Bilateral Filters

Digital Visual Effects

Yung-Yu Chuang

with slides by Fredo Durand, Ramesh Raskar, Sylvain Paris, Soonmin Bae

Bilateral filtering

[Ben Weiss, Siggraph 2006]

Image Denoising

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

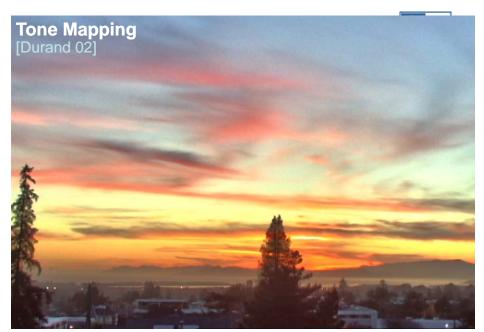
Smoothing an image without blurring its edges.

A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
 - All have their pros and cons.
- Bilateral filter
 - not always the best result [Buades 05] but often good
 - easy to understand, adapt and set up

Basic denoising

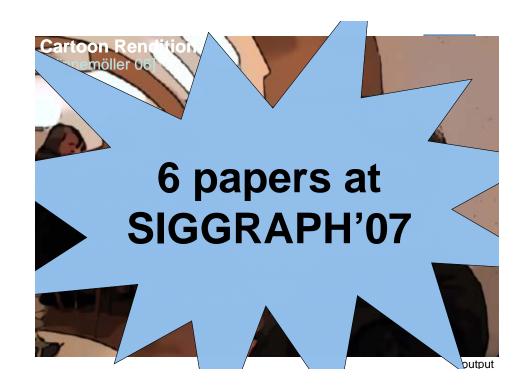
Basic denoising



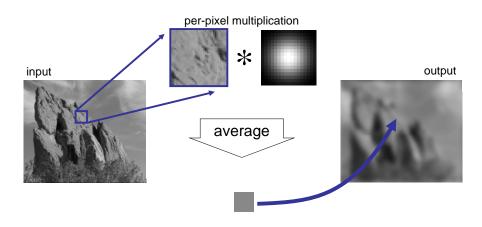
output

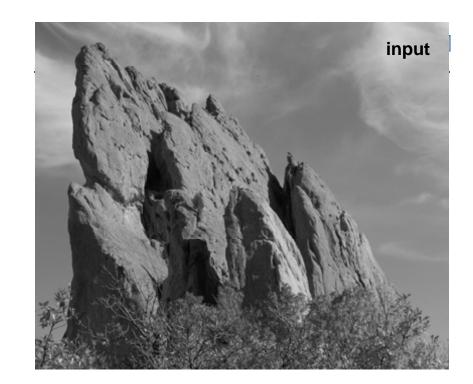
output

input



Gaussian Blur

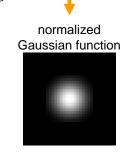




Equation of Gaussian Blur

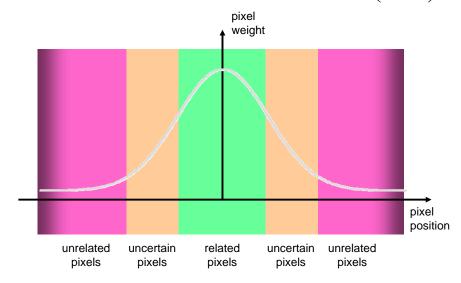
Same idea: weighted average of pixels.

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(||\mathbf{p} - \mathbf{q}||) I_{\mathbf{q}}$$
normalized
Gaussian function



Gaussian Profile

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

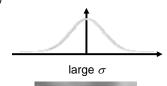


Spatial Parameter

 $GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\mathbf{p}}(||\mathbf{p} - \mathbf{q}||) I_{\mathbf{q}}$ size of the window

limited smoothing

input



strong smoothing

How to set σ

- Depends on the application.
- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

Properties of Gaussian Blur

- Weights independent of spatial location
 - linear convolution
 - well-known operation
 - efficient computation (recursive algorithm, FFT...)

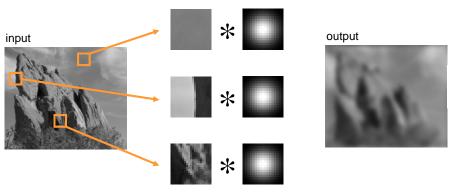
Properties of Gaussian Blur

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term

output

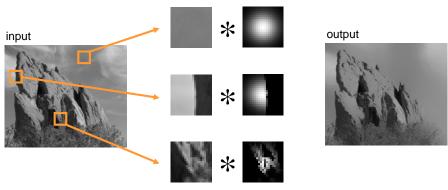
 $GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$

Blur Comes from Averaging across Edges



Same Gaussian kernel everywhere.

Bilateral Filter No Averaging across Edges



The kernel shape depends on the image content.

Bilateral Filter Definition

Same idea: weighted average of pixels.

