## Bilateral Filters

Digital Visual Effects

Yung-Yu Chuang

## Bilateral filtering



[Ben Weiss, Siggraph 2006]

### **Digi**VFX

## Image Denoising



noisy image



naïve denoising Gaussian blur



better denoising edge-preserving filter

Smoothing an image without blurring its edges.



## A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
  - All have their pros and cons.

- Bilateral filter
  - not always the best result [Buades 05] but often good
  - easy to understand, adapt and set up



## Basic denoising

Noisy input Median 5x5



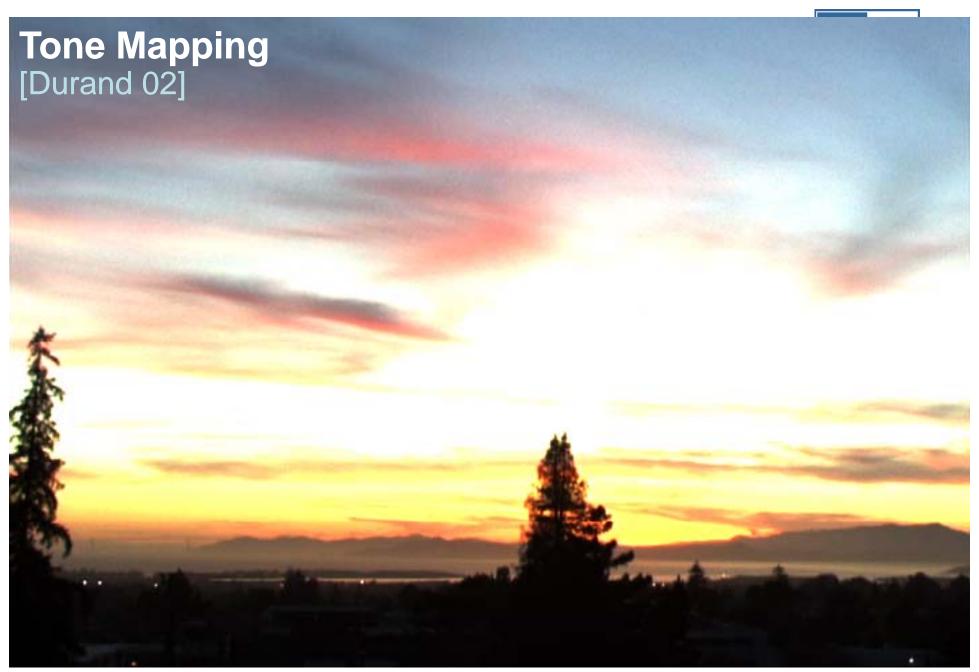
## Basic denoising



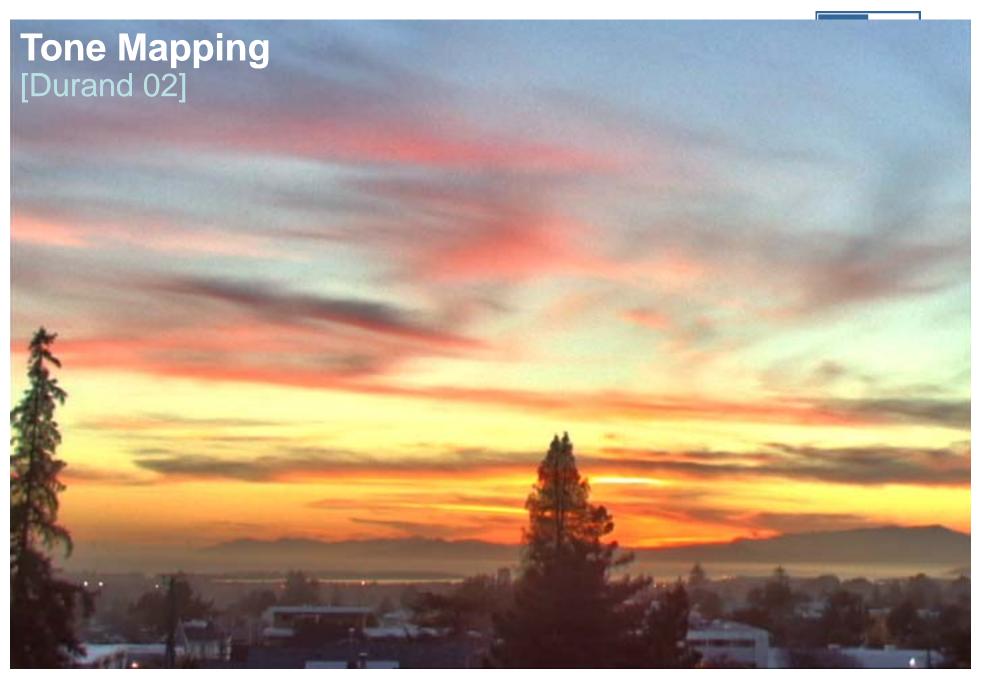
Noisy input

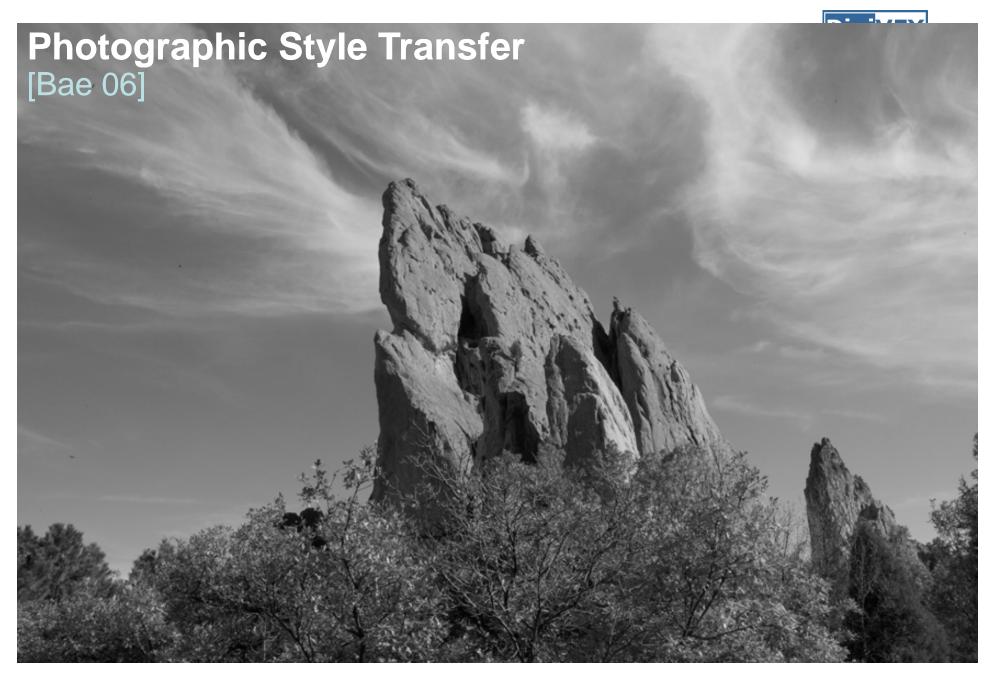
Bilateral filter 7x7 window

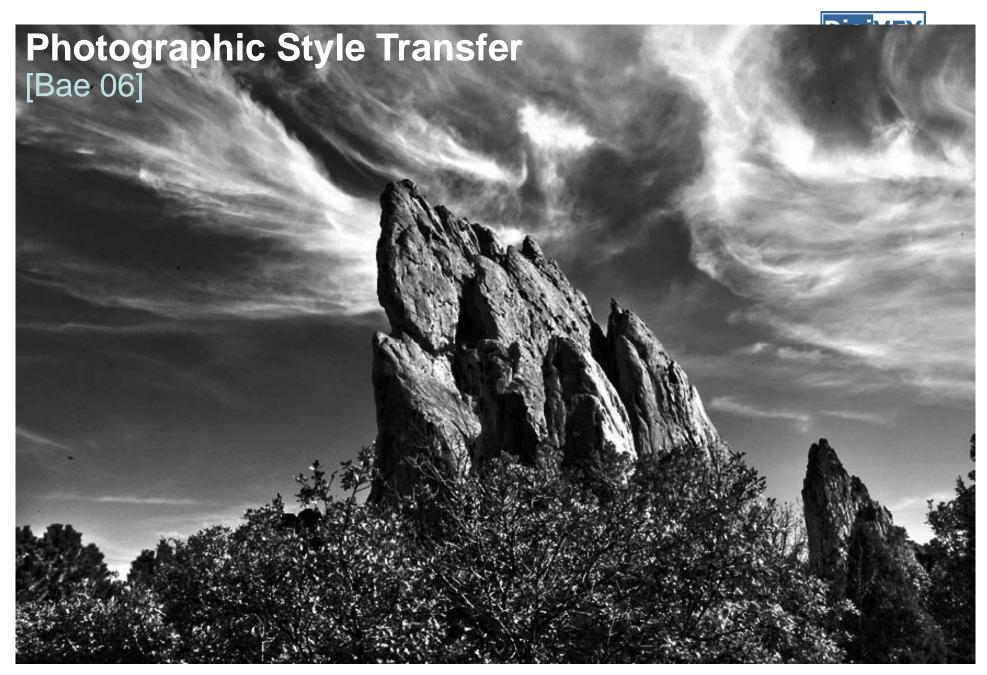




HDR input

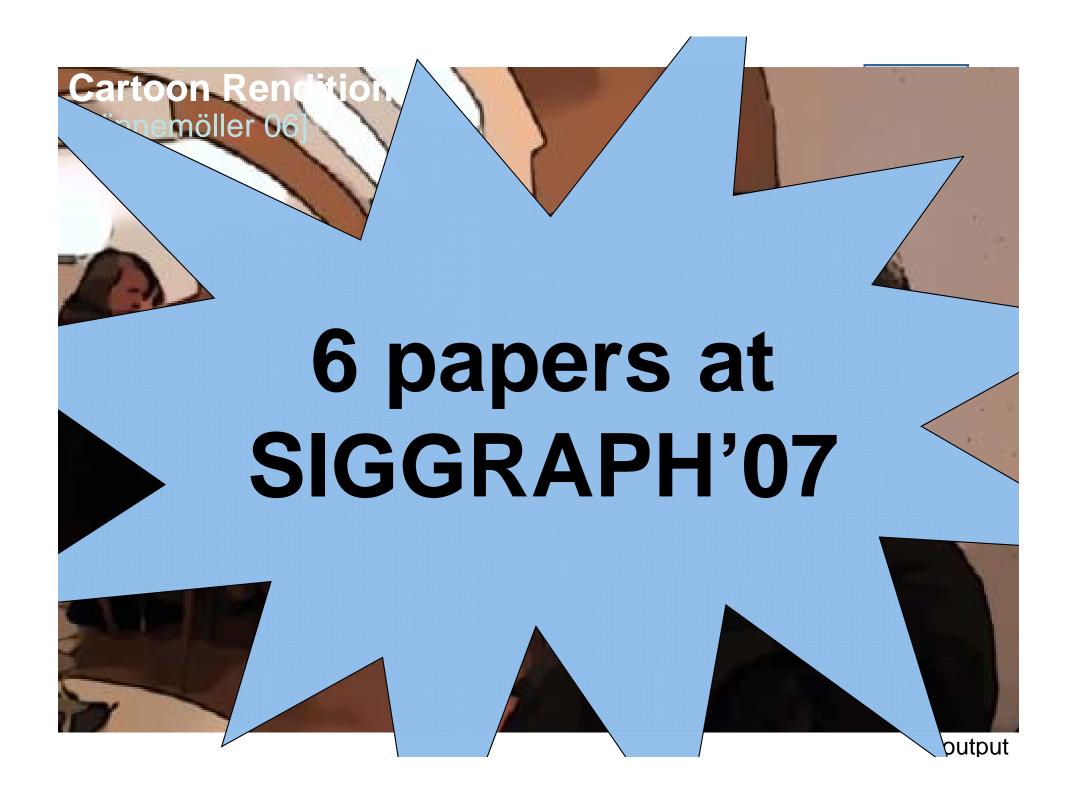






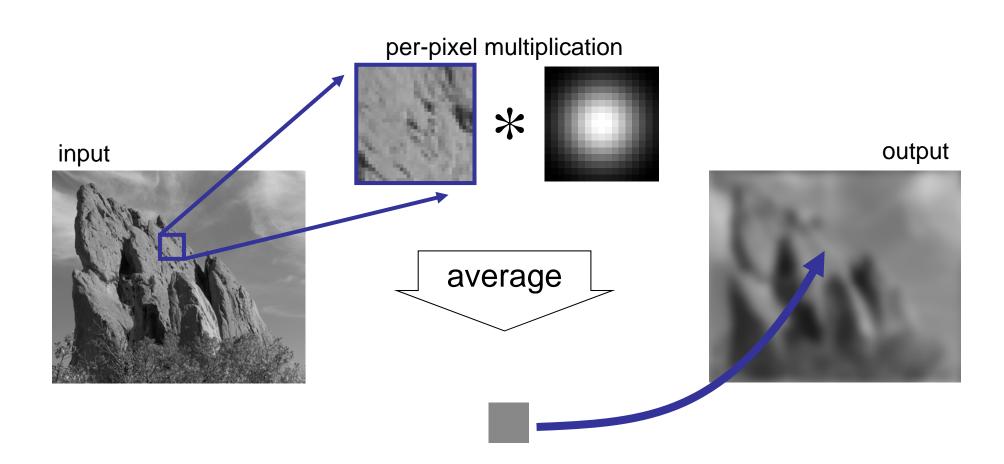


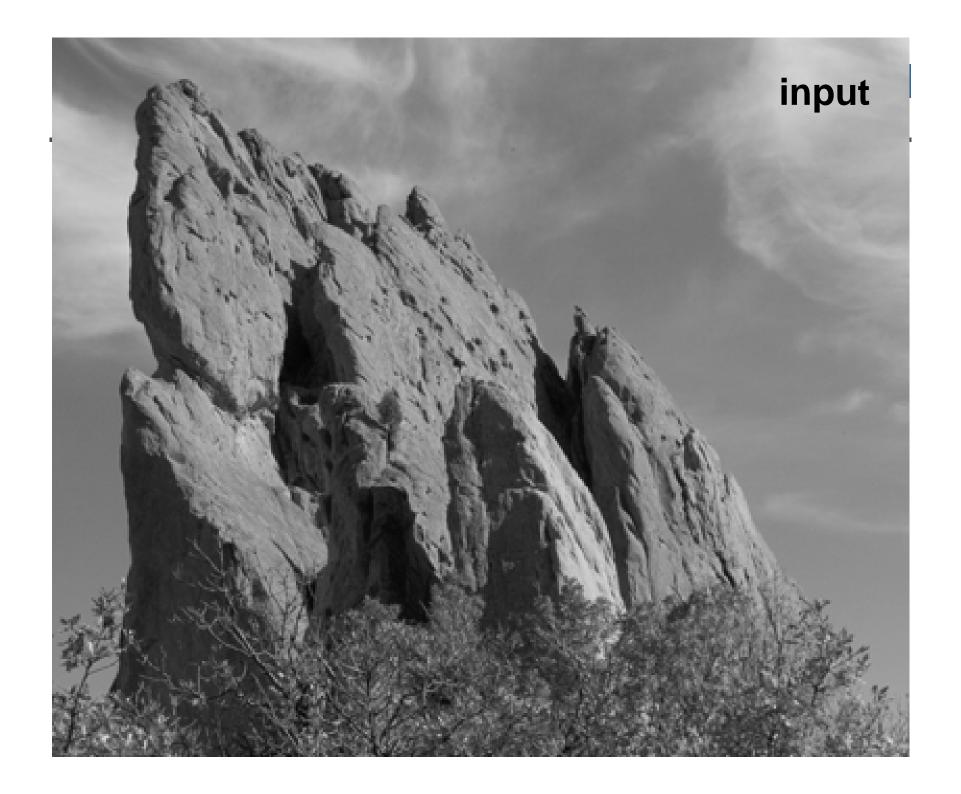
input



## **Gaussian Blur**







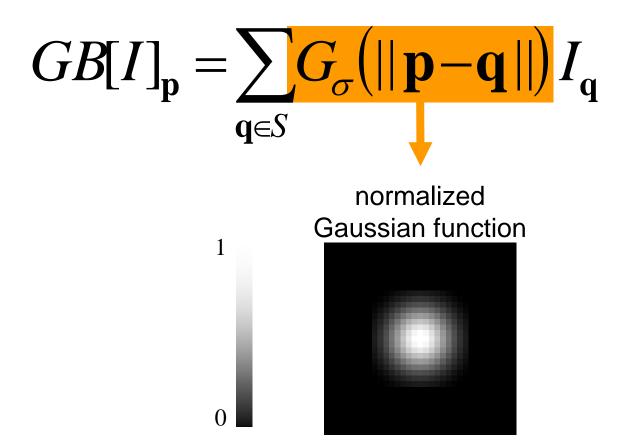






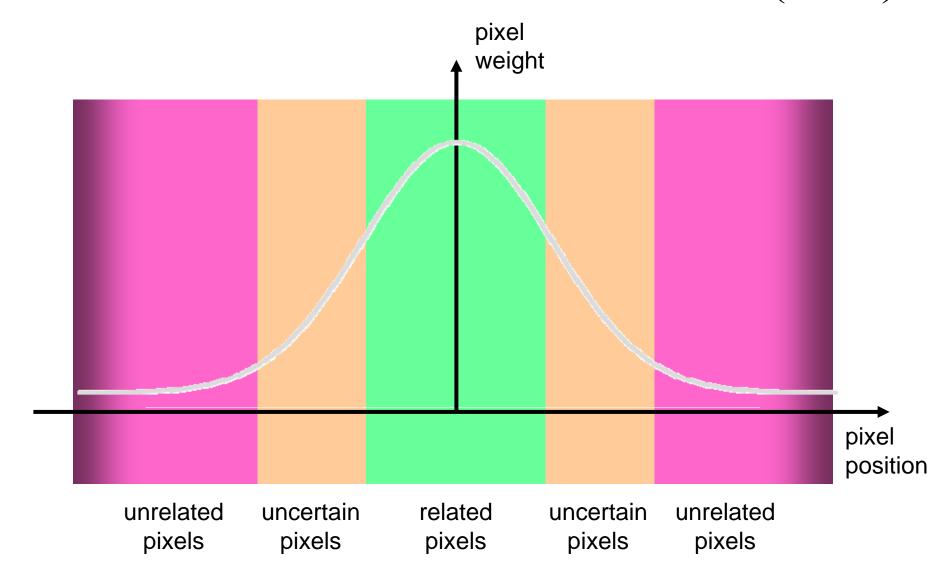
## Equation of Gaussian Blur

Same idea: weighted average of pixels.



