

Multi-view 3D Reconstruction for Dummies

Jianxiong Xiao

Camera projection

• When people take a picture of a point:

$$\mathbf{x} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \mathbf{X}$$

SFMedu Program with Code

Download from:

http://mit.edu/jxiao/Public/software/SFMedu/

Camera projection

• When people take two pictures with same camera setting:

$$\mathbf{x}_1 = \mathbf{K} [\mathbf{R}_1 | \mathbf{t}_1] \mathbf{X}$$
$$\mathbf{x}_2 = \mathbf{K} [\mathbf{R}_2 | \mathbf{t}_2] \mathbf{X}$$

Camera projection

• When people take three pictures with same camera setting:

$$\mathbf{x}_{1} = \mathbf{K} \left[\mathbf{R}_{1} | \mathbf{t}_{1} \right] \mathbf{X}$$

$$\mathbf{x}_{2} = \mathbf{K} \left[\mathbf{R}_{2} | \mathbf{t}_{2} \right] \mathbf{X}$$

$$\mathbf{x}_{3} = \mathbf{K} \left[\mathbf{R}_{3} | \mathbf{t}_{3} \right] \mathbf{X}$$

Camera projection

Camera projection

Camera projection

	Point 1	Point 2	Point 3
Image 1	$\mathbf{x}_1^1 = \mathbf{K} \Big[\mathbf{R}_1 \big \mathbf{t}_1 \Big] \mathbf{X}^1$	$\mathbf{x}_1^2 = \mathbf{K} [\mathbf{R}_1 \mathbf{t}_1] \mathbf{X}^2$	
Image 2	$\mathbf{x}_2^1 = \mathbf{K} \left[\mathbf{R}_2 \middle \mathbf{t}_2 \right] \mathbf{X}^1$	$\mathbf{x}_2^2 = \mathbf{K} \left[\mathbf{R}_2 \middle \mathbf{t}_2 \right] \mathbf{X}^2$	$\mathbf{x}_2^3 = \mathbf{K} \Big[\mathbf{R}_2 \big \mathbf{t}_2 \Big] \mathbf{X}^3$
Image 3	$\mathbf{x}_3^1 = \mathbf{K} \Big[\mathbf{R}_3 \big \mathbf{t}_3 \Big] \mathbf{X}^1$	$\mathbf{x}_{1}^{2} = \mathbf{K} \left[\mathbf{R}_{1} \mathbf{t}_{1} \right] \mathbf{X}^{2}$ $\mathbf{x}_{2}^{2} = \mathbf{K} \left[\mathbf{R}_{2} \mathbf{t}_{2} \right] \mathbf{X}^{2}$	$\mathbf{x}_3^3 = \mathbf{K} \Big[\mathbf{R}_3 \big \mathbf{t}_3 \Big] \mathbf{X}^3$

Same Camera Same Setting = Same \mathbf{K}

Structure From Motion

- Structure = 3D Point Cloud of the Scene
- Motion = Camera Location and Orientation
- SFM = Get the Point Cloud from Moving Cameras
- Structure and Motion: Joint Problems to Solve

Two-view Reconstruction

Two-view Reconstruction

Two-view Reconstruction

Keypoints Detection

Descriptor for each point

Same for the other images

Point Match for correspondences

Point Match for correspondences

Fundamental Matrix

Estimating Fundamental Matrix

• Given a correspondence

$$\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$$

• The basic incidence relation is

$$\mathbf{X}_{1}^{T}\mathbf{F}\mathbf{X}_{2} = 0 \qquad \begin{bmatrix} x_{1}x_{2}, x_{1}y_{2}, x_{1}, y_{1}x_{2}, y_{1}y_{2}, y_{1}, x_{2}, y_{2}, 1 \end{bmatrix} \begin{pmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{pmatrix}$$
Need 8 points