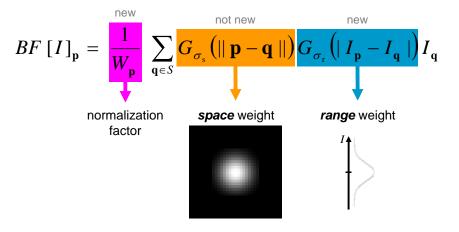
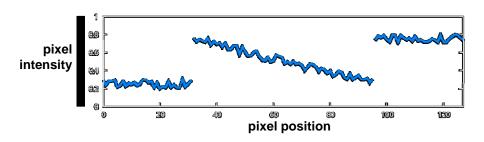


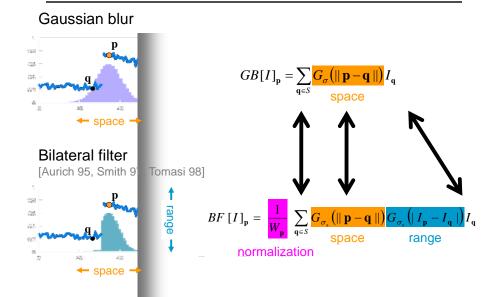
Illustration a 1D Image

• 1D image = line of pixels

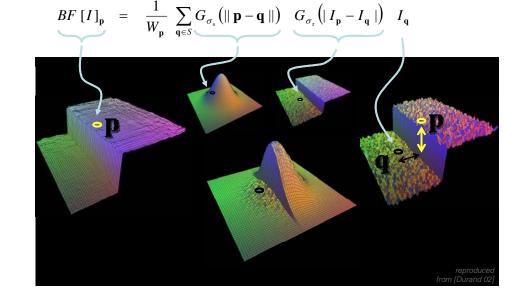
Better visualized as a plot



Gaussian Blur and Bilateral Filter



Bilateral Filter on a Height Field



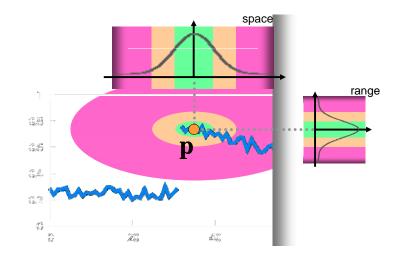
Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}}(||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- space σ_s : spatial extent of the kernel, size of the considered neighborhood.
- range σ_r : "minimum" amplitude of an edge

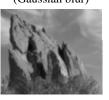
Influence of Pixels

Only pixels close in space and in range are considered.

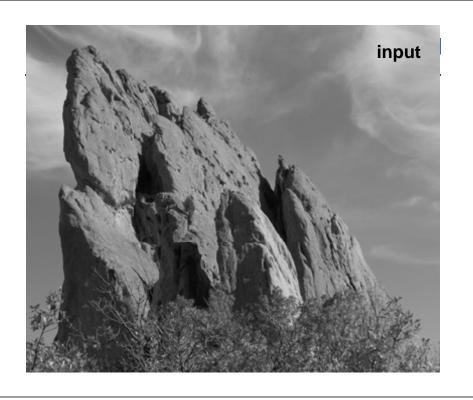


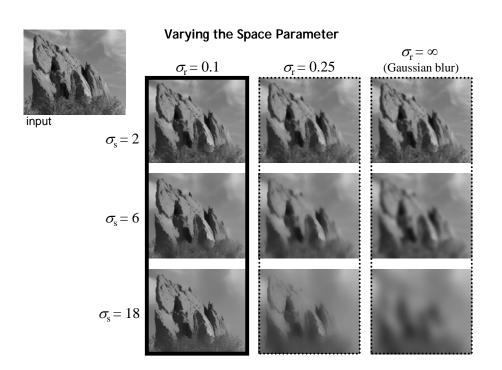
 $\sigma_{\rm r} = 0.1$

Exploring the Parameter Space



Varying the Range Parameter







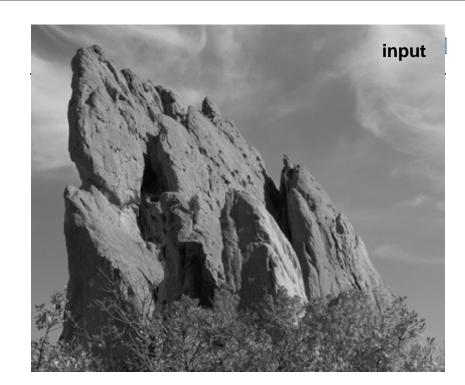
Depends on the application. For instance:

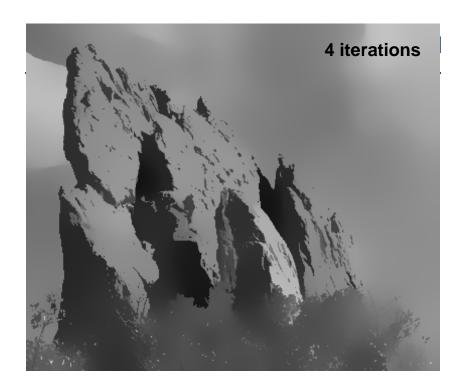
- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

Iterating the Bilateral Filter

$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.





Advantages of Bilateral Filter

- Easy to understand
 - Weighted mean of nearby pixels
- Easy to adapt
 - Distance between pixel values
- Easy to set up
 - Non-iterative

Hard to Compute

Nonlinear

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...