### **Gaussian Profile**

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$



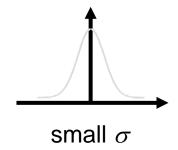
## **Spatial Parameter**



input

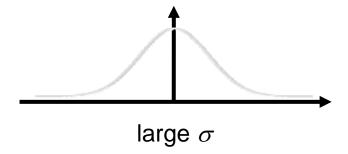
$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

size of the window





limited smoothing





strong smoothing

### How to set $\sigma$



- Depends on the application.
- Common strategy: proportional to image size
  - e.g. 2% of the image diagonal
  - property: independent of image resolution



## **Properties of Gaussian Blur**

- Weights independent of spatial location
  - linear convolution
  - well-known operation
  - efficient computation (recursive algorithm, FFT...)



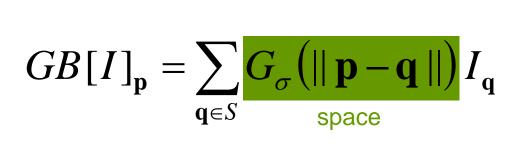
## **Properties of Gaussian Blur**

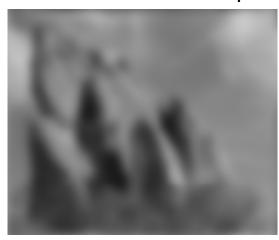
- Does smooth images
- But smoothes too much: edges are blurred.
  - Only spatial distance matters
  - No edge term



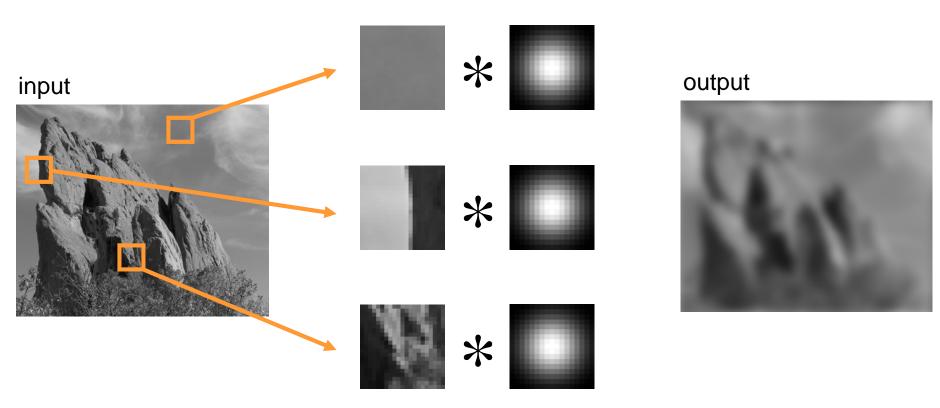






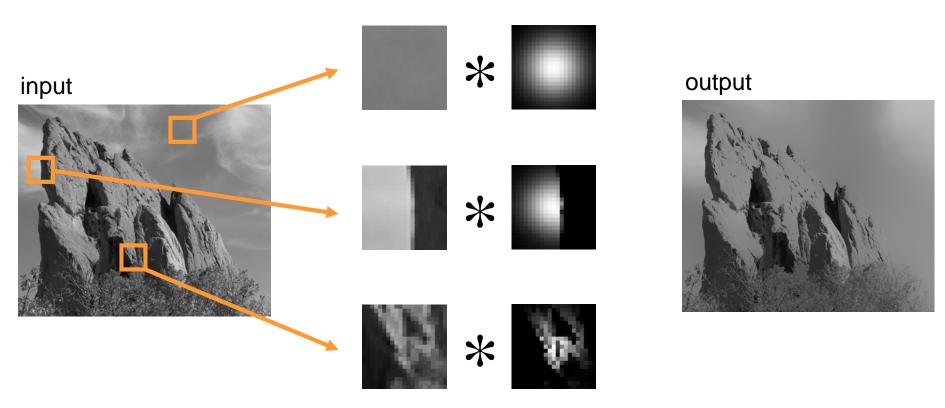


# Blur Comes from Averaging across Edges



Same Gaussian kernel everywhere.

# Bilateral Filter No Averaging across Edges

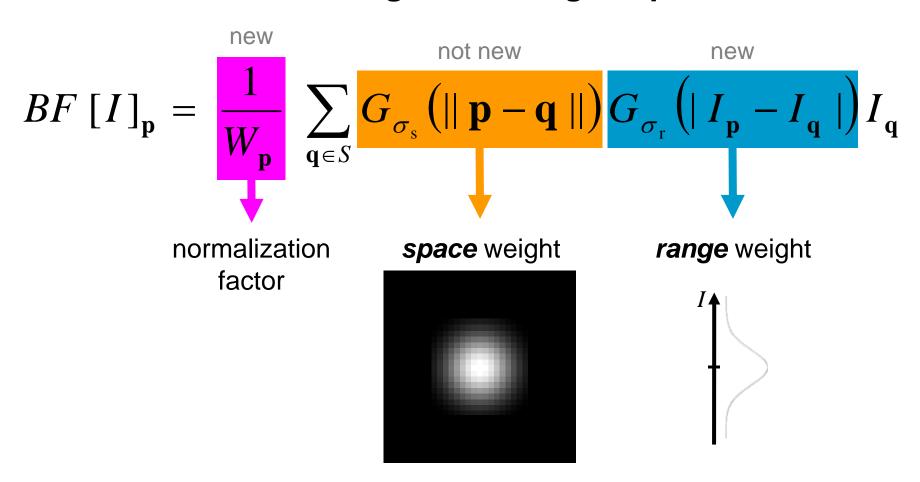


The kernel shape depends on the image content.



### **Bilateral Filter Definition**

### Same idea: weighted average of pixels.



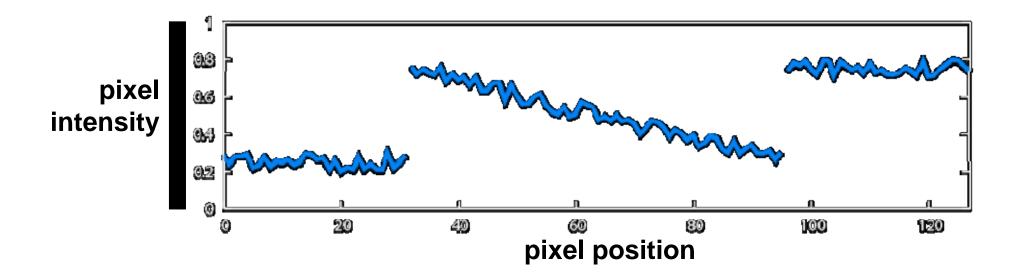
## Illustration a 1D Image



• 1D image = line of pixels



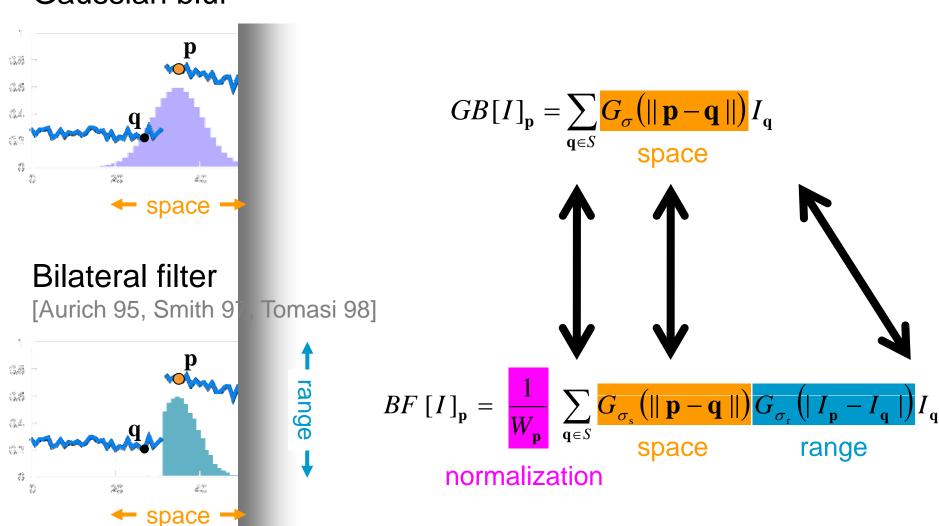
Better visualized as a plot



### Gaussian Blur and Bilateral Filter Digivex



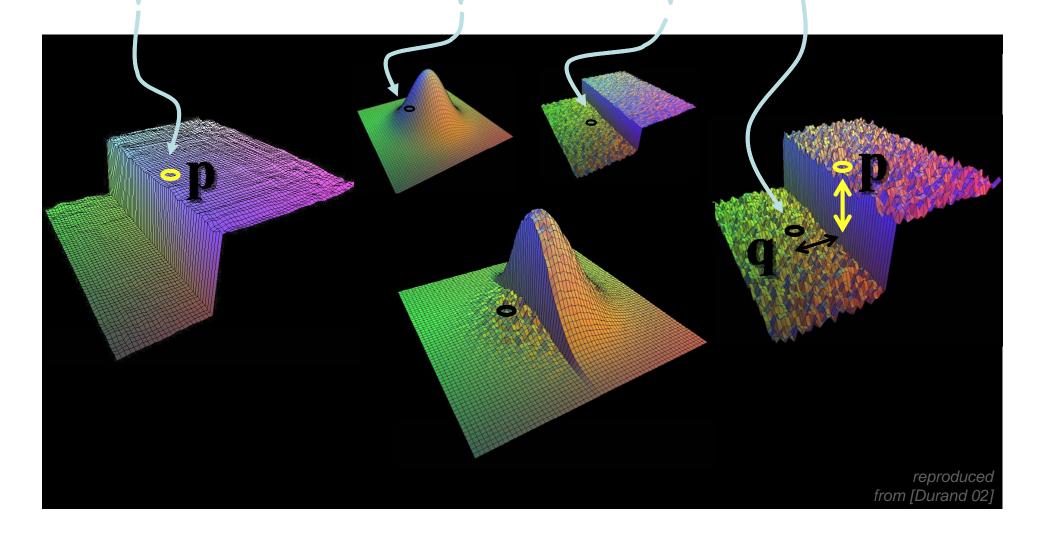
### Gaussian blur



## Bilateral Filter on a Height Field



$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$





## Space and Range Parameters

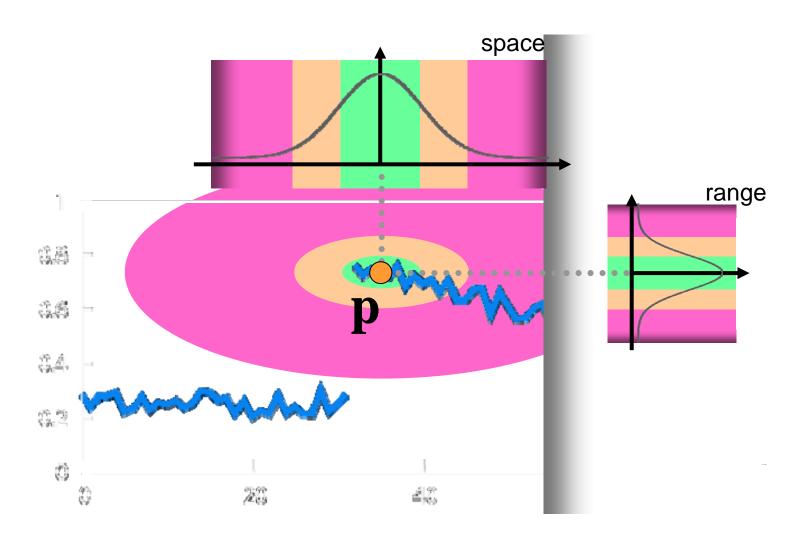
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- space  $\sigma_s$ : spatial extent of the kernel, size of the considered neighborhood.
- range  $\sigma_{\rm r}$ : "minimum" amplitude of an edge





Only pixels close in space and in range are considered.



### input

### **Exploring the Parameter Space**

$$\sigma_{\rm r} = 0.1$$



 $\sigma_{\rm r} = 0.25$ 



 $\sigma_{\rm r} = \infty$  (Gaussian blur)



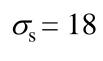


 $\sigma_{\rm s} = 2$ 









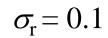


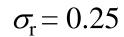




### input

### **Varying the Range Parameter**





$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)







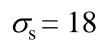


 $\sigma_{\rm s} = 2$ 





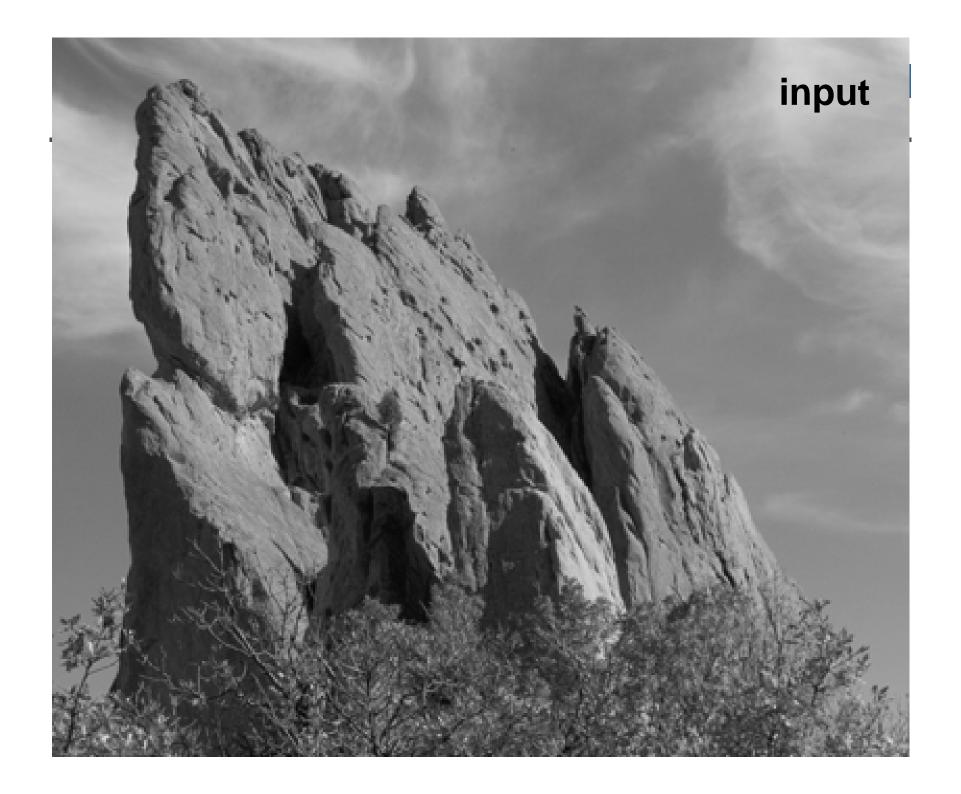


















#### **Varying the Space Parameter**



input

$$\sigma_{s} = 2$$

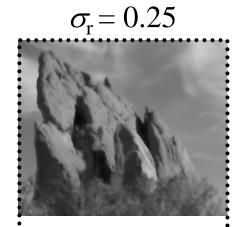
$$\sigma_{\rm s} = 6$$

$$\sigma_{\rm s} = 18$$



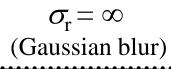








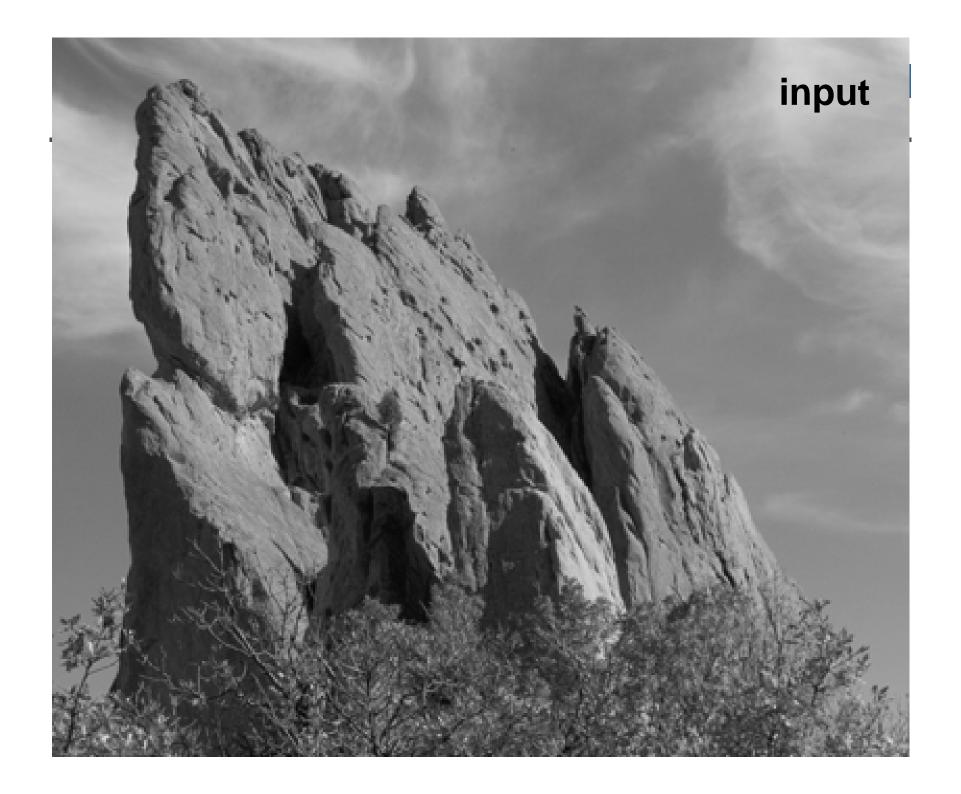




















#### How to Set the Parameters

#### Depends on the application. For instance:

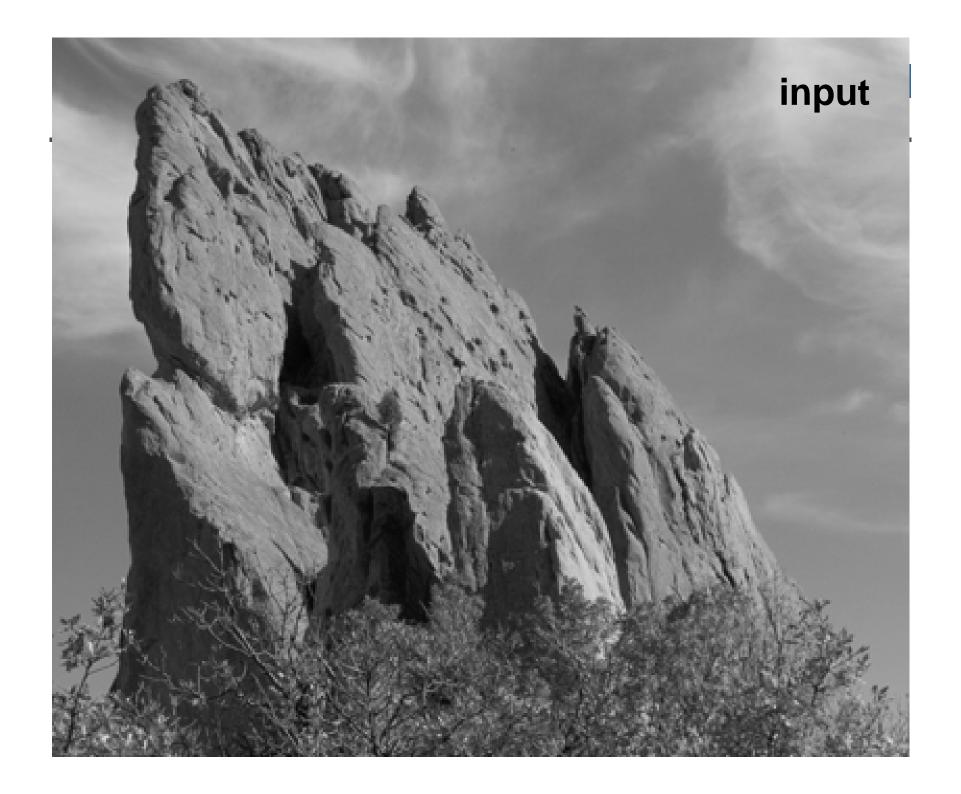
- space parameter: proportional to image size
  - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
  - e.g., mean or median of image gradients
- independent of resolution and exposure