Estimating Fundamental Matrix

 $\mathbf{x}_1^T \mathbf{F} \mathbf{x}_2 = 0$ for 8 point correspondences:

$$\boldsymbol{x}_{1}^{1} \longleftrightarrow \boldsymbol{x}_{2}^{1}, \boldsymbol{x}_{1}^{2} \longleftrightarrow \boldsymbol{x}_{2}^{2}, \boldsymbol{x}_{1}^{3} \longleftrightarrow \boldsymbol{x}_{2}^{3}, \boldsymbol{x}_{1}^{4} \longleftrightarrow \boldsymbol{x}_{2}^{4}, \boldsymbol{x}_{1}^{5} \longleftrightarrow \boldsymbol{x}_{2}^{5}, \boldsymbol{x}_{1}^{6} \longleftrightarrow \boldsymbol{x}_{2}^{6}, \boldsymbol{x}_{1}^{7} \longleftrightarrow \boldsymbol{x}_{2}^{7}, \boldsymbol{x}_{1}^{8} \longleftrightarrow \boldsymbol{x}_{2}^{8}$$

$$\begin{bmatrix} x_1^1 x_2^1 & x_1^1 y_2^1 & x_1^1 & y_1^1 x_2^1 & y_1^1 y_2^1 & y_1^1 & x_2^1 & y_2^1 & 1 \\ x_1^2 x_2^2 & x_1^2 y_2^2 & x_1^2 & y_1^2 x_2^2 & y_1^2 y_2^2 & y_1^2 & x_2^2 & y_2^2 & 1 \\ x_1^3 x_2^3 & x_1^3 y_2^3 & x_1^3 & y_1^3 x_2^3 & y_1^3 y_2^3 & y_1^3 & x_2^3 & y_2^3 & 1 \\ x_1^4 x_2^4 & x_1^4 y_2^4 & x_1^4 & y_1^4 x_2^4 & y_1^4 y_2^4 & y_1^4 & x_2^4 & y_2^4 & 1 \\ x_1^5 x_2^5 & x_1^5 y_2^5 & x_1^5 & y_1^5 x_2^5 & y_1^5 y_2^5 & y_1^5 & x_2^5 & y_2^5 & 1 \\ x_1^6 x_2^6 & x_1^6 y_2^6 & x_1^6 & y_1^6 x_2^6 & y_1^6 y_2^6 & y_1^6 & x_2^6 & y_2^6 & 1 \\ x_1^7 x_2^7 & x_1^7 y_2^7 & x_1^7 & y_1^7 x_2^7 & y_1^7 y_2^7 & y_1^7 & x_2^7 & y_2^7 & 1 \\ x_1^8 x_2^8 & x_1^8 y_2^8 & x_1^8 & y_1^8 x_2^8 & y_1^8 y_2^8 & y_1^8 & x_2^8 & y_2^8 & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix}$$

Direct Linear Transformation (DLT)

RANSAC to Estimate Fundamental Matrix

- For many times
 - Pick 8 points

 - Count number of inliers
- Pick the one with the largest number of inliers

Fundamental Matrix > Essential Matrix

$$\mathbf{x}_1^T \mathbf{F} \mathbf{x}_2 = 0$$

$$\mathbf{E} = \mathbf{K}_1^T \mathbf{F} \mathbf{K}_2$$

Essential Matrix $\rightarrow [\mathbf{R}|\mathbf{t}]$

Essential Matrix $\rightarrow [\mathbf{R}|\mathbf{t}]$

Result 9.19. For a given essential matrix

$$\mathbf{E} = \mathbf{U}\operatorname{diag}(1,1,0)\mathbf{V}^{T},$$

and the first camera matrix $\mathbf{P}_1 = [\mathbf{I} | \mathbf{0}]$, there are four possible choices for the second camera matrix \mathbf{P}_2 :

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} | + \mathbf{u}_{3} \end{bmatrix}$$

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} | -\mathbf{u}_{3} \end{bmatrix}$$

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} | +\mathbf{u}_{3} \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} | -\mathbf{u}_{3} \end{bmatrix}$$

Four Possible Solutions

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in front of both cameras.

Page 260 of the bible (Multiple View Geometry, 2nd Ed)

In front of the camera?