• Brute-force implementation is slow > 10min

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
 - [Elad 02]: Gauss-Seidel iterations
 - · Only for many iterations
 - [Durand 02, Weiss 06]: fast approximation
 - No formal understanding of accuracy versus speed
 - [Weiss 06]: Only box function as spatial kernel

DigiVFX

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
 - Gaussian on space distance
 - Gaussian on range distance
 - sum to 1

$$I_{\mathbf{p}}^{\mathrm{bf}} = rac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} \!\!\! \left[\!\! G_{\sigma_{\!\scriptscriptstyle \mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) \!\! \left| \!\! G_{\sigma_{\!\scriptscriptstyle \mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \!\! \right| \!\! I_{\mathbf{q}} \!\!$$

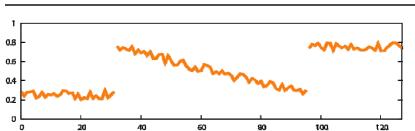
Contributions

Digi<mark>VFX</mark>

DigiVFX

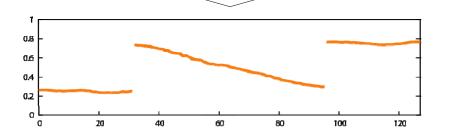
- Link with linear filtering
- Fast and accurate approximation

Intuition on 1D Signal



DigiVFX

DigiVFX

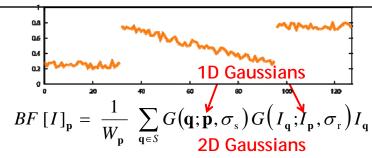


BF

Basic idea



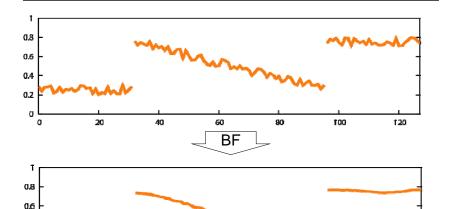
Basic idea



$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\langle \mathbf{q}, I_{\mathbf{q}} \rangle \in S'} G(\mathbf{q}, I_{\mathbf{q}}; \mathbf{p}, I_{\mathbf{p}}, \sigma_{\mathbf{s}}, \sigma_{\mathbf{r}}) I_{\langle \mathbf{q}, I_{\mathbf{q}} \rangle}$$
a special

Intuition on 1D Signal

0.4

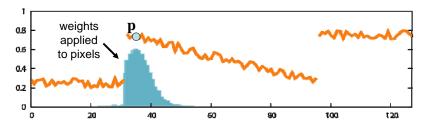


60

80

100

Intuition on 1D Signal Weighted Average of Neighbors



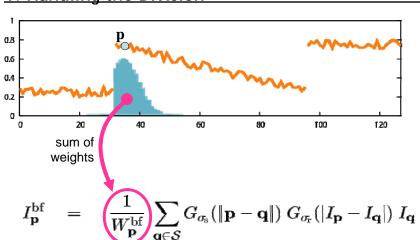
- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.

Link with Linear Filtering 1. Handling the Division

40

20

120



Handling the division with a projective space.

Formalization: Handling the Division

$$\begin{split} I_{\mathbf{p}}^{\mathrm{bf}} &= \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \ I_{\mathbf{q}} \\ W_{\mathbf{p}}^{\mathrm{bf}} &= \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \end{split}$$

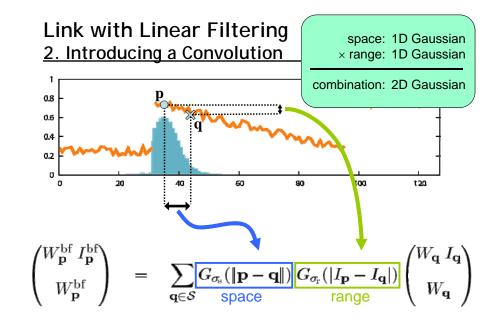
- Normalizing factor as homogeneous coordinate
 - Multiply both sides by $W_{\mathbf{p}}^{\mathrm{bf}}$

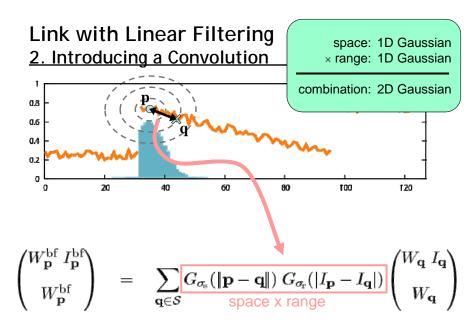
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{e}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} I_{\mathbf{q}} \\ 1 \end{pmatrix}$$

Formalization: Handling the Division

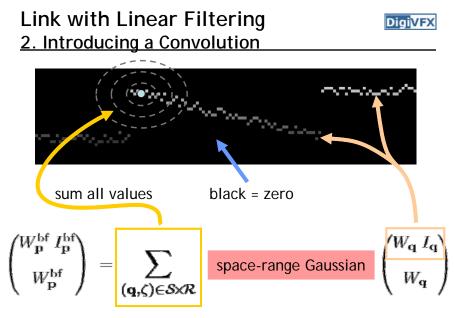
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix} \text{ with } W_{\mathbf{q}} = 1$$

- Similar to homogeneous coordinates in projective space
- · Division delayed until the end
- Next step: Adding a dimension to make a convolution appear





Corresponds to a 3D Gaussian on a 2D image.