## Iterating the Bilateral Filter

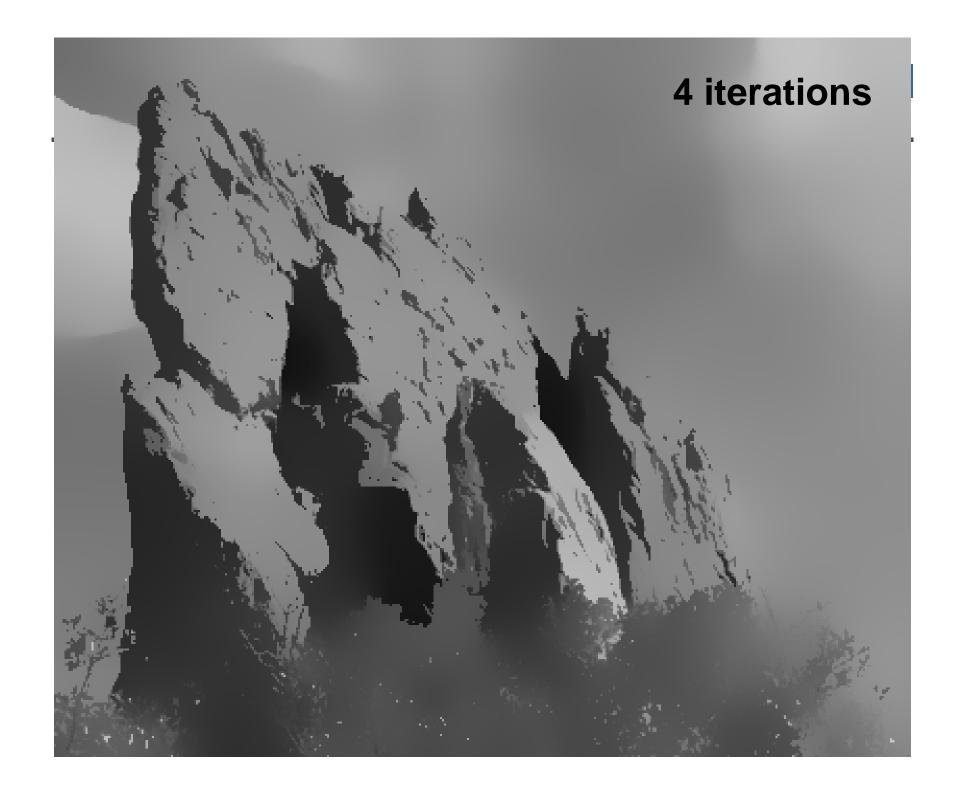
$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.











#### Advantages of Bilateral Filter

- Easy to understand
  - Weighted mean of nearby pixels
- Easy to adapt
  - Distance between pixel values
- Easy to set up
  - Non-iterative

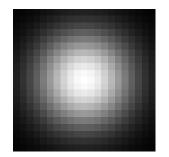
### Hard to Compute

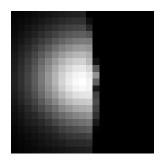


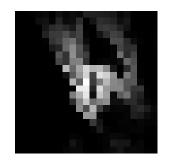
Nonlinear

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
  - Cannot be precomputed, no FFT...









Brute-force implementation is slow > 10min



#### But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
  - [Elad 02]: Gauss-Seidel iterations
    - Only for many iterations

- [Durand 02, Weiss 06]: fast approximation
  - No formal understanding of accuracy versus speed
  - [Weiss 06]: Only box function as spatial kernel

# A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology





#### **Definition of Bilateral Filter**

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
  - Gaussian on *space* distance
  - Gaussian on *range* distance
  - sum to 1





$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
space range

#### Contributions

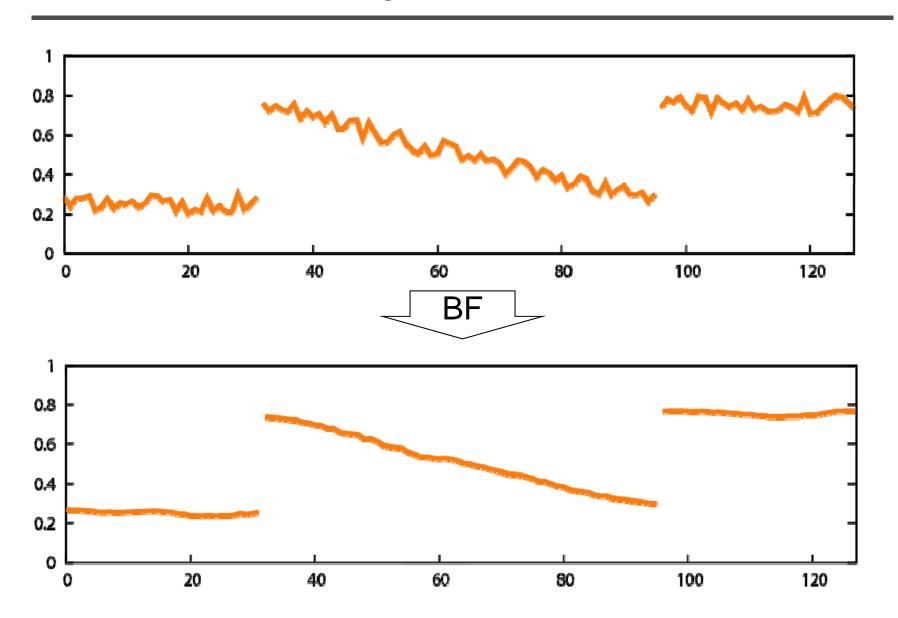


Link with linear filtering

Fast and accurate approximation

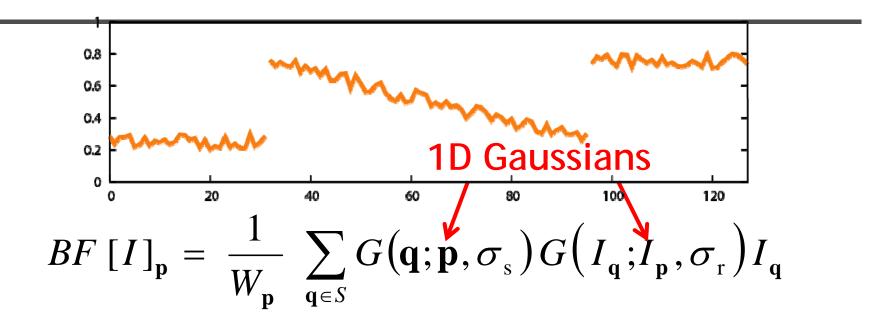
## Intuition on 1D Signal





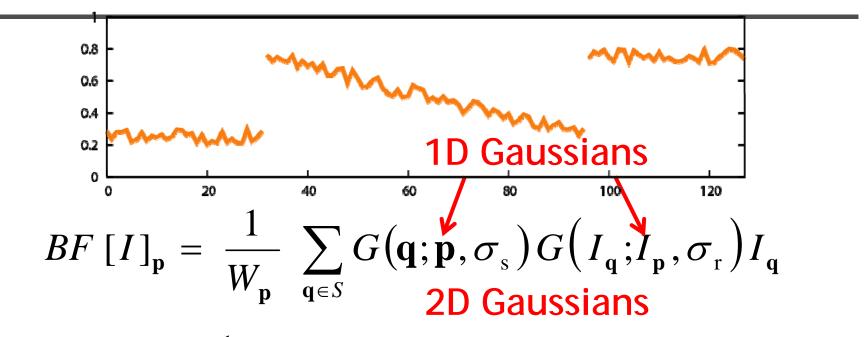
#### Basic idea





#### Basic idea



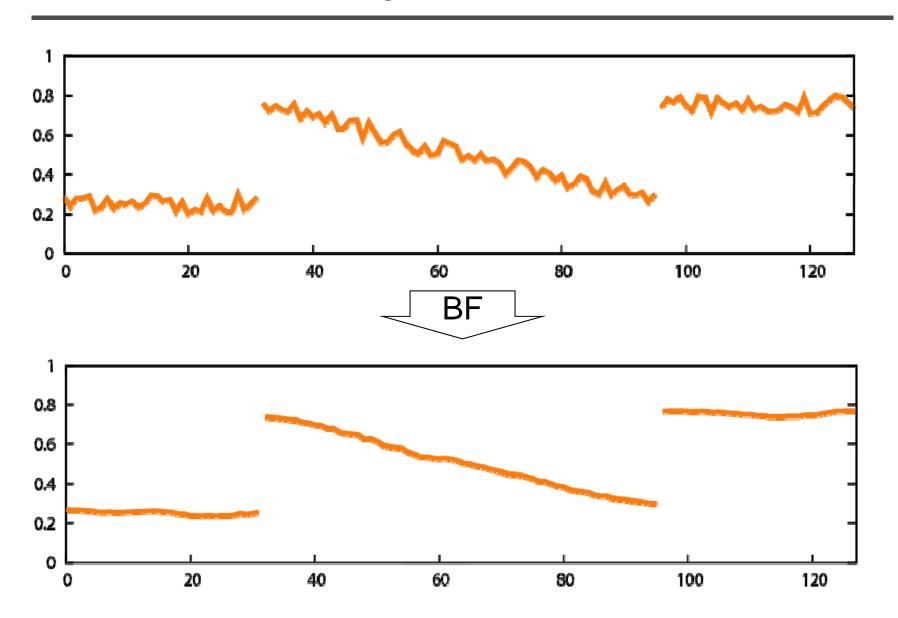


$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle \in S'} G(\mathbf{q}, I_{\mathbf{q}}; \mathbf{p}, I_{\mathbf{p}}, \sigma_{\mathbf{s}}, \sigma_{\mathbf{r}}) I_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle}$$
a special



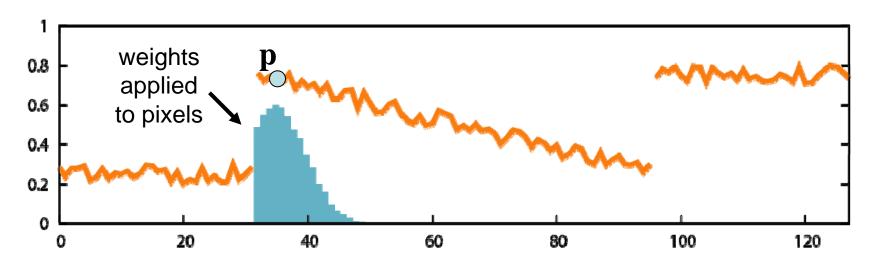
## Intuition on 1D Signal





# Intuition on 1D Signal Weighted Average of Neighbors

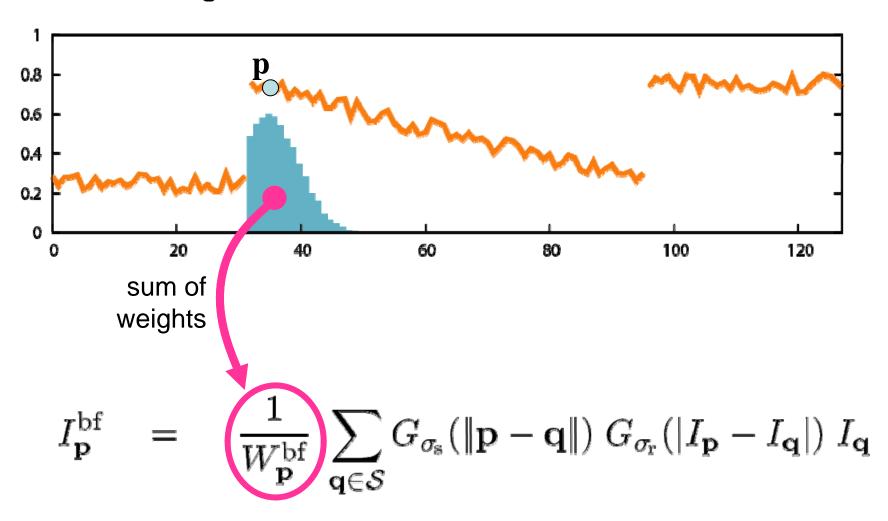




- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.



#### 1. Handling the Division



Handling the division with a projective space.



#### Formalization: Handling the Division

$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}}^{\mathrm{bf}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

- Normalizing factor as homogeneous coordinate
  - Multiply both sides by  $W_{f p}^{
    m bf}$

$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} I_{\mathbf{q}} \\ 1 \end{pmatrix}$$



#### Formalization: Handling the Division

$$\begin{pmatrix} \begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix} \text{ with } W_{\mathbf{q}} = 1$$

- Similar to homogeneous coordinates in projective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

2. Introducing a Convolution

space: 1D Gaussian

× range: 1D Gaussian

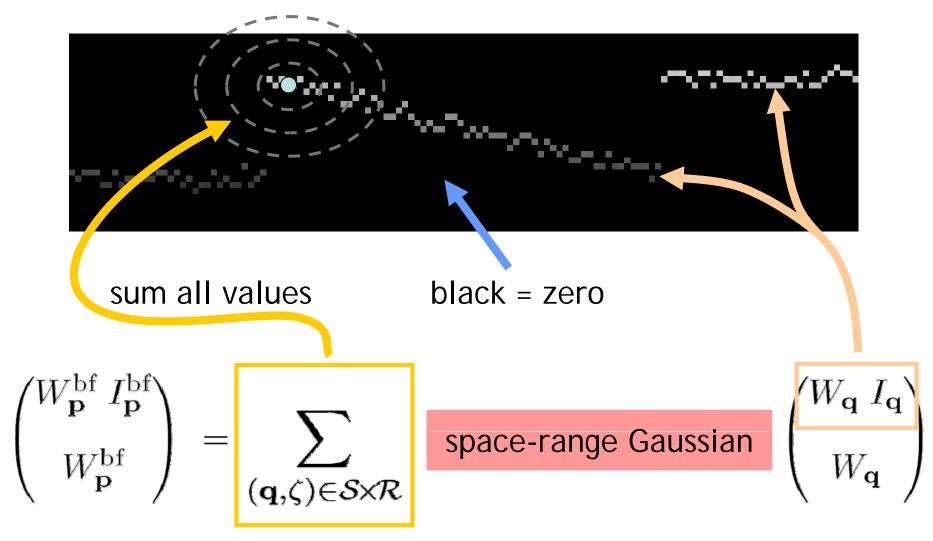
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \, I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\!s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\!r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} \, I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$
space range

#### Link with Linear Filtering space: 1D Gaussian 2. Introducing a Convolution × range: 1D Gaussian combination: 2D Gaussian 8.0 0.6 0.4 0.2 0 20 40 80 100 120 60 $\left( egin{array}{c} W_{\mathbf{p}}^{\mathbf{p}} & I_{\mathbf{p}}^{\mathbf{p}} \end{array} ight) = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\!\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\!\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \ W_{\mathbf{q}} \end{array} \left( egin{array}{c} W_{\mathbf{q}} & I_{\mathbf{q}} \ W_{\mathbf{q}} \end{array} ight)$

Corresponds to a 3D Gaussian on a 2D image.



