	36.79	38.12
DMCNN-DR	42.43	45.66	41.55	42.86	39.37	42.24	37.45	39.14	40.59	43.61	39.09	40.63

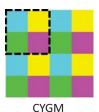
Visual **Comparisons**

ARI

RTF

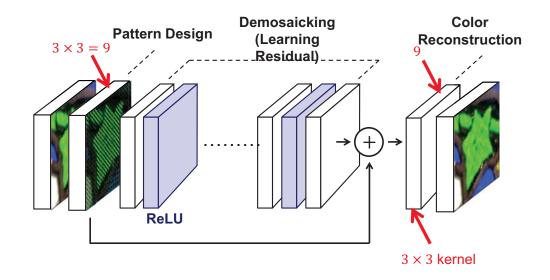




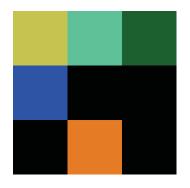

DMCNN-DR

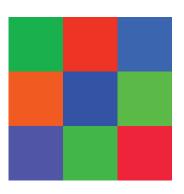
DMCNN-DR-Tr

Evaluation with different patterns DigiVFX



Condat pattern


Pattern optimization

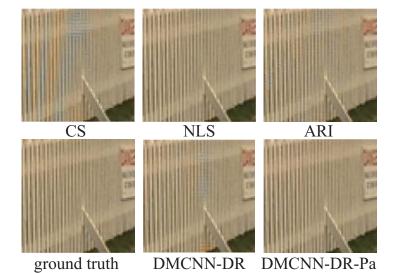


Learned pattern

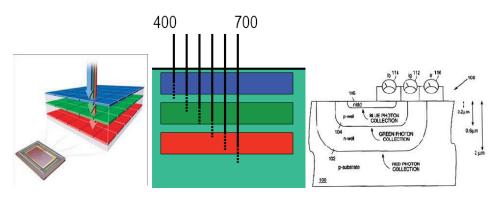
Without non-negative constraints

With non-negative constraints

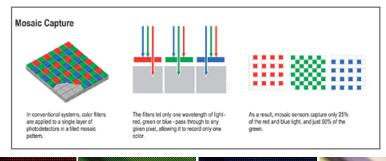
Evaluation with the learned pattern

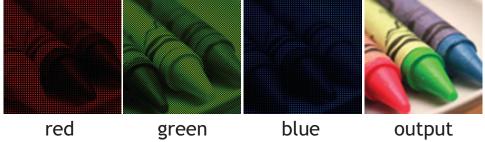

	Kodak (12 photos)					McM (18	photos)		Kodak + McM (30 photos)			
Algorithm	PSNR		CPSNR		PSNR				CPSNR			
	R	G	В	CPSINK	R	G	В	CPSNR	R	G	В	CPSINK
SA	39.80	43.31	39.50	40.54	32.73	34.73	32.10	32.98	35.56	38.16	35.06	36.01
SSD	38.83	40.51	39.08	39.40	35.02	38.27	33.80	35.23	36.54	39.16	35.91	36.90
NLS	42.34	45.68	41.57	42.85	36.02	38.81	34.71	36.15	38.55	41.56	37.46	38.83
CS	41.01	44.17	40.12	41.43	35.56	38.84	34.58	35.92	37.74	40.97	36.80	38.12
ECC	39.87	42.17	39.00	40.14	36.67	39.99	35.31	36.78	37.95	40.86	36.79	38.12
RI	39.64	42.17	38.87	39.99	36.07	39.99	35.35	36.48	37.50	40.86	36.76	37.88
MLRI	40.59	42.97	39.86	40.94	36.35	39.9	35.36	36.62	38.04	41.13	37.16	38.35
ARI	40.81	43.66	40.21	41.31	37.41	40.72	36.05	37.52	38.77	41.9	37.72	39.03
PAMD	41.88	45.21	41.23	42.44	34.12	36.88	33.31	34.48	37.22	40.21	36.48	37.66
AICC	42.04	44.51	40.57	42.07	35.66	39.21	34.34	35.86	38.21	41.33	36.83	38.34
DMCNN	39.86	42.97	39.18	40.37	36.50	39.34	35.21	36.62	37.85	40.79	36.79	38.12
DMCNN-DR	42.43	45.66	41.55	42.86	39.37	42.24	37.45	39.14	40.59	43.61	39.09	40.63
DMCNN-Pa	43.06	43.76	42.13	42.92	40.63	40.14	38.74	39.68	41.60	41.59	40.01	40.98