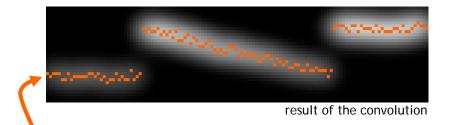


sum all values multiplied by kernel ⇒ convolution

Link with Linear Filtering 2. Introducing a Convolution

result of the convolution

Link with Linear Filtering 2. Introducing a Convolution



$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \ I_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q}, \zeta) \in \mathcal{S} \times \mathcal{R}} \quad \text{space-range Gaussian} \quad \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \end{pmatrix}$$

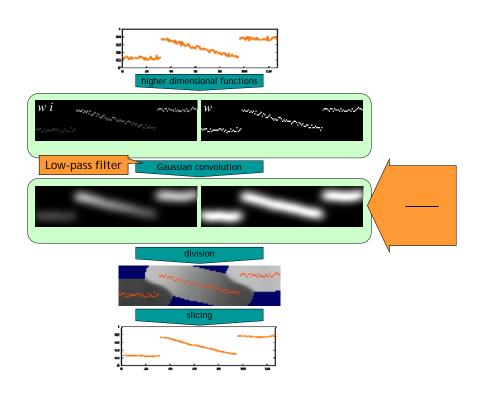
Miler dimensional functions Gaussian convolution division

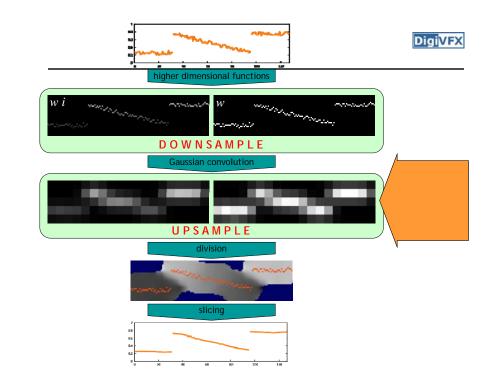
Reformulation: Summary

linear:
$$(w^{\mathrm{bf}}\ i^{\mathrm{bf}}, w^{\mathrm{bf}}) = g_{\sigma_{\!\!\mathbf{s}}, \sigma_{\!\!\mathbf{r}}} \otimes (wi, w)$$
nonlinear: $I^{\mathrm{bf}}_{\mathbf{p}} = \frac{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})\ i^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}$

- 1. Convolution in higher dimension
 - expensive but well understood (linear, FFT, etc)
- 2. Division and slicing
 - · nonlinear but simple and pixel-wise

Exact reformulation



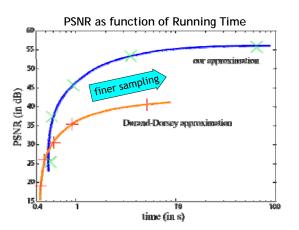


Fast Convolution by Downsampling

- Downsampling cuts frequencies above Nyquist limit
 - Less data to process
 - But induces error
- Evaluation of the approximation
 - Precision versus running time
 - Visual accuracy

Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.



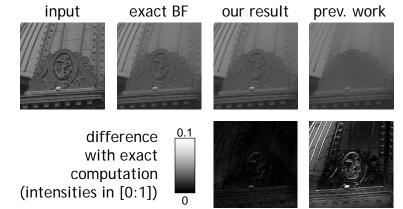
Digital photograph 1200 × 1600

Straightforward implementation is over 10 minutes.

Visual Results

- Comparison with previous work [Durand 02]
 - running time = 1s for both techniques

1200 × 1600



Conclusions

higher dimension ⇒ "better" computation

Practical gain

- · Interactive running time
- Visually similar results
- Simple to code (100 lines)

Theoretical gain

- · Link with linear filters
- · Separation linear/nonlinear
- Signal processing framework

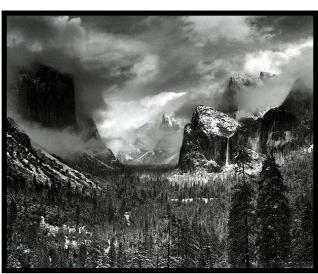
DigiVFX

Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

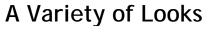
SIGGRAPH2006

Ansel Adams



Ansel Adams, Clearing Winter Storm

An Amateur Photographer



Goals

- Control over photographic look
- Transfer "look" from a model photo

For example,

we want

with the look of

Aspects of Photographic Look

- Subject choice
- Framing and composition
- → Specified by input photos
- Tone distribution and contrast
- → Modified based on model photos