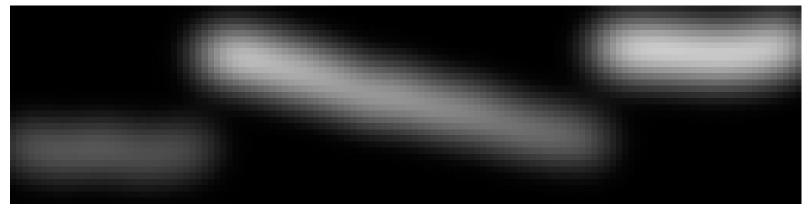
#### 2. Introducing a Convolution



sum all values multiplied by kernel ⇒ convolution



#### 2. Introducing a Convolution

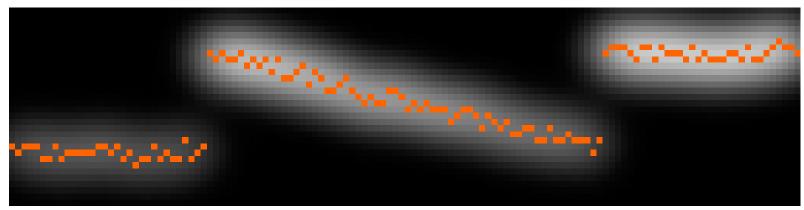


result of the convolution

$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \ I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q}, \zeta) \in \mathcal{S} \times \mathcal{R}} \quad \text{space-range Gaussian} \quad \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$

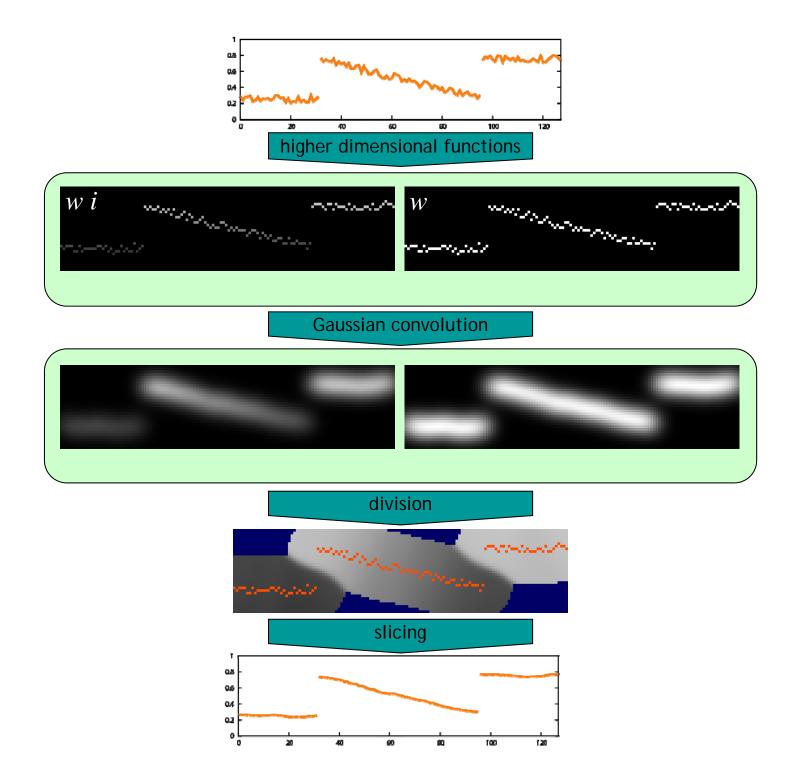


#### 2. Introducing a Convolution



result of the convolution

$$egin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q},\zeta) \in \mathcal{S} imes \mathcal{R}} \quad ext{space-range Gaussian} \quad egin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$



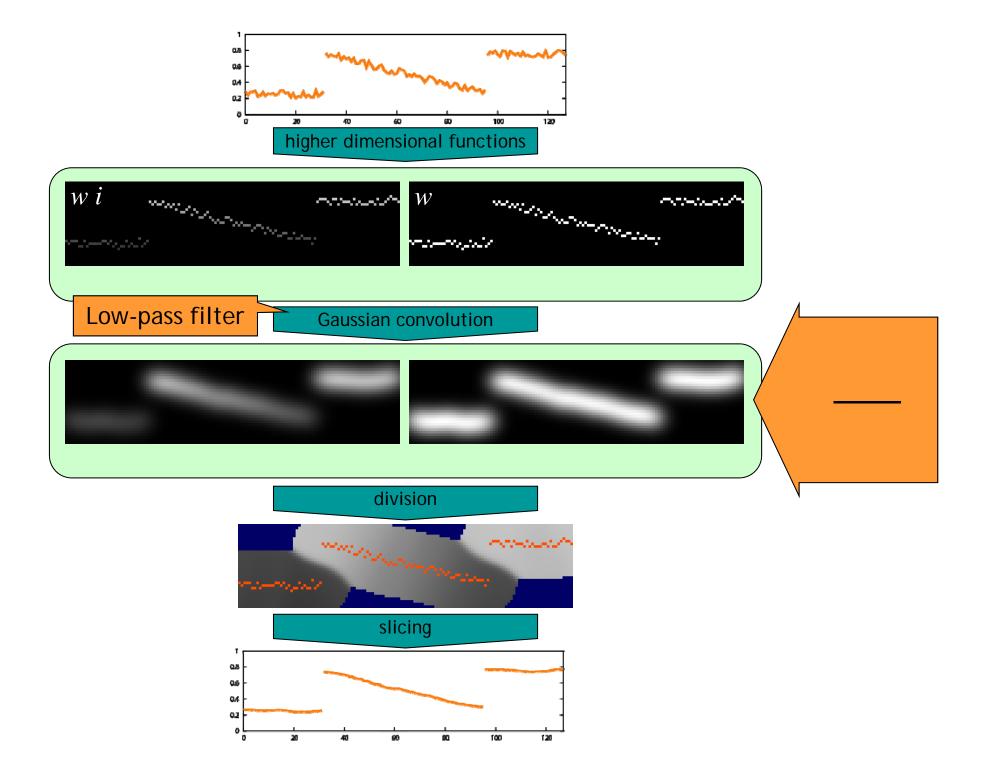


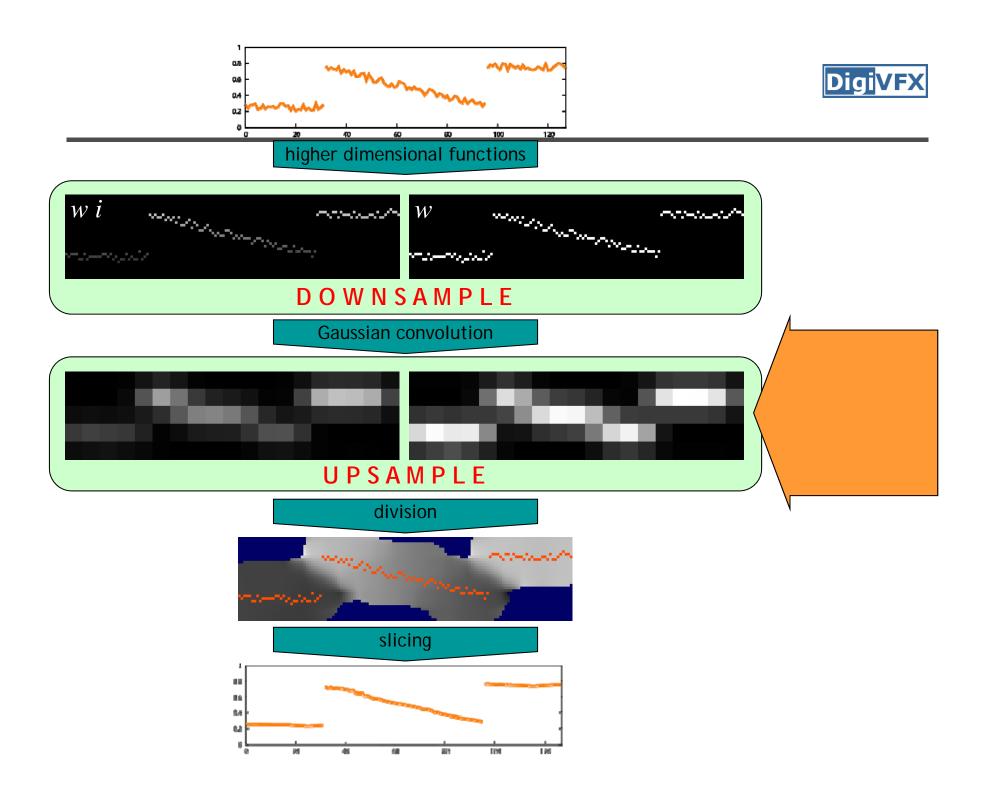
# Reformulation: Summary

linear: 
$$(w^{\mathrm{bf}}\ i^{\mathrm{bf}}, w^{\mathrm{bf}}) = g_{\sigma_{\!\!\mathbf{s}}, \sigma_{\!\!\mathbf{r}}} \otimes (wi, w)$$
nonlinear:  $I^{\mathrm{bf}}_{\mathbf{p}} = \frac{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})\ i^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}$ 

- 1. Convolution in higher dimension
  - expensive but well understood (linear, FFT, etc)
- 2. Division and slicing
  - nonlinear but simple and pixel-wise

**Exact reformulation** 







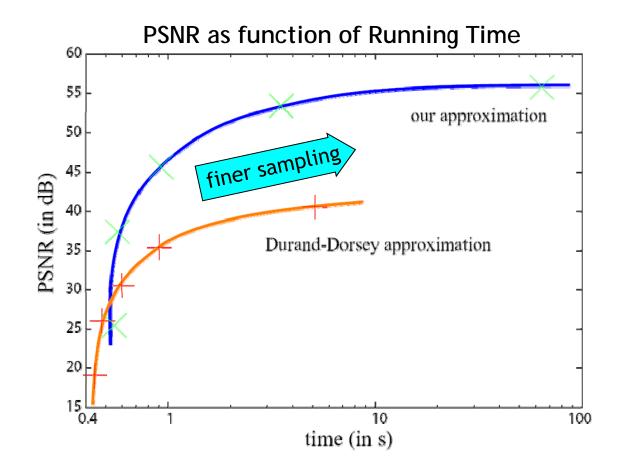
#### Fast Convolution by Downsampling

- Downsampling cuts frequencies above Nyquist limit
  - Less data to process
  - But induces error
- Evaluation of the approximation
  - Precision versus running time
  - Visual accuracy



#### Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.





Digital photograph 1200 × 1600

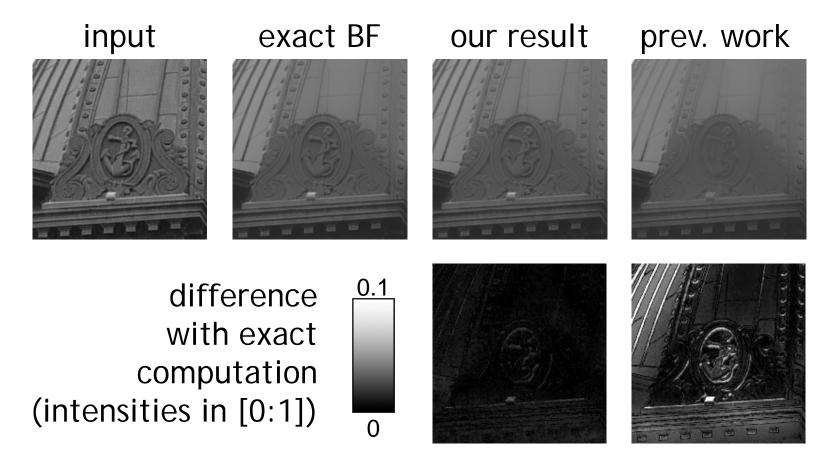
Straightforward implementation is over 10 minutes.

#### **Visual Results**

- Comparison with previous work [Durand 02]
  - running time = 1s for both techniques



 $1200 \times 1600$ 







## higher dimension ⇒ "better" computation

#### Practical gain

- Interactive running time
- Visually similar results
- Simple to code (100 lines)

#### Theoretical gain

- Link with linear filters
- Separation linear/nonlinear
- Signal processing framework



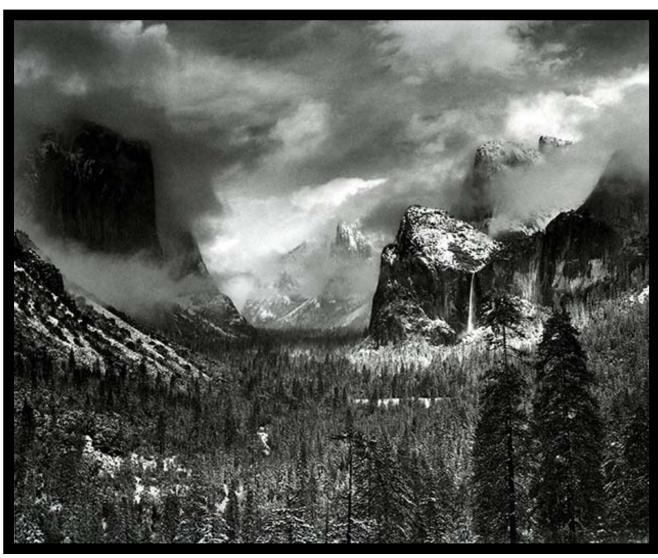
# Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

SIGRAPH2006

## **Ansel Adams**





Ansel Adams, Clearing Winter Storm



## An Amateur Photographer















### Goals



- Control over photographic look
- Transfer "look" from a model photo

### For example,

we want



with the look of



## **Digi**VFX

## Aspects of Photographic Look

- Subject choice
- Framing and composition
- → Specified by input photos
- Tone distribution and contrast
- → Modified based on model photos



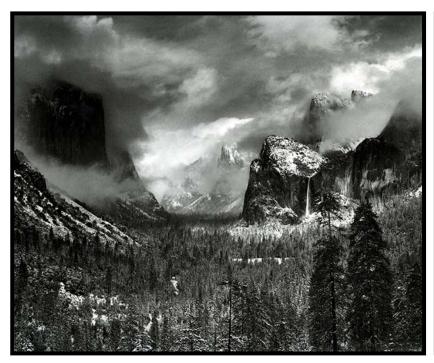
Input



Model

## **Tonal Aspects of Look**

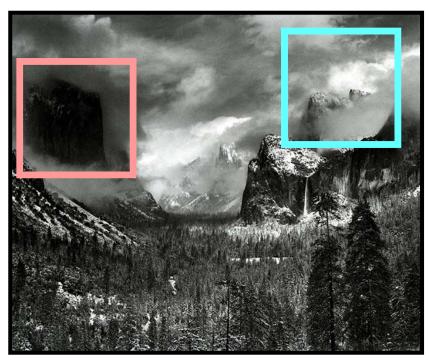






Ansel Adams Kenro Izu

## Tonal aspects of Look - Global Contrast





**Ansel Adams** 

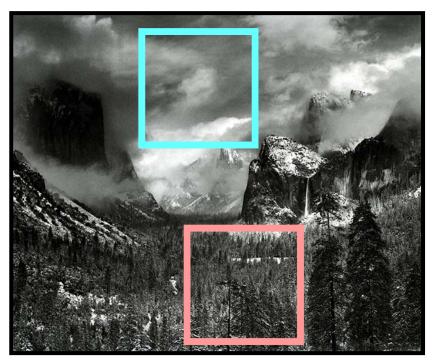
Kenro Izu

**High Global Contrast** 

**Low Global Contrast** 

## Tonal aspects of Look - Local Contrast







**Ansel Adams** 

Kenro Izu

Variable amount of texture

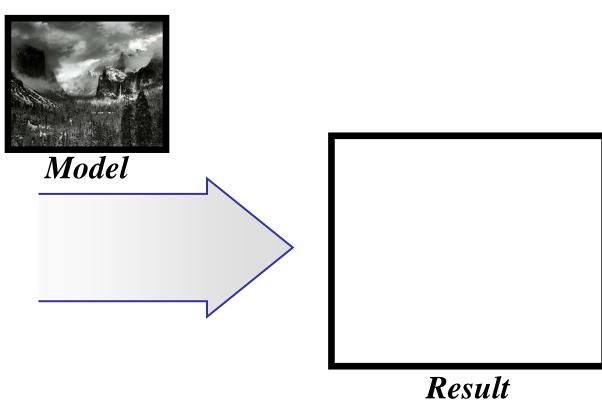
**Texture everywhere** 

### **Overview**

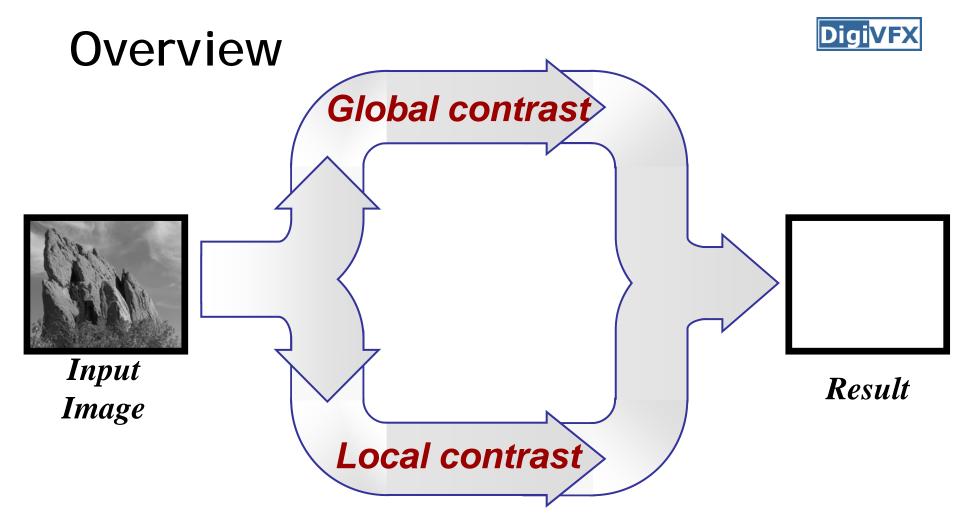




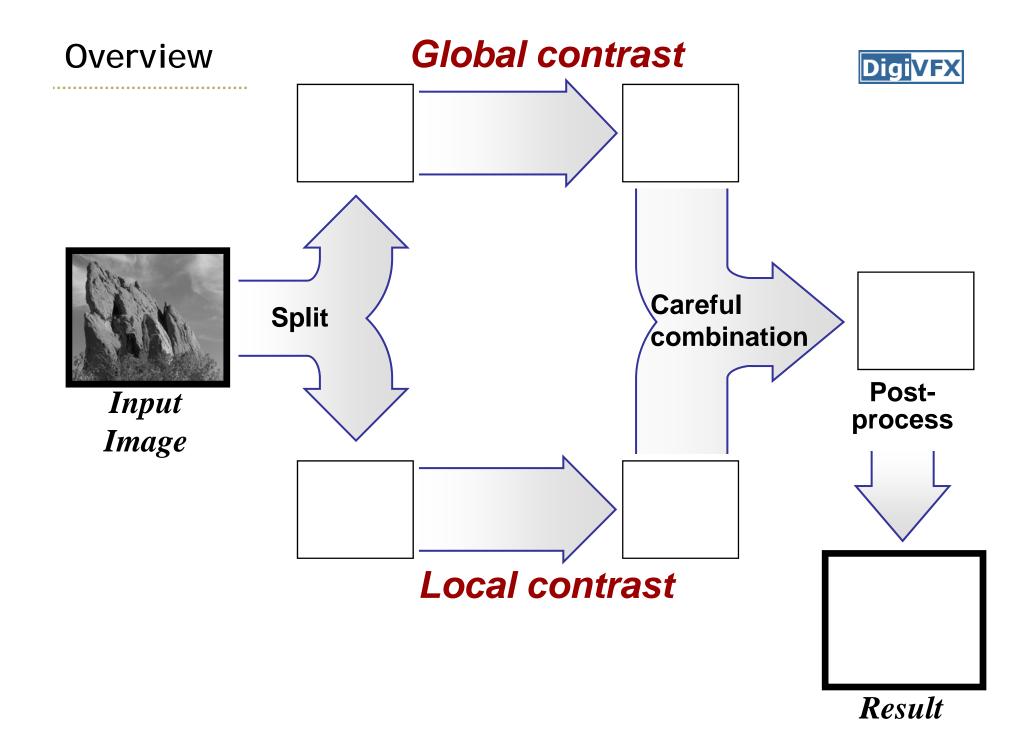


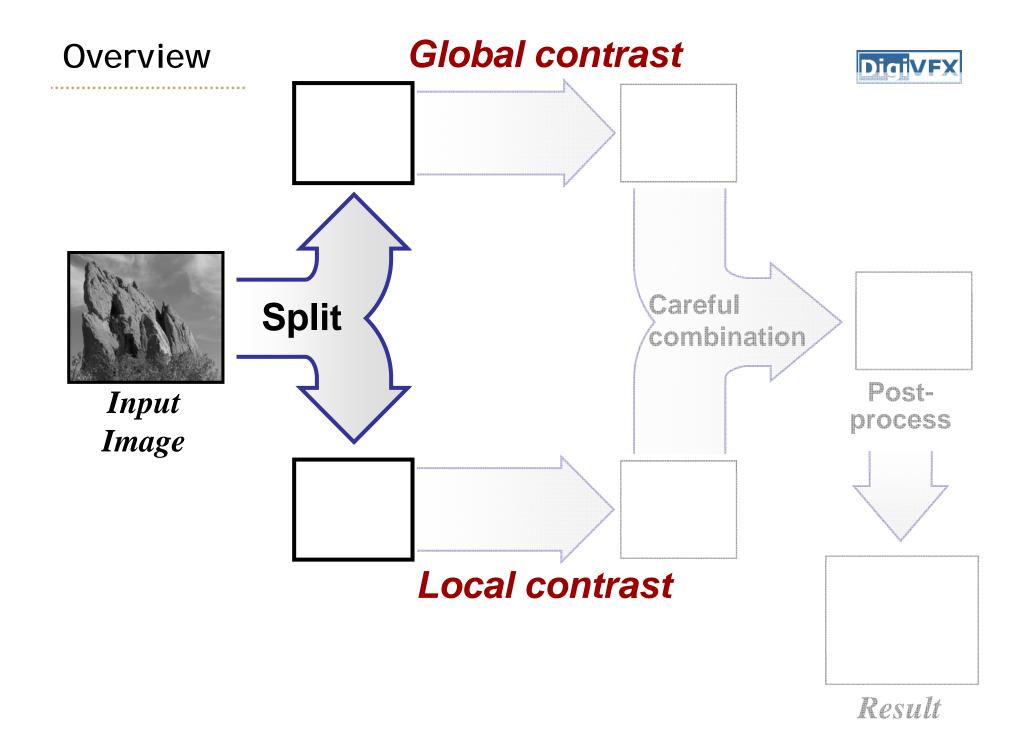


- Transfer look between photographs
  - Tonal aspects



Separate global and local contrast

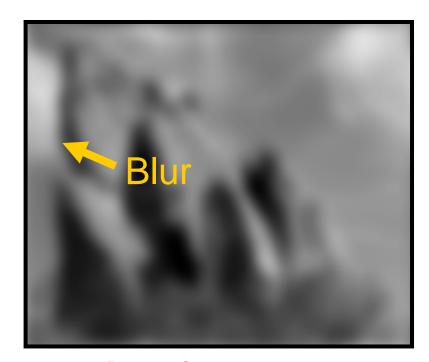






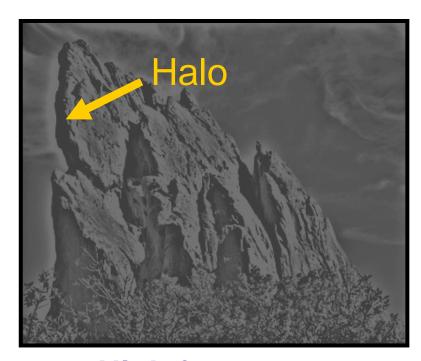
## Split Global vs. Local Contrast

- Naïve decomposition: low vs. high frequency
  - Problem: introduce blur & halos