• Camera Extrinsic [R|t]

$$\begin{bmatrix} X_{cam} \\ Y_{cam} \\ Z_{cam} \end{bmatrix} = \mathbf{R} \begin{bmatrix} X_{world} \\ Y_{world} \\ Z_{world} \end{bmatrix} + \mathbf{t} \quad \begin{array}{c} X_{world} \\ Y_{world} \\ Z_{world} \end{bmatrix} = \mathbf{R}^{-1} \begin{bmatrix} X_{cam} \\ Y_{cam} \\ Z_{cam} \end{bmatrix} - \mathbf{t} = \mathbf{R}^{T} \begin{bmatrix} X_{cam} \\ Y_{cam} \\ Z_{cam} \end{bmatrix} - \mathbf{R}^{T} \mathbf{t}$$

Camera Center

$$\begin{bmatrix} X_{cam} \\ Y_{cam} \\ Z_{cam} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} X_{world} \\ Y_{world} \\ Z_{world} \end{bmatrix} = \mathbf{R}^T \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \mathbf{R}^T \mathbf{t} = -\mathbf{R}^T \mathbf{t}$$

View Direction

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{R}^T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \mathbf{R}^T \mathbf{t} \end{bmatrix} - (\mathbf{C}) = (\mathbf{R}(3,:)^T - \mathbf{R}^T \mathbf{t}) - (-\mathbf{R}^T \mathbf{t}) = \mathbf{R}(3,:)^T$$

Camera Coordinate System

World Coordinate System

In front of the camera?

- A point X
- Direction from camera center to point **X**-**C**
- Angle Between Two Vectors

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

$$\frac{\mathbf{B} \cdot \mathbf{B}}{\mathbf{B}} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

- Angle Between **X C** and View Direction
- Just need to test

$$(\mathbf{X} - \mathbf{C}) \cdot \mathbf{R}(3,:)^T > 0$$
?

Pick the Solution

With maximal number of points in front of both cameras.

Page 260 of the bible (Multiple View Geometry, 2nd Ed)

Two-view Reconstruction

Merge Two Point Cloud

- From the 1st and 2nd images, we have $\begin{bmatrix} \mathbf{R}_1 | \mathbf{t}_1 \end{bmatrix}$ and $\begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix}$
- From the 2nd and 3rd images, we have $\left[\mathbf{R}_2|\mathbf{t}_2^{}\right]$ and $\left[\mathbf{R}_3|\mathbf{t}_3^{}\right]$
- Exercise: How to transform the coordinate system of the second point cloud to align with the first point cloud so that there is only one $[\mathbf{R}_2|\mathbf{t}_2]$?

Bundle Adjustment

Camera projection

Camera projection

	Point 1	Point 2	Point 3
Image 1	$\mathbf{x}_1^1 = \mathbf{K} \Big[\mathbf{R}_1 \big \mathbf{t}_1 \Big] \mathbf{X}^1$	$\mathbf{x}_{1}^{2} = \mathbf{K} \left[\mathbf{R}_{1} \mathbf{t}_{1} \right] \mathbf{X}^{2}$ $\mathbf{x}_{2}^{2} = \mathbf{K} \left[\mathbf{R}_{2} \mathbf{t}_{2} \right] \mathbf{X}^{2}$	
Image 2	$\mathbf{x}_2^1 = \mathbf{K} \left[\mathbf{R}_2 \middle \mathbf{t}_2 \right] \mathbf{X}^1$	$\mathbf{x}_2^2 = \mathbf{K} \left[\mathbf{R}_2 \middle \mathbf{t}_2 \right] \mathbf{X}^2$	$\mathbf{x}_2^3 = \mathbf{K} \left[\mathbf{R}_2 \middle \mathbf{t}_2 \right] \mathbf{X}^3$
Image 3	$\mathbf{x}_3^1 = \mathbf{K} \Big[\mathbf{R}_3 \big \mathbf{t}_3 \Big] \mathbf{X}^1$		$\mathbf{x}_3^3 = \mathbf{K} \Big[\mathbf{R}_3 \big \mathbf{t}_3 \Big] \mathbf{X}^3$