Input

Model

Tonal Aspects of Look

Ansel Adams Kenro Izu

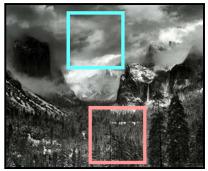
Tonal aspects of Look - Global Contrast

Ansel Adams Kenro Izu

High Global Contrast

Low Global Contrast

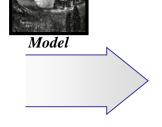
Tonal aspects of Look - Local Contrast



Ansel Adams

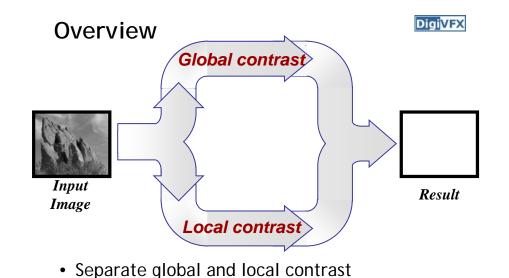
Kenro Izu

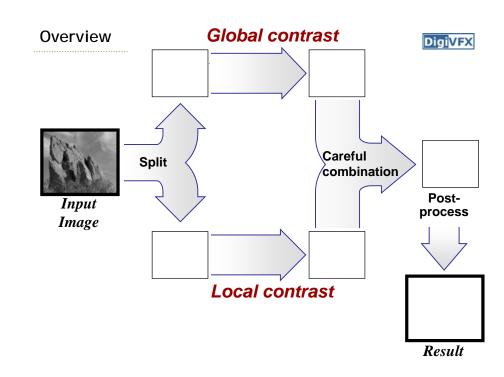
Overview

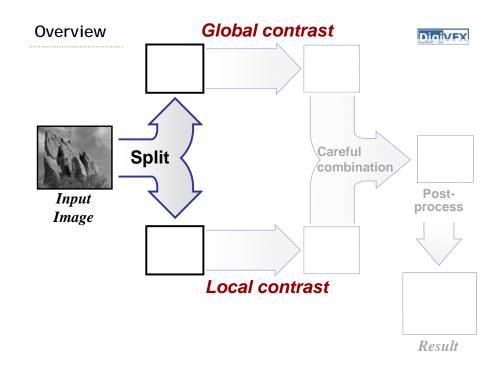


Result

- Transfer look between photographs
 - Tonal aspects

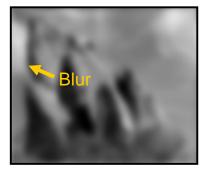






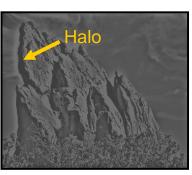
Split Global vs. Local Contrast

- Naïve decomposition: low vs. high frequency
 - Problem: introduce blur & halos



Low frequency

Global contrast



High frequency Local contrast

Bilateral Filter

- Digi<mark>VFX</mark>
- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

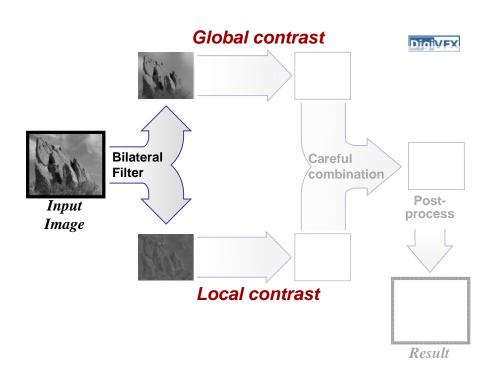
Residual after filtering Local contrast

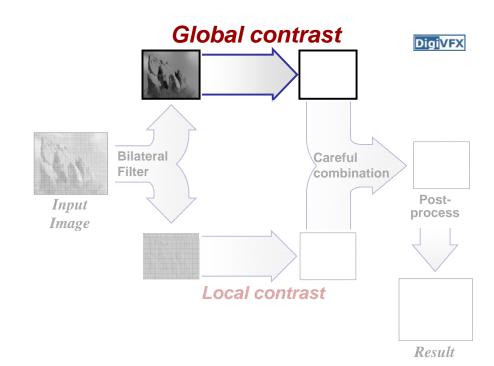
Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

Residual after filtering Local contrast





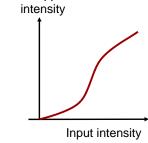
Global Contrast

Digi<mark>VFX</mark>

Intensity remapping of base layer

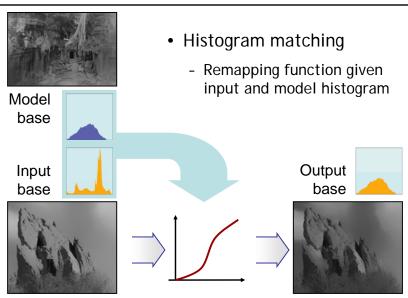
Remapped

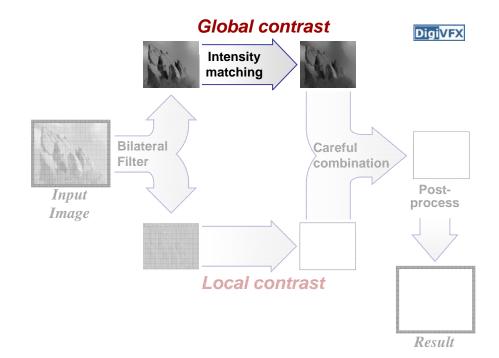
Input base

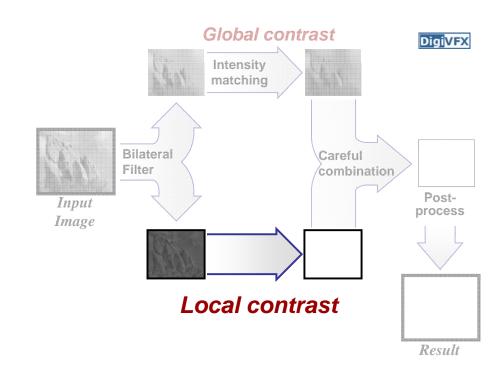


After remapping

Global Contrast (Model Transfer)







Local Contrast: Detail Layer

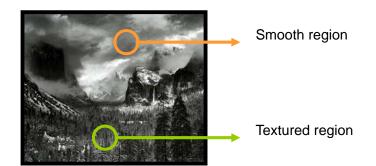
Digi<mark>VFX</mark>

- Uniform control:
 - Multiply all values in the detail layer

Input

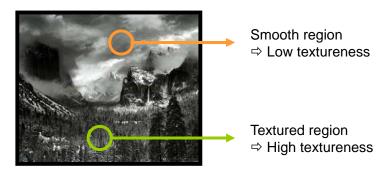
Base + 3 × Detail

The amount of local contrast is not uniform



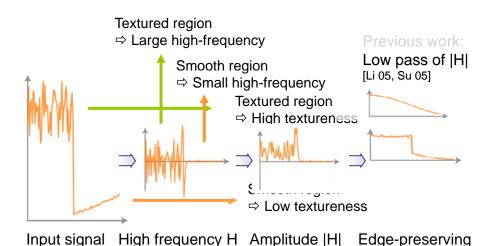
Local Contrast Variation

- We define "textureness": amount of local contrast
 - at each pixel based on surrounding region