Low frequency

Global contrast



High frequency

Local contrast

#### **Bilateral Filter**



- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]



After bilateral filtering Global contrast



Residual after filtering Local contrast

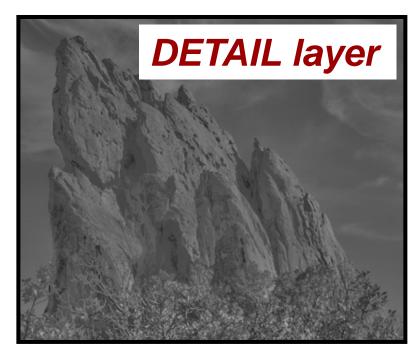
#### Bilateral Filter



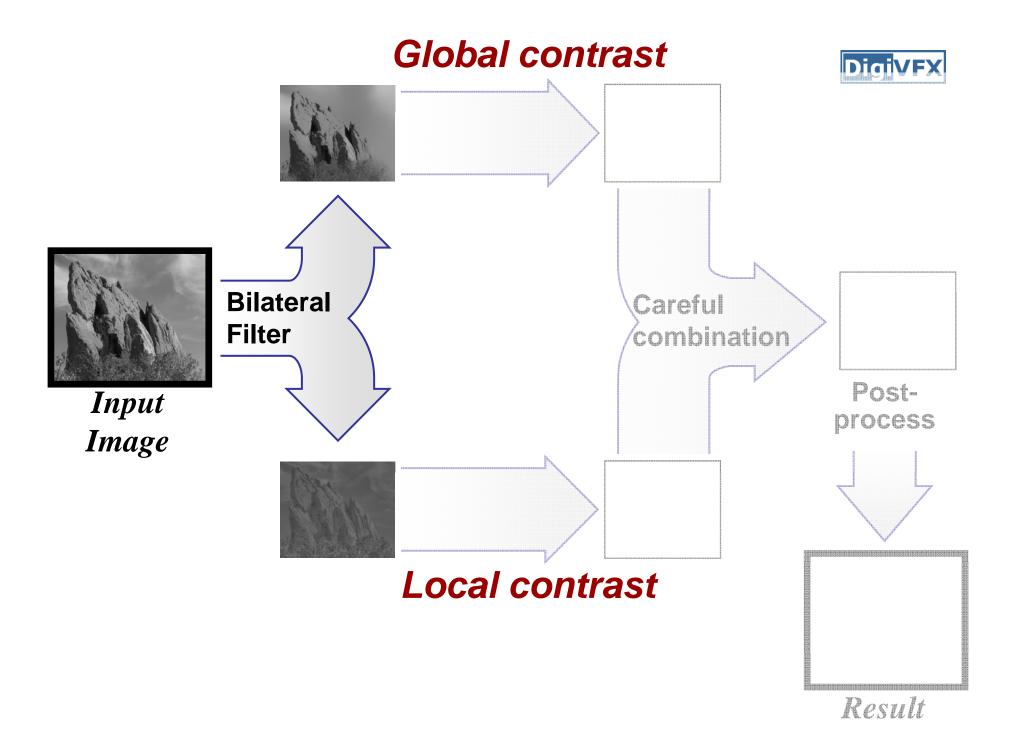
- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

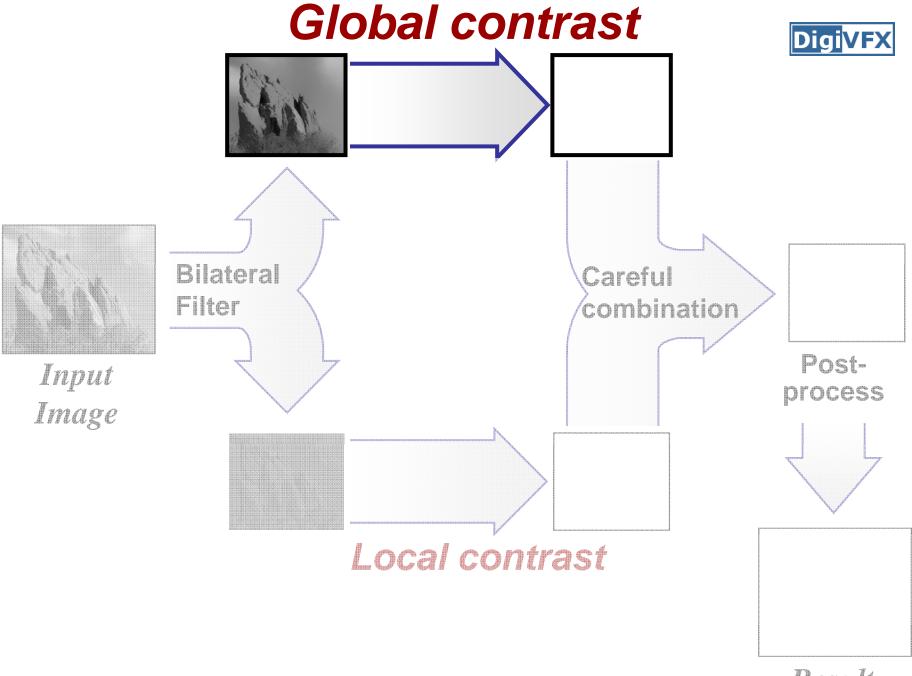


After bilateral filtering Global contrast



Residual after filtering Local contrast





Result

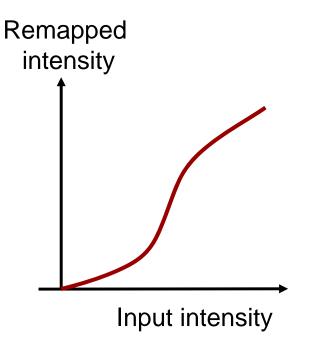
## **Global Contrast**



Intensity remapping of base layer



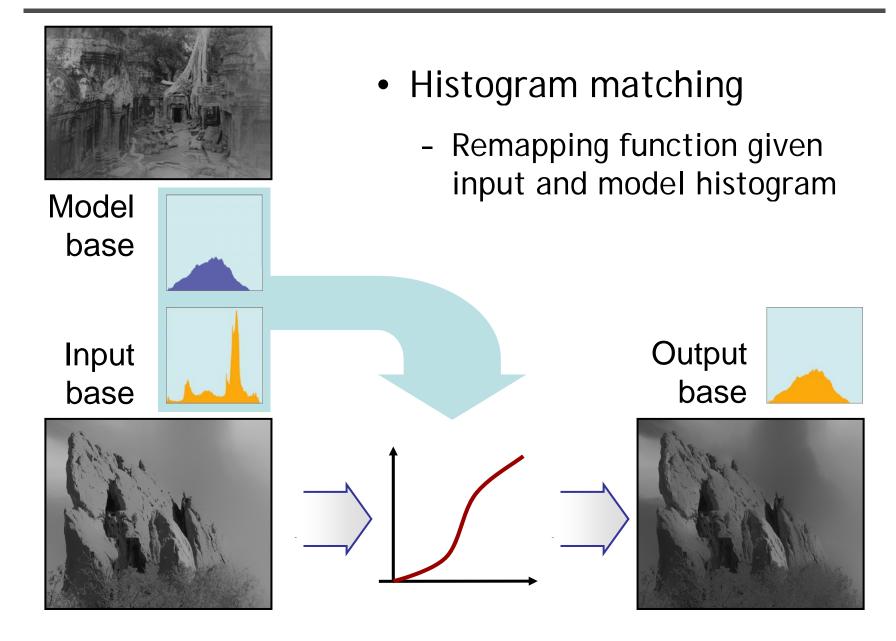
Input base

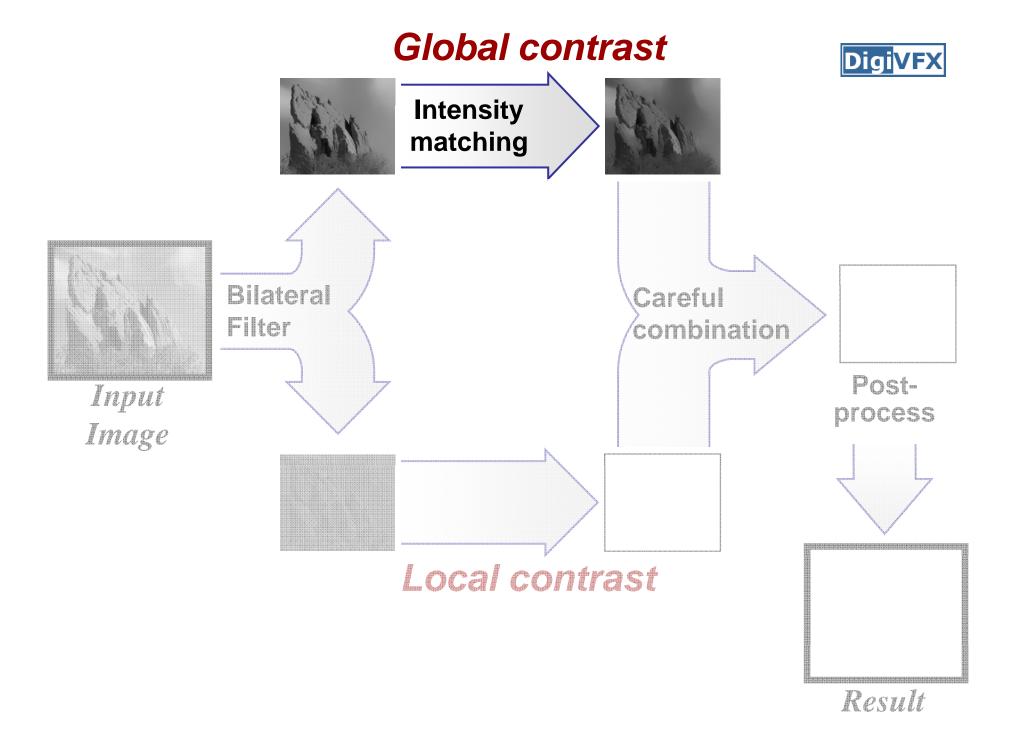


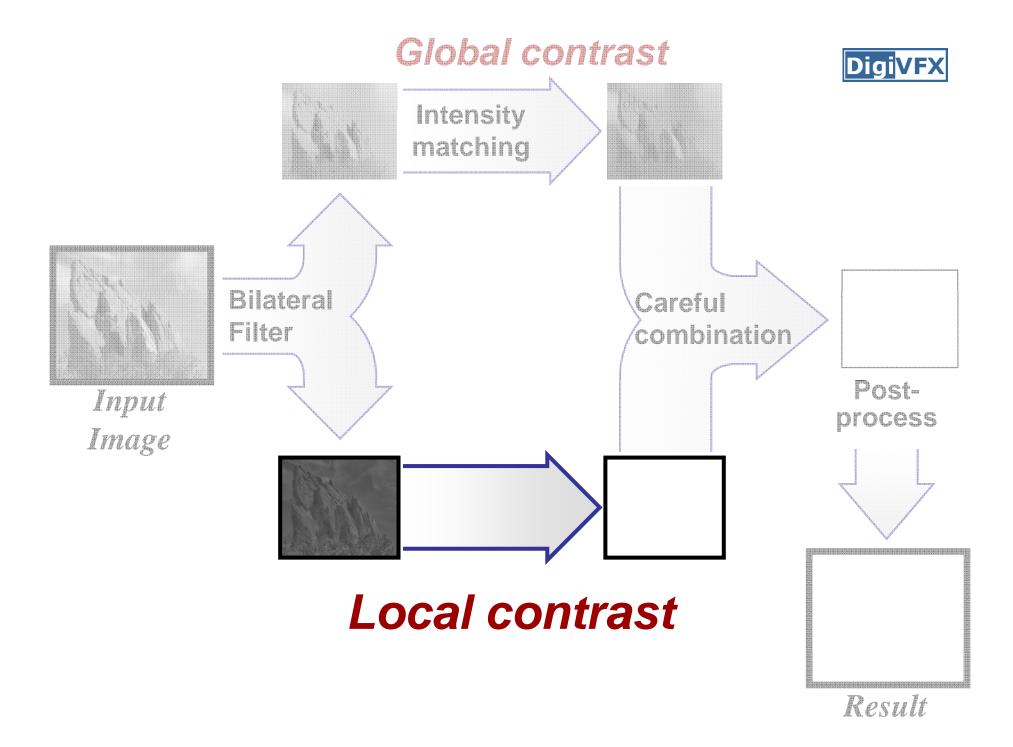
After remapping

## Global Contrast (Model Transfer)









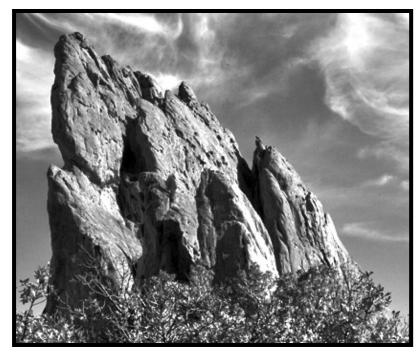
## **Digi**VFX

## Local Contrast: Detail Layer

- Uniform control:
  - Multiply all values in the detail layer



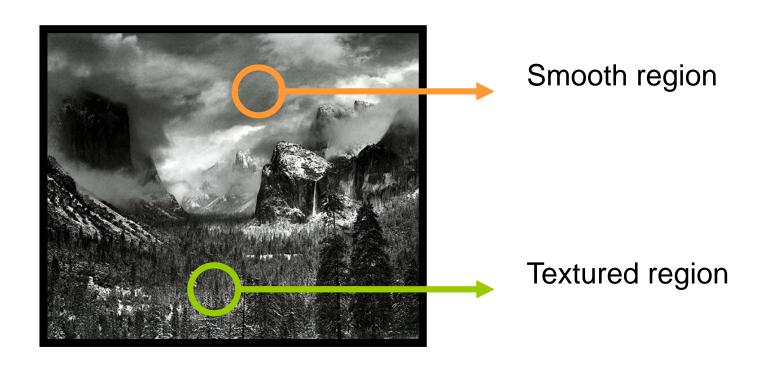
Input



Base + 3 × Detail

## The amount of local contrast is not uniform

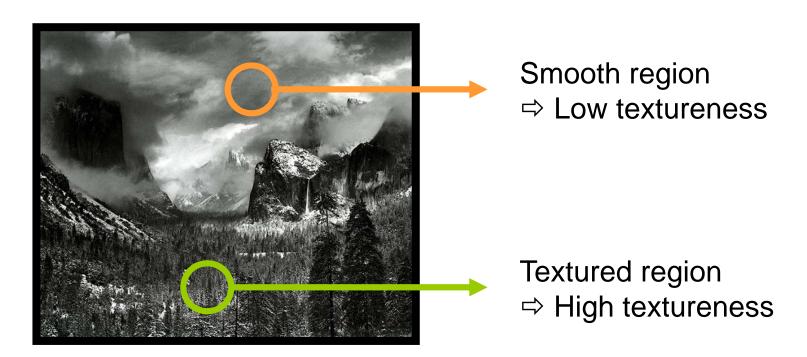






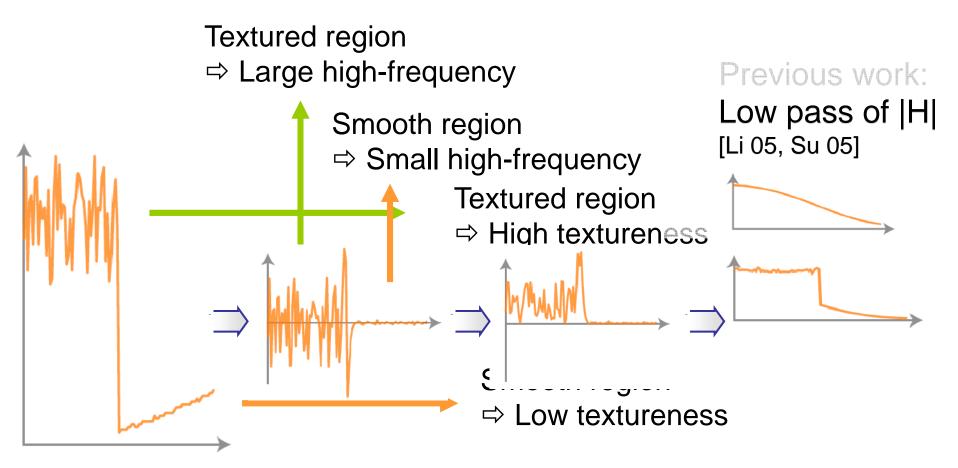
#### **Local Contrast Variation**

- We define "textureness": amount of local contrast
  - at each pixel based on surrounding region