Same Camera Same Setting = Same K

Rethinking the SFM problem

• Input: Observed 2D image position

$$\tilde{\mathbf{X}}_1^1 \quad \tilde{\mathbf{X}}_1^2$$

$$\tilde{\mathbf{X}}_2^1 \quad \tilde{\mathbf{X}}_2^2 \quad \tilde{\mathbf{X}}_2^3$$

• Output:

$$\tilde{\mathbf{X}}_3^1 \qquad \tilde{\mathbf{X}}_3^3$$

Unknown Camera Parameters (with some guess)

$$[\mathbf{R}_1|\mathbf{t}_1],[\mathbf{R}_2|\mathbf{t}_2],[\mathbf{R}_3|\mathbf{t}_3]$$

Unknown Point 3D coordinate (with some guess)

$$\mathbf{X}^1, \mathbf{X}^2, \mathbf{X}^3, \cdots$$

Bundle Adjustment

A valid solution $[\mathbf{R}_1|\mathbf{t}_1]$, $[\mathbf{R}_2|\mathbf{t}_2]$, $[\mathbf{R}_3|\mathbf{t}_3]$ and \mathbf{X}^1 , \mathbf{X}^2 , \mathbf{X}^3 ,... must let

$$\begin{aligned} \text{Re-projection} & = \begin{bmatrix} & \mathbf{x}_1^1 = \mathbf{K} \Big[\mathbf{R}_1 \big| \mathbf{t}_1 \Big] \mathbf{X}^1 & \mathbf{x}_1^2 = \mathbf{K} \Big[\mathbf{R}_1 \big| \mathbf{t}_1 \Big] \mathbf{X}^2 \\ & \mathbf{x}_2^1 = \mathbf{K} \Big[\mathbf{R}_2 \big| \mathbf{t}_2 \Big] \mathbf{X}^1 & \mathbf{x}_2^2 = \mathbf{K} \Big[\mathbf{R}_2 \big| \mathbf{t}_2 \Big] \mathbf{X}^2 & \mathbf{x}_2^3 = \mathbf{K} \Big[\mathbf{R}_2 \big| \mathbf{t}_2 \Big] \mathbf{X}^3 \\ & \mathbf{x}_3^1 = \mathbf{K} \Big[\mathbf{R}_3 \big| \mathbf{t}_3 \Big] \mathbf{X}^1 & \mathbf{x}_3^3 = \mathbf{K} \Big[\mathbf{R}_3 \big| \mathbf{t}_3 \Big] \mathbf{X}^3 \end{aligned}$$

Observation
$$\begin{bmatrix} \tilde{\mathbf{x}}_1^1 & \tilde{\mathbf{x}}_1^2 \\ \tilde{\mathbf{x}}_2^1 & \tilde{\mathbf{x}}_2^2 & \tilde{\mathbf{x}}_2^3 \\ \tilde{\mathbf{x}}_3^1 & \tilde{\mathbf{x}}_3^3 \end{bmatrix}$$

Bundle Adjustment

A valid solution $[\mathbf{R}_1|\mathbf{t}_1]$, $[\mathbf{R}_2|\mathbf{t}_2]$, $[\mathbf{R}_3|\mathbf{t}_3]$ and \mathbf{X}^1 , \mathbf{X}^2 , \mathbf{X}^3 ,... must let the Re-projection close to the Observation, i.e. to minimize the reprojection error

$$\min \sum_{i} \sum_{j} \left(\tilde{\mathbf{x}}_{i}^{j} - \mathbf{K} \left[\mathbf{R}_{i} \middle| \mathbf{t}_{i} \right] \mathbf{X}^{j} \right)^{2}$$

Solving This Optimization Problem

• Theory:

The Levenberg–Marquardt algorithm http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

• Practice:

The Ceres-Solver from Google

http://code.google.com/p/ceres-solver/