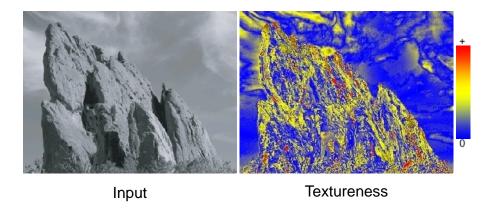


"Textureness": 1D Example

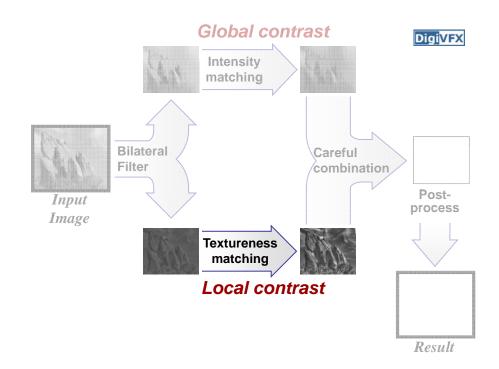
filter

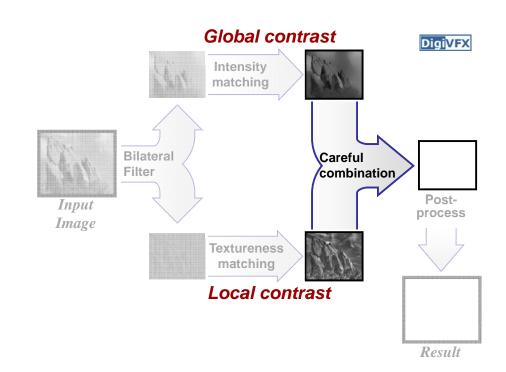


Textureness



Textureness Transfer DigiVFX Model Step 1: Histogram transfer textureness **Desired** Input Hist. transfer textureness textureness Step 2: Scaling detail layer x 2.7 (per pixel) to match desired textureness x 4.3 Output detail Input detail





A Non Perfect Result

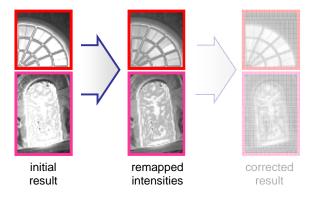
- Digi<mark>VFX</mark>
- Decoupled and large modifications (up to 6x)
 - →Limited defects may appear



result after global and local adjustments

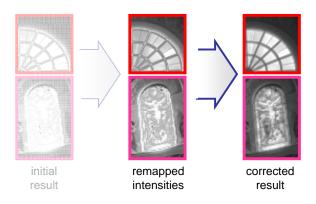
Intensity Remapping

- Some intensities may be outside displayable range.
- → Compress histogram to fit visible range.



Preserving Details

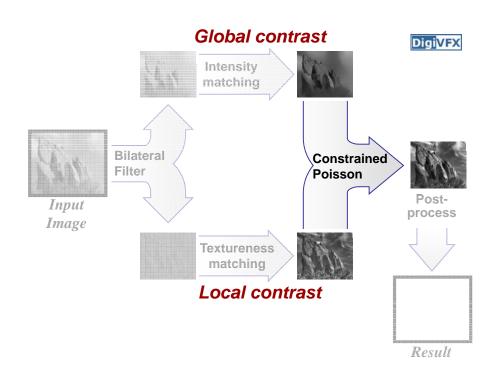
- 1. In the gradient domain:
 - Compare gradient amplitudes of input and current
 - Prevent extreme reduction & extreme increase
- 2. Solve the Poisson equation.

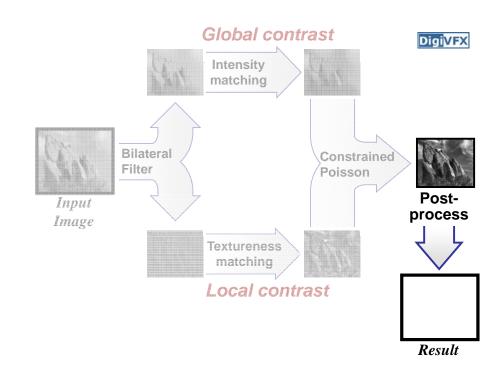


Effect of Detail Preservation

uncorrected result

corrected result



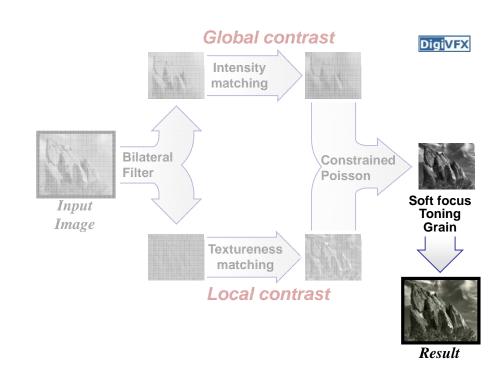


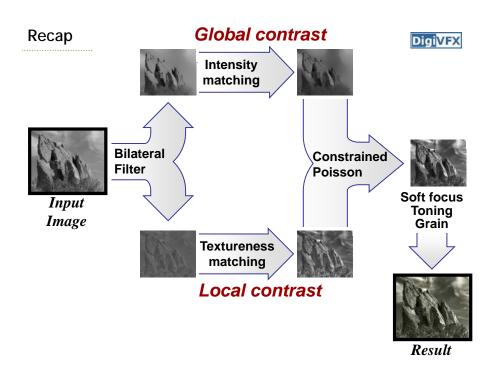
Additional Effects

- Soft focus (high frequency manipulation)
- Film grain (texture synthesis [Heeger 95])
- Color toning (chrominance = f (luminance))