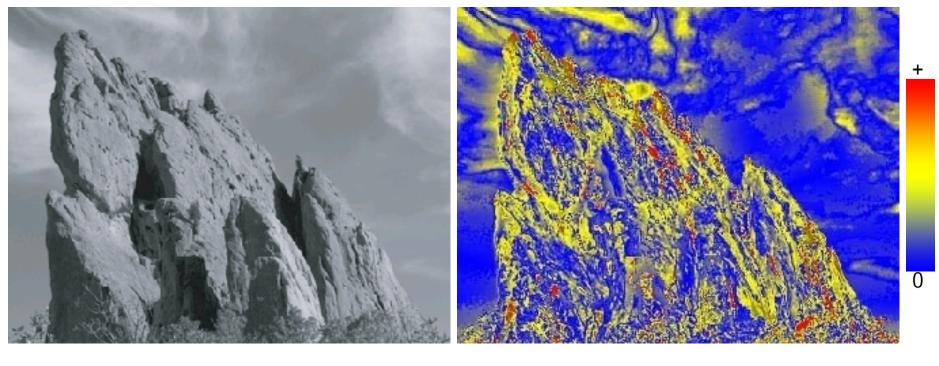
## "Textureness": 1D Example



Input signal High frequency H Amplitude |H| Edge-preserving filter

## **Textureness**





Input Textureness

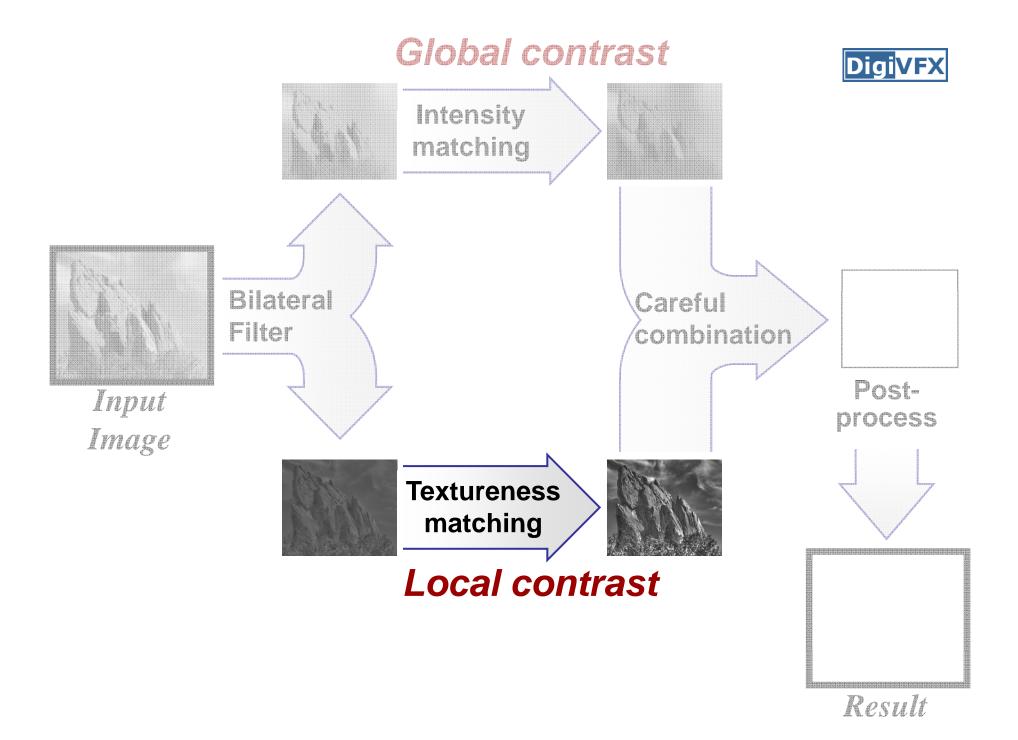
## **Textureness Transfer**

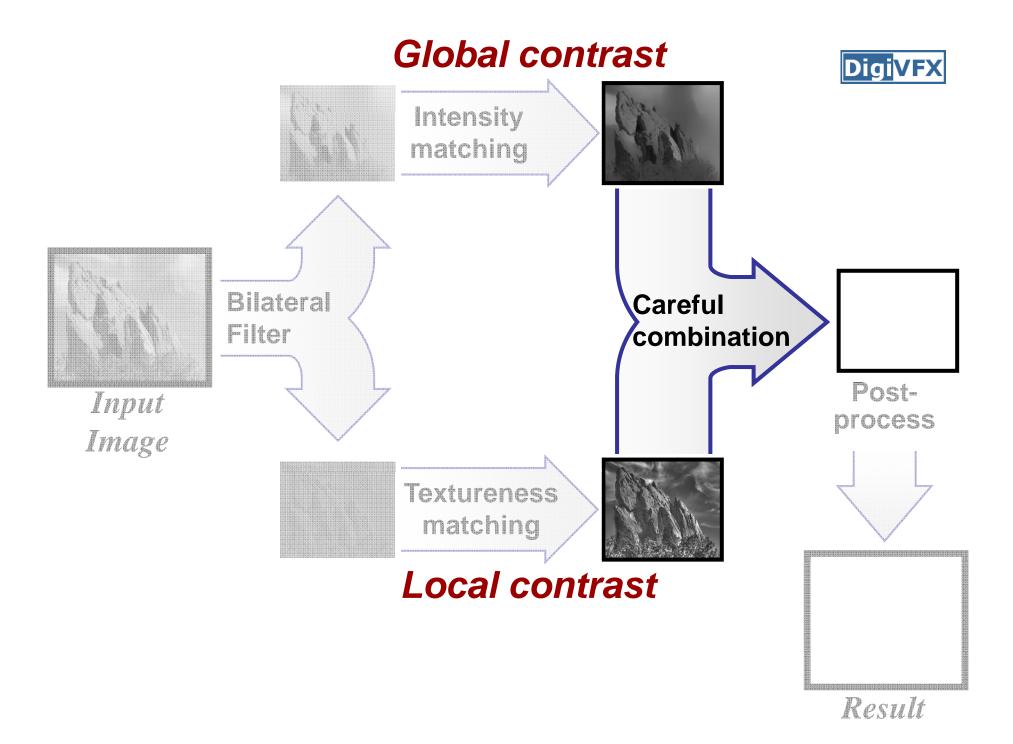


Output detail

Model Step 1: Histogram transfer textureness **Desired** Input Hist. transfer textureness textureness x 0.5 Step 2: Scaling detail layer x 2.7 (per pixel) to match desired textureness x 4.3

Input detail





### A Non Perfect Result

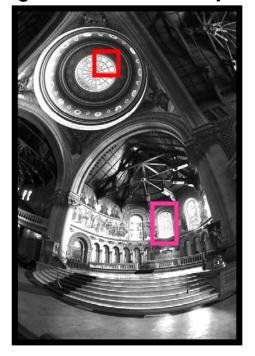


- Decoupled and large modifications (up to 6x)
  - → Limited defects may appear

input (HDR)



result after global and local adjustments



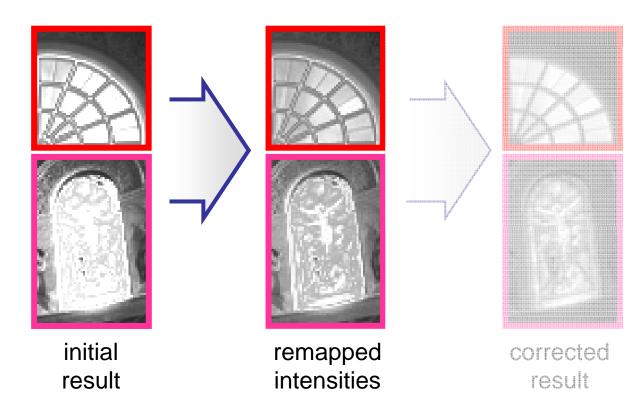




## **Intensity Remapping**



- Some intensities may be outside displayable range.
- → Compress histogram to fit visible range.



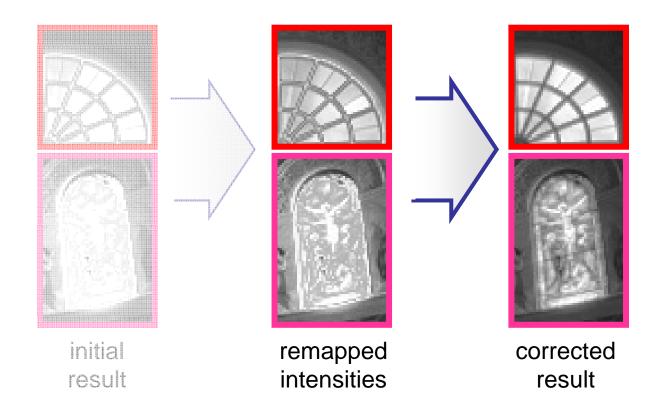
## **DigiVFX**

## **Preserving Details**

#### 1. In the gradient domain:

- Compare gradient amplitudes of input and current
- Prevent extreme reduction & extreme increase

#### 2. Solve the Poisson equation.





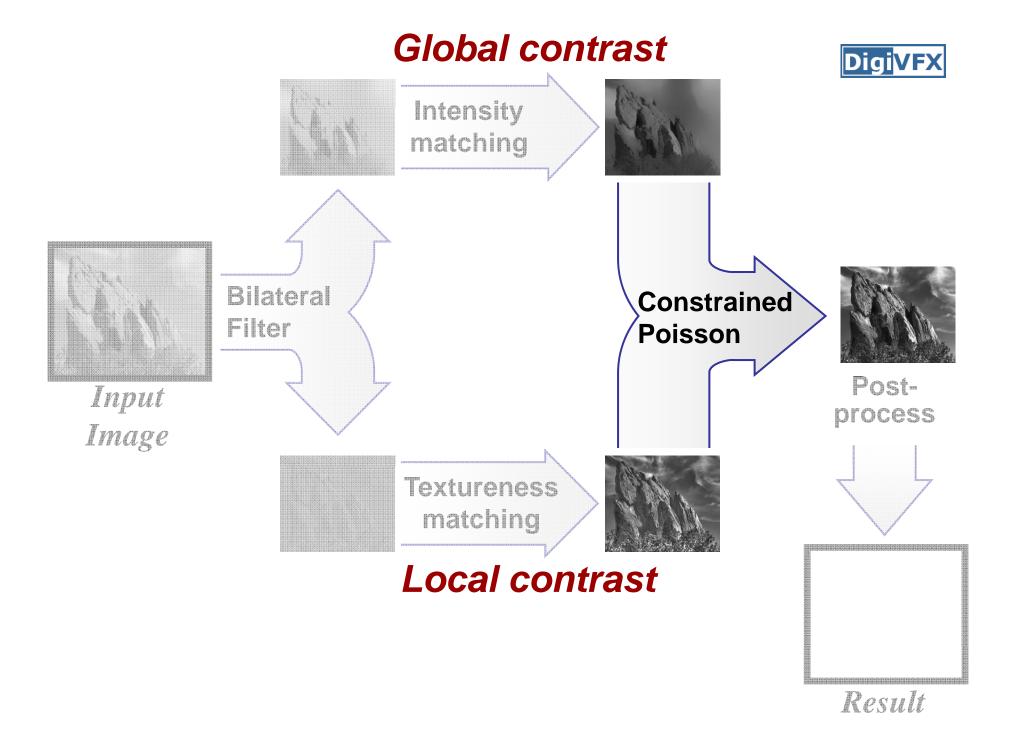
## **Effect of Detail Preservation**

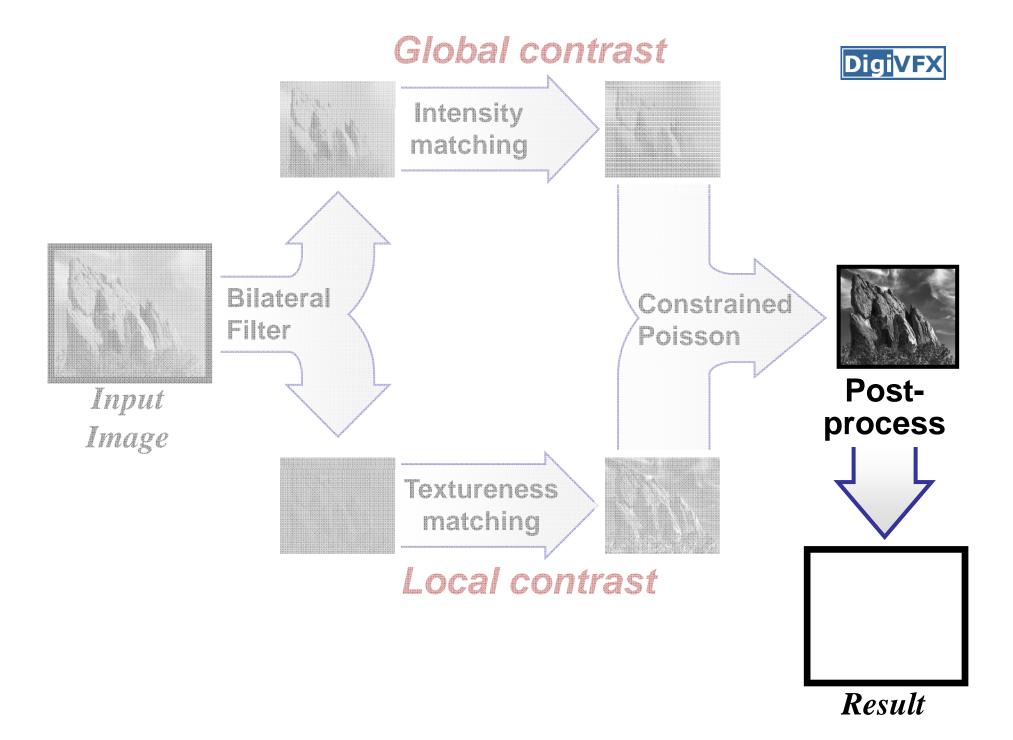
#### uncorrected result



#### corrected result







#### **Additional Effects**

model

- Soft focus (high frequency manipulation)
- Film grain (texture synthesis [Heeger 95])
- Color toning (chrominance = f (luminance))



before effects

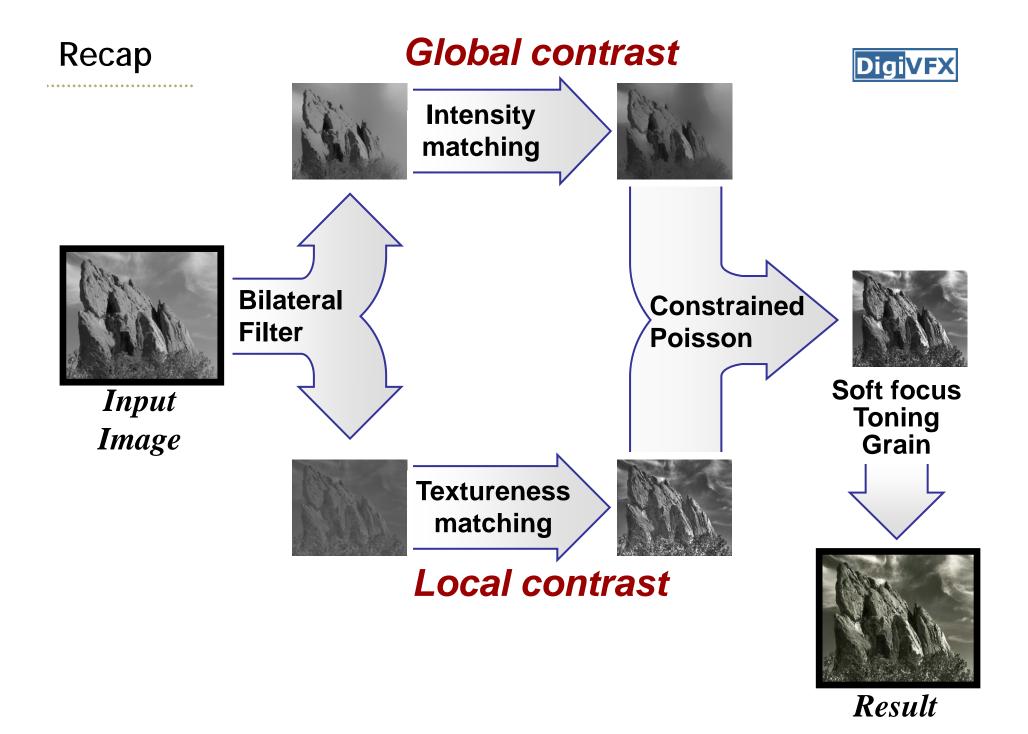




after effects

### Global contrast **Digi**VFX Intensity matching Bilateral Constrained Filter Poisson **Soft focus** Input **Toning** Image Grain Textureness matching Local contrast

Result



#### Results



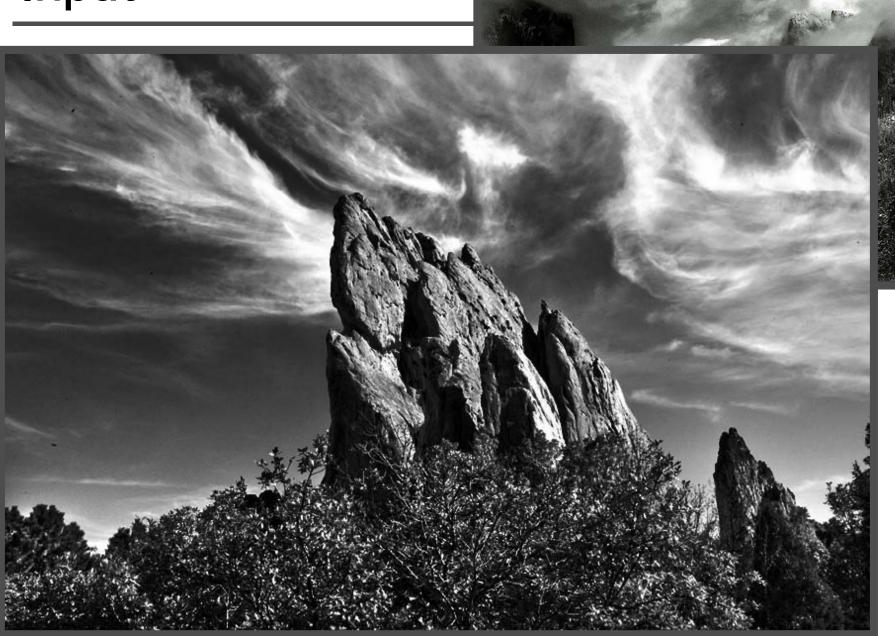
User provides input and model photographs.

→ Our system automatically produces the result.