Visual Comparisons

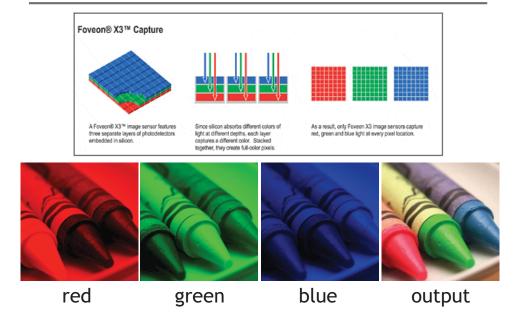

original image

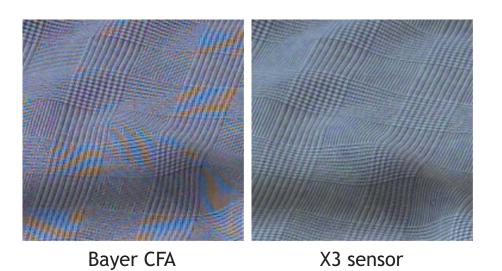
Foveon X3 sensor




- light penetrates to different depths for different wavelengths
- multilayer CMOS sensor gets 3 different spectral sensitivities

Color filter array




X3 technology

Foveon X3 sensor

Cameras with X3

Sigma SD10, SD9

Polaroid X530

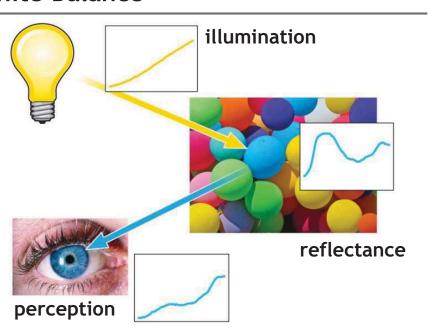
Sigma SD9 vs Canon D30

Color processing

DigiVFX

- After color values are recorded, more color processing usually happens:
 - White balance
 - Non-linearity to approximate film response or match TV monitor gamma

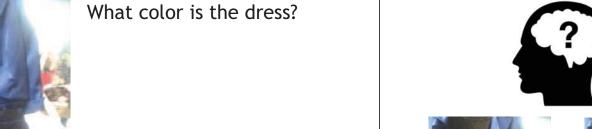
White Balance



warmer +3

automatic white balance

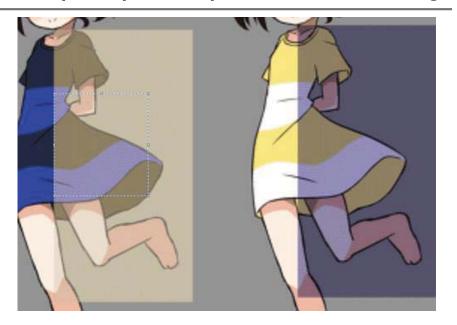
White Balance

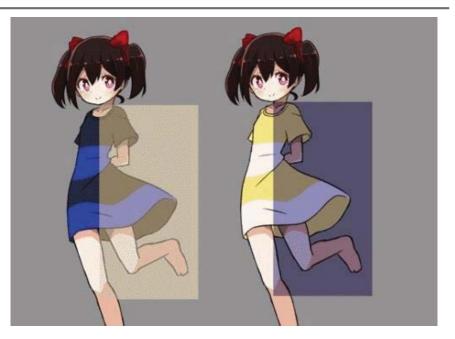


Color constancy

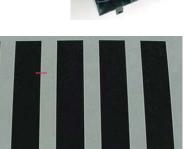
Color constancy

Human vision is complex




Color perception depends on surrounding

Color perception depends on surrounding



Color perception depends on surrounding

Autofocus

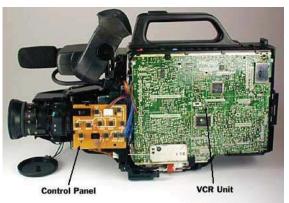
- Active
 - Sonar

- - Infrared
- Passive

DigiVFX

Digital camera review website

- A cool video of digital camera illustration
- http://www.dpreview.com/

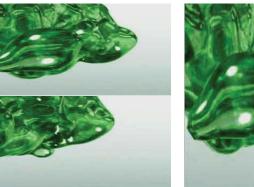

Camcorder

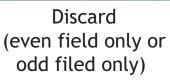
Interlacing

without interlacing

with interlacing

Deinterlacing





weave

Progressive scan

Hard cases

Computational cameras

More emerging cameras

References

- http://www.howstuffworks.com/digital-camera.htm
- http://electronics.howstuffworks.com/autofocus.htm
- Ramanath, Snyder, Bilbro, and Sander. <u>Demosaicking</u>
 <u>Methods for Bayer Color Arrays</u>, Journal of Electronic
 Imaging, 11(3), pp306-315.
- Rajeev Ramanath, Wesley E. Snyder, Youngjun Yoo, Mark S. Drew, <u>Color Image Processing Pipeline in Digital Still Cameras</u>, IEEE Signal Processing Magazine Special Issue on Color Image Processing, vol. 22, no. 1, pp. 34-43, 2005.
- http://www.worldatwar.org/photos/whitebalance/index.mhtml
- http://www.100fps.com/