model

after effects





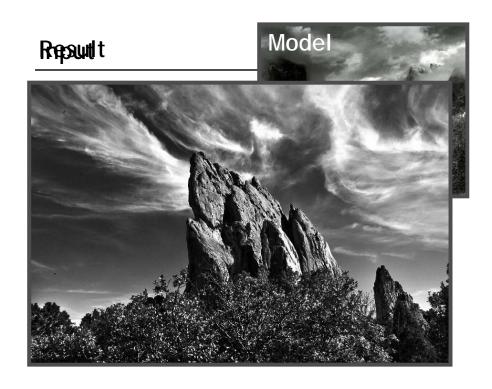
Results

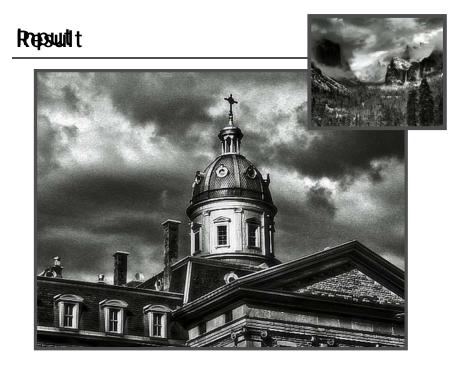
User provides input and model photographs.

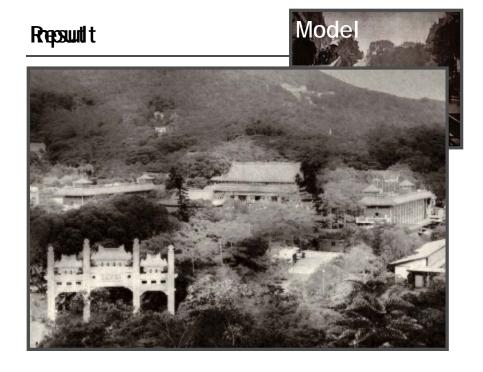
→ Our system automatically produces the result.

Running times:

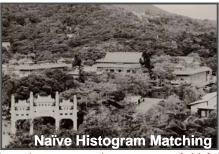
- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

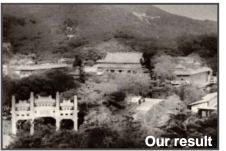






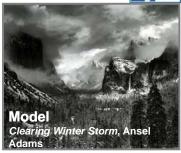
Comparison with Naïve Histogram Matching





Local contrast, sharpness unfaithful

Comparison with Naïve Histogram Matching



Local contrast too low

Color Images

• Lab color space: modify only luminance

Limitations

DigiVFX

- Transfer "look" from a model photo
- Two-scale tone management
 - Global and local contrast
 - New edge-preserving textureness
 - Constrained Poisson reconstruction
 - Additional effects

Conclusions

Noise and JPEG artifacts

- amplified defects

 Can lead to unexpected results if the image content is too different from the model

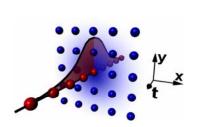
- Portraits, in particular, can suffer

Video Enhancement Using
Per Pixel Exposures (Bennett, 06)

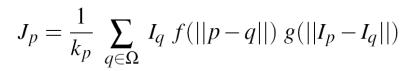
DigiVFX

From this video:

ASTA: <u>A</u>daptive
<u>S</u>patio<u>T</u>emporal
<u>A</u>ccumulation Filter



Joint bilateral filtering



$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||\tilde{I}_p - \tilde{I}_q||)$$

DigiVFX

Flash / No-Flash Photo Improvement (Petschnigg04) (Eisemann04)

Merge best features: warm, cozy candle light (no-flash) low-noise, detailed flash image

Overview

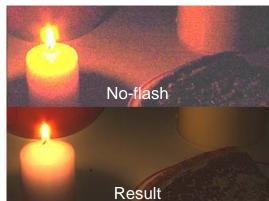
Basic approach of both flash/noflash papers

Remove noise + details from image A,

Keep as image A Lighting

Obtain noise-free details from image B,

Discard Image B Lighting



Petschnigg:

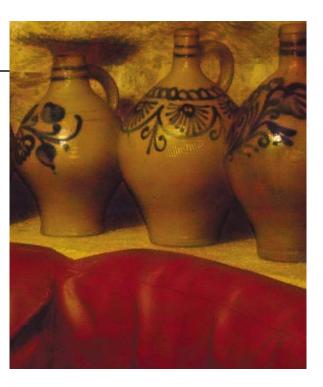
Flash

Petschnigg:

• No Flash,

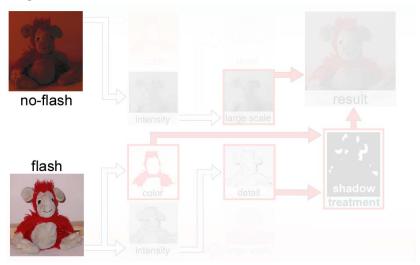
Petschnigg:

Result



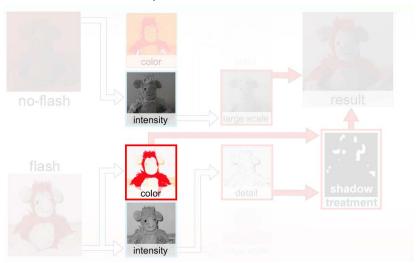
Our Approach

Registration



Our Approach

Decomposition

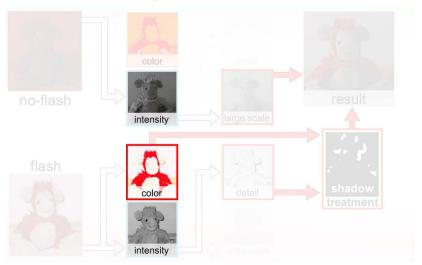


Decomposition

Color / Intensity:

Our Approach

Our Approach



Decoupling

Decoupling

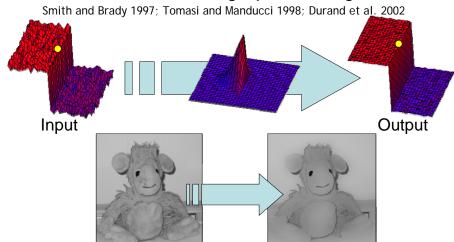
Lighting : Large-scale variationTexture : Small-scale variation

Lighting

Texture

Large-scale Layer

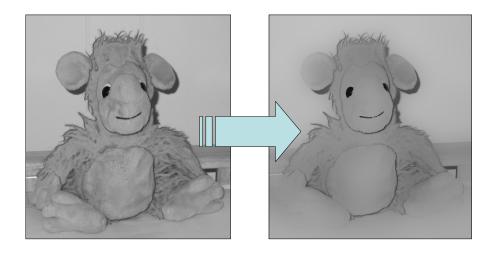
• Bilateral filter — edge preserving filter
Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002



Large-scale Layer

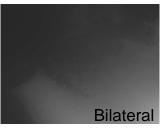
Digi<mark>VFX</mark>

Bilateral filter



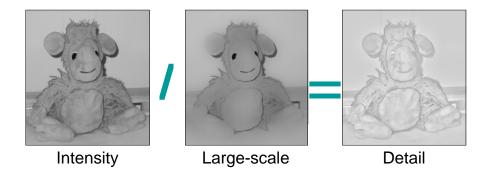
Cross Bilateral Filter

- Similar to joint bilateral filter by Petschnigg et al.
- When no-flash image is too noisy
- Borrow similarity from flash image
 - ➤ edge stopping from flash image

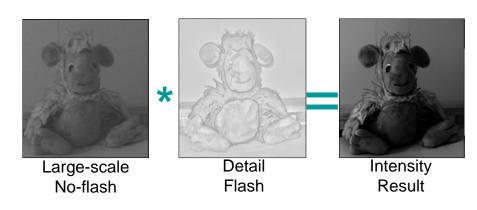


Detail Layer

Recombination



Recombination: Large scale * Detail = Intensity



Recombination: Large scale * Detail = Intensity

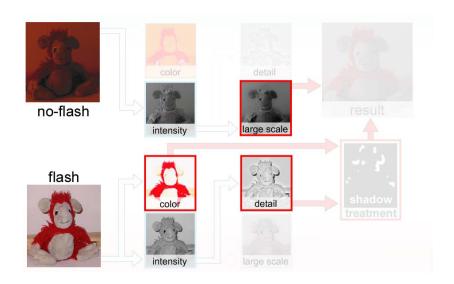
Recombination

shadows * Intensity Color Result

Recombination: Intensity * Color = Original

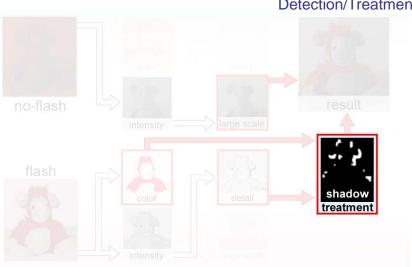
Flash

Our Approach



Our Approach

Result



Results

Joint bilateral upsampling

Digi<mark>VFX</mark>

$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q \ f(||p - q||) \ g(||I_p - I_q||)$

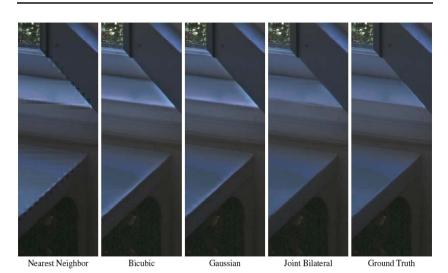
$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

$$\tilde{S}_p = \frac{1}{k_p} \sum_{q_{\downarrow} \in \Omega} S_{q_{\downarrow}} f(||p_{\downarrow} - q_{\downarrow}||) g(||\tilde{I}_p - \tilde{I}_q||)$$

Joint bilateral upsampling

Upsampled Result

Joint bilateral upsampling



Joint bilateral upsampling

Input

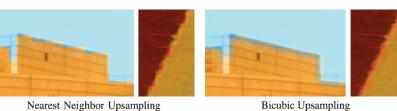
Digi<mark>VFX</mark>

Joint bilateral upsampling

Joint bilateral upsampling

Downsampled

Input Solution

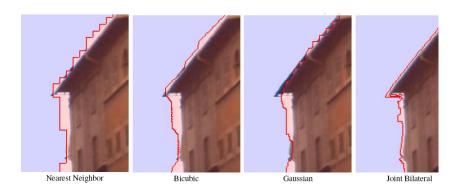


Gaussian Upsampling

Joint Bilateral Upsampling

Joint bilateral upsampling

Joint bilateral upsampling



Upsampled Result