#### Running times:

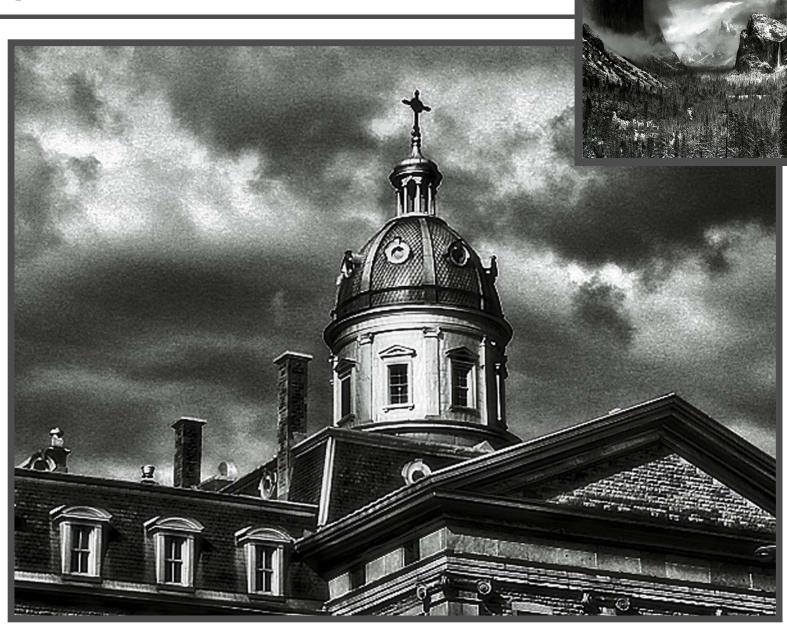
- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

# Repult

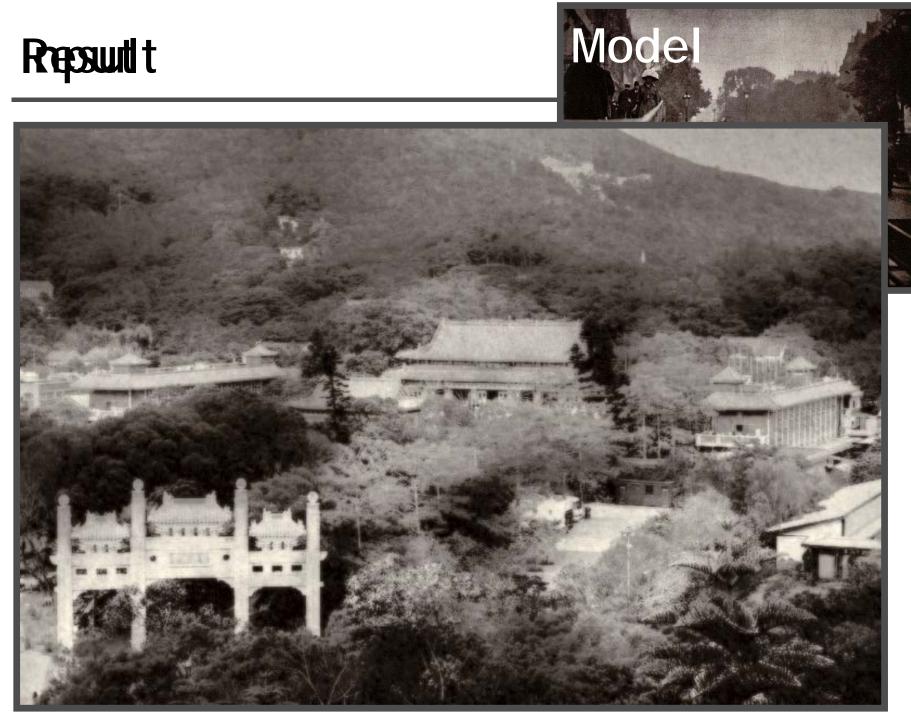


Model

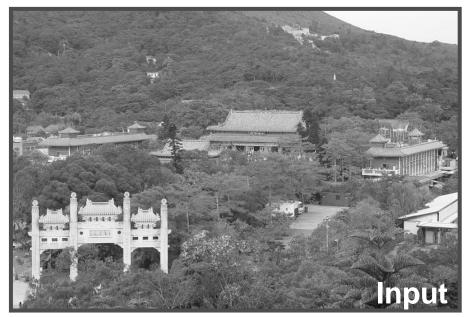
# Reposult

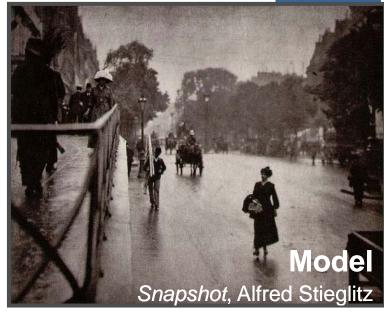


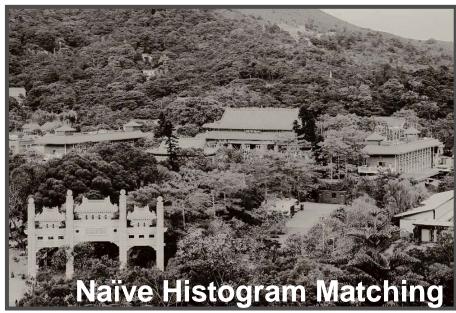
# Reposult t

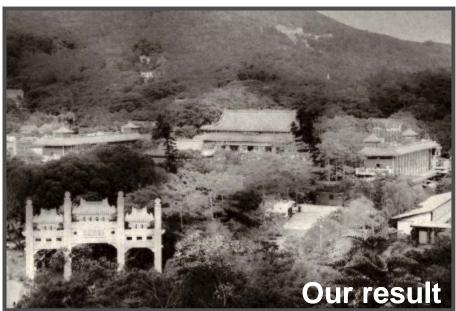


# Comparison with Naïve Histogram Matching



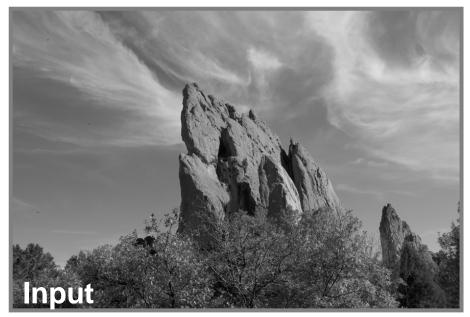






Local contrast, sharpness unfaithful

# Comparison with Naïve Histogram Matching







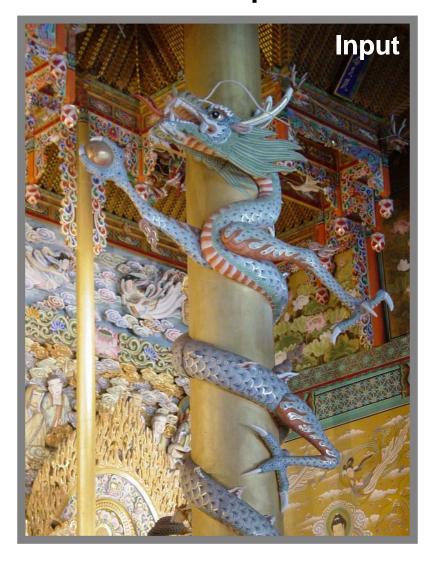


Local contrast too low





• Lab color space: modify only luminance

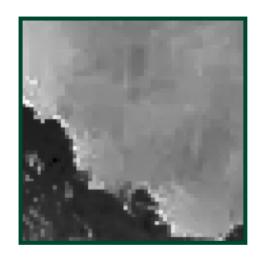




#### Limitations



- Noise and JPEG artifacts
  - amplified defects



- Can lead to unexpected results if the image content is too different from the model
  - Portraits, in particular, can suffer



#### Conclusions



- Transfer "look" from a model photo
- Two-scale tone management
  - Global and local contrast
  - New edge-preserving textureness
  - Constrained Poisson reconstruction
  - Additional effects

### Video Enhancement Using Per Pixel Exposures (Bennett, 06)

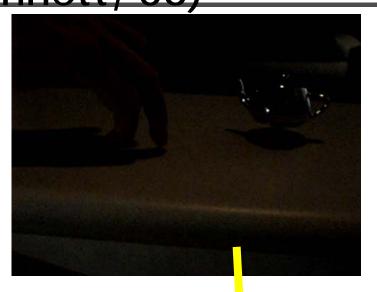
**Digi**VFX

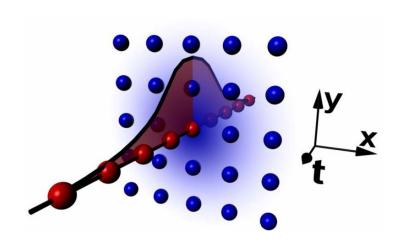
From this video:

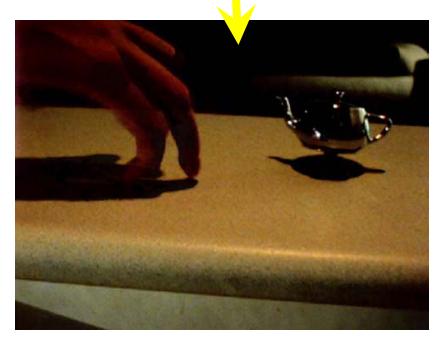
ASTA: <u>A</u>daptive

<u>S</u>patio<u>T</u>emporal

<u>A</u>ccumulation Filter







### Joint bilateral filtering



$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

## Flash / No-Flash Photo Improvement Digivex (Petschnigg04) (Eisemann04)



Merge best features: warm, cozy candle light (no-flash) low-noise, detailed flash image



#### Overview



#### Basic approach of both flash/noflash papers

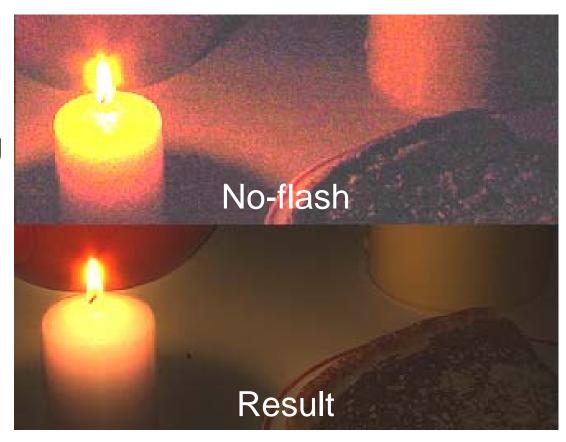
Remove noise + details from image A,

Keep as image A Lighting

-----

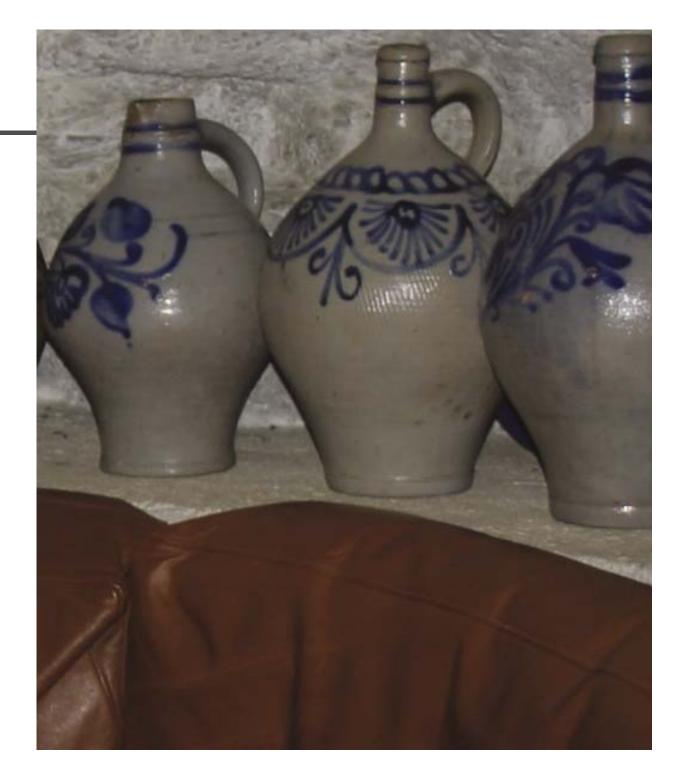
Obtain noise-free details from image B,

Discard Image B Lighting



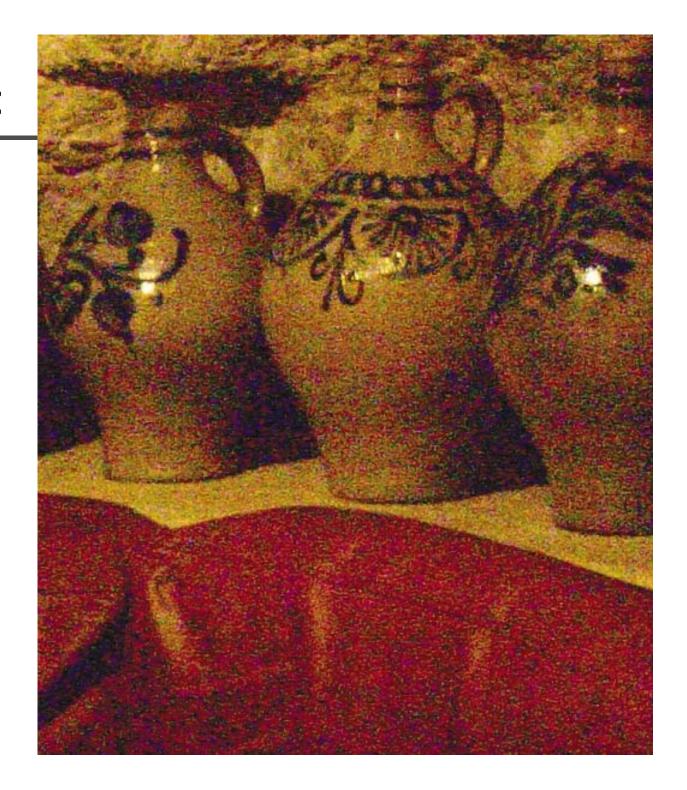
# Petschnigg:

• Flash



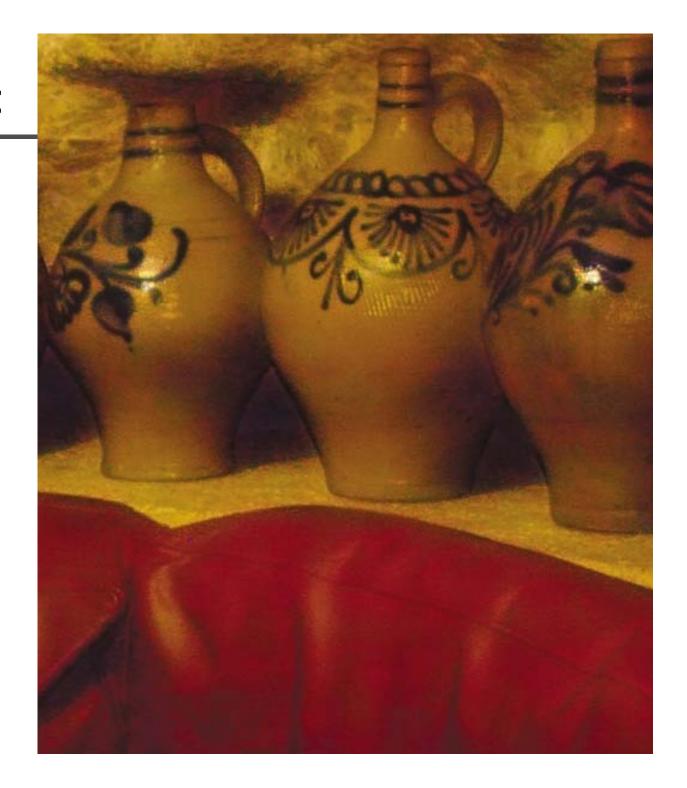
# Petschnigg:

No Flash,



# Petschnigg:

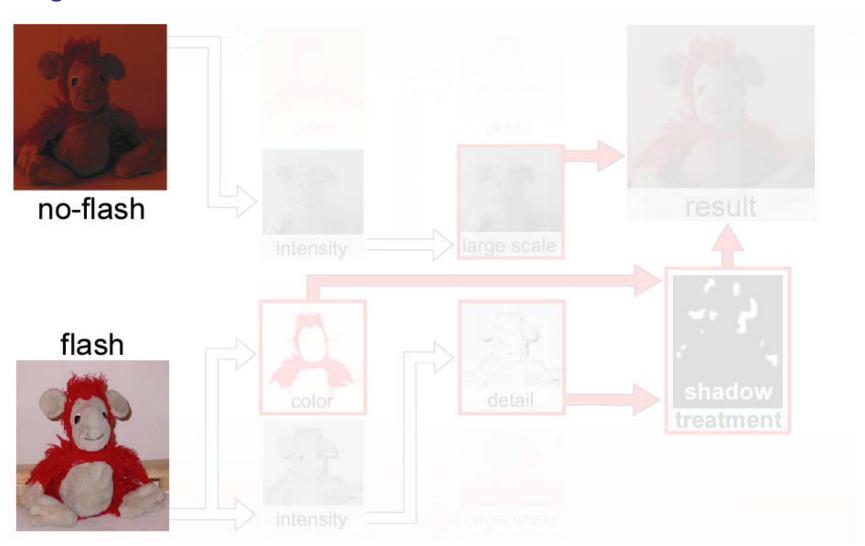
• Result



# Our Approach



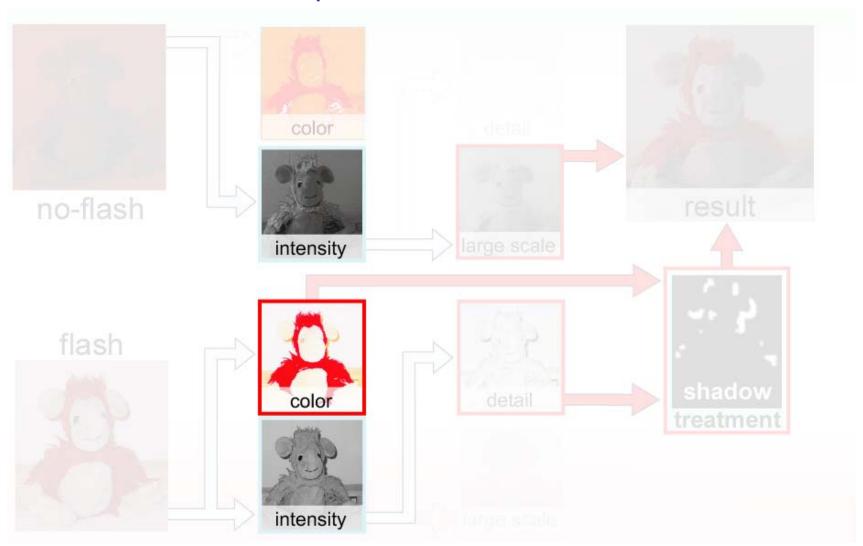
#### Registration



# Our Approach



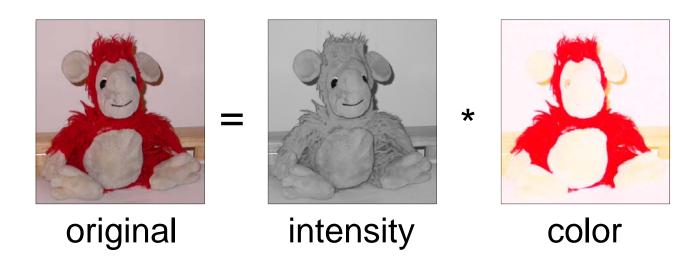
#### **Decomposition**







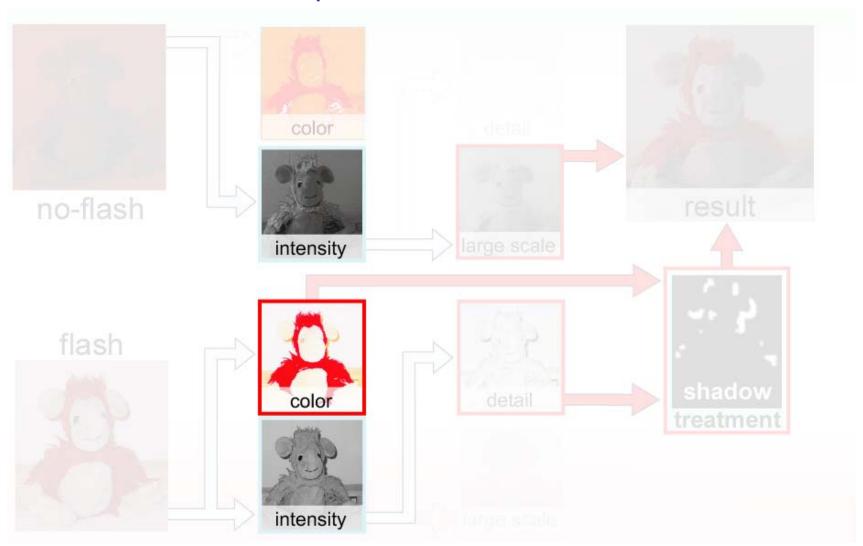
## Color / Intensity:



# Our Approach



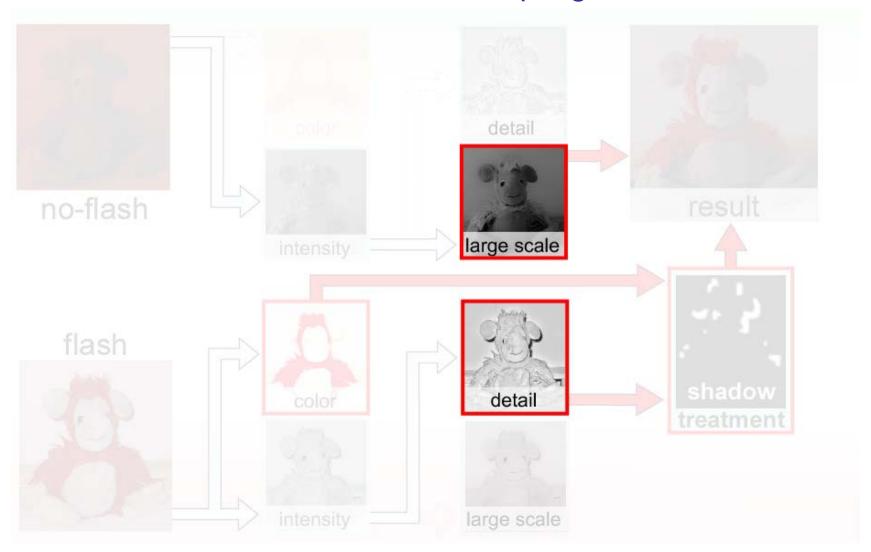
#### **Decomposition**



# Our Approach



#### Decoupling



## Decoupling



• Lighting : Large-scale variation

• Texture : Small-scale variation



Lighting



**Texture** 





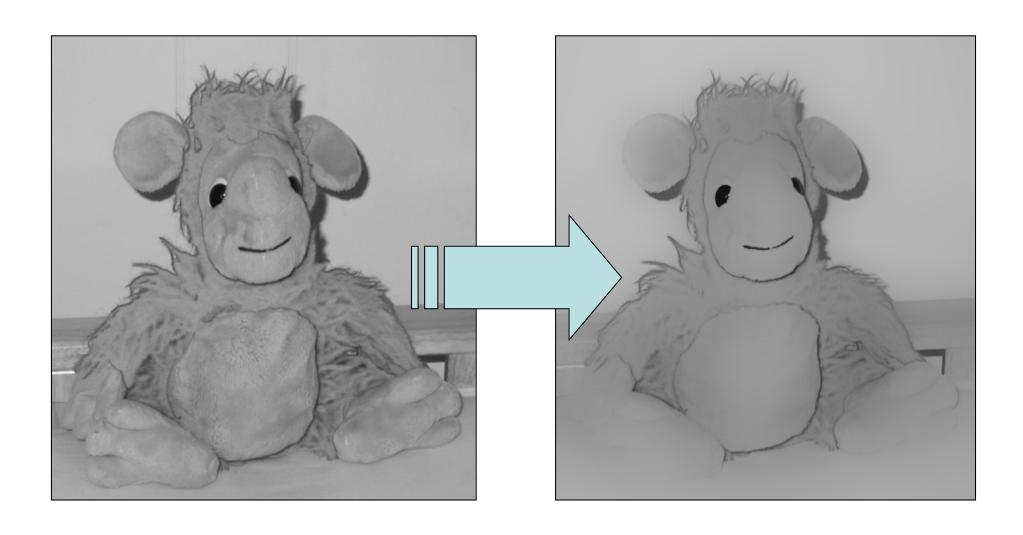
Bilateral filter – edge preserving filter

Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002 Input Output



# Large-scale Layer

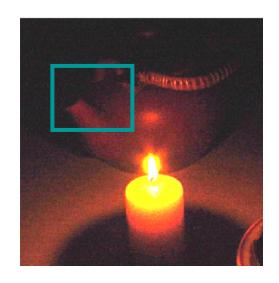
• Bilateral filter

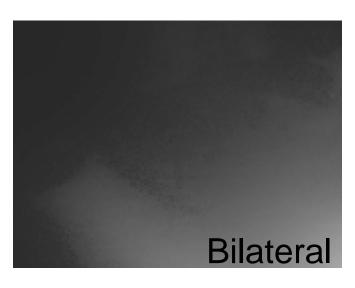




#### **Cross Bilateral Filter**

- Similar to joint bilateral filter by Petschnigg et al.
- When no-flash image is too noisy
- Borrow similarity from flash image
  - edge stopping from flash image

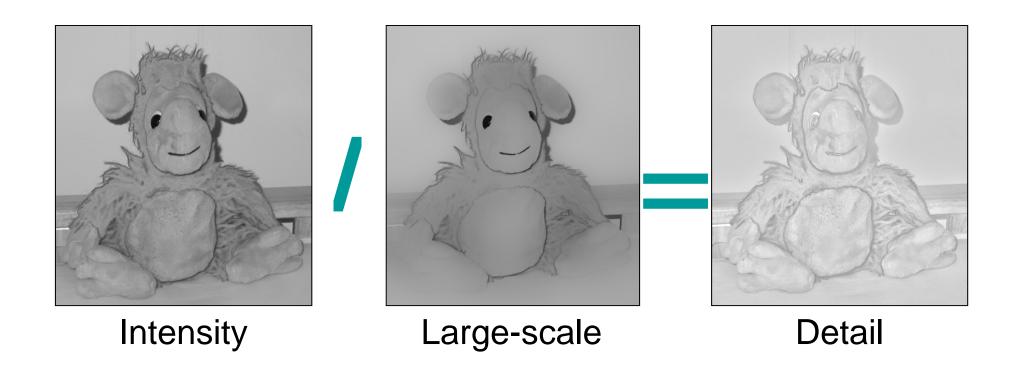






### **Detail Layer**

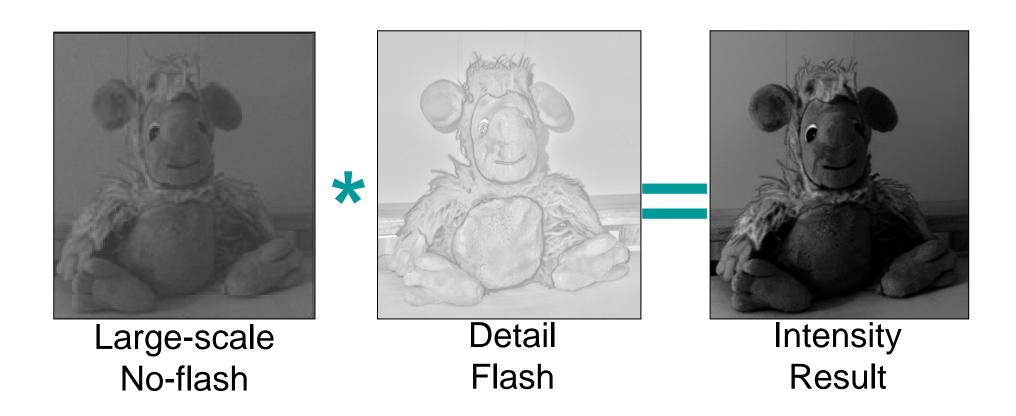




Recombination: Large scale \* Detail = Intensity

#### Recombination





Recombination: Large scale \* Detail = Intensity

#### Recombination



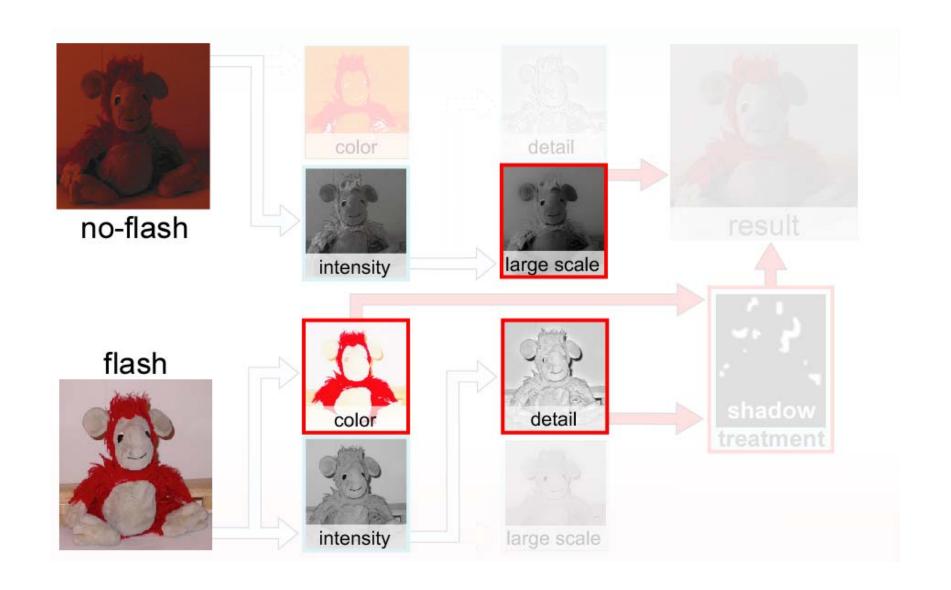
#### shadows



Recombination: Intensity \* Color = Original

# Our Approach

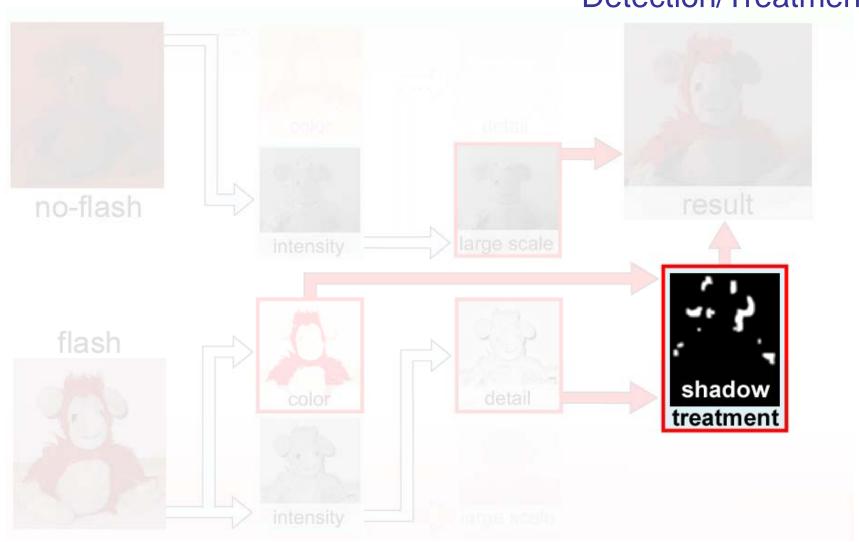




# Our Approach



# Shadow Detection/Treatment



### Results





No-flash



Flash





$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

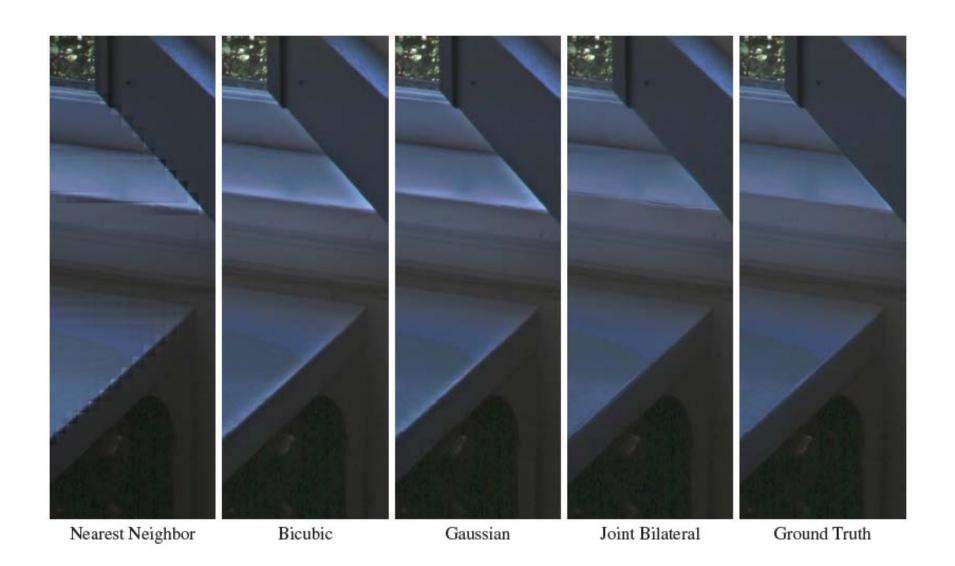
$$\tilde{S}_p = \frac{1}{k_p} \sum_{q_{\perp} \in \Omega} S_{q_{\downarrow}} f(||p_{\downarrow} - q_{\downarrow}||) g(||\tilde{I}_p - \tilde{I}_q||)$$



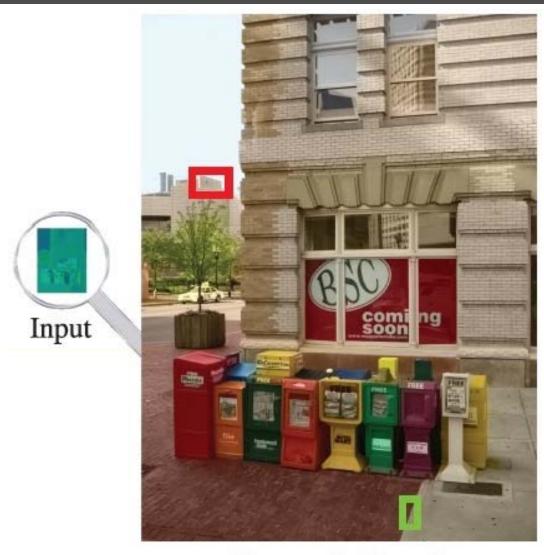


Upsampled Result



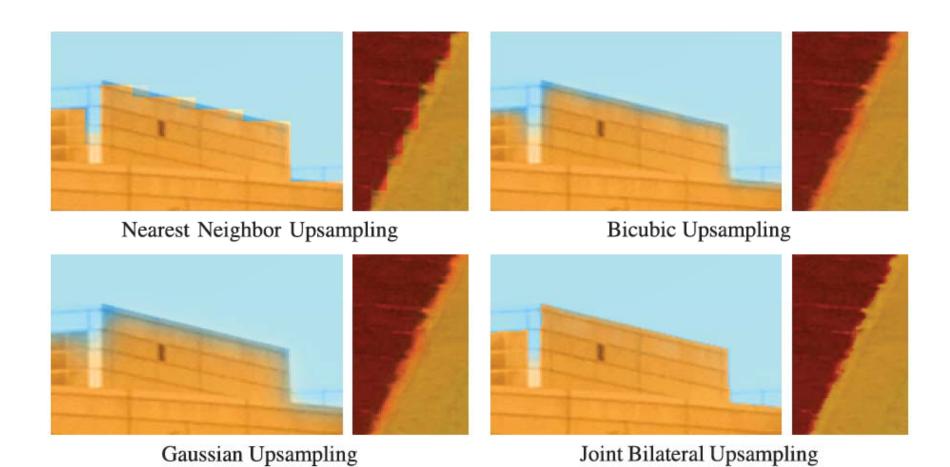






Upsampled Result

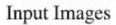












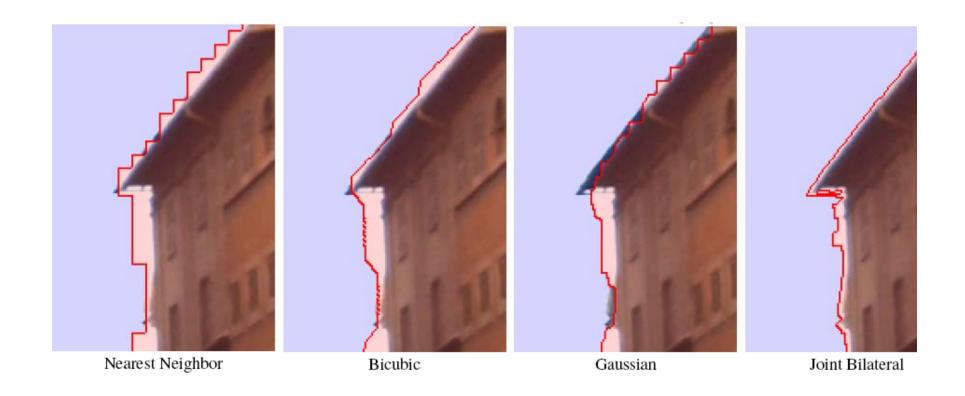


Downsampled



Input Solution









Upsampled Result