Bilateral Filters

Digital Visual Effects

Yung-Yu Chuang

Bilateral filtering

[Ben Weiss, Siggraph 2006]

DigiVFX

Image Denoising

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

Smoothing an image without blurring its edges.

A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
 - All have their pros and cons.

- Bilateral filter
 - not always the best result [Buades 05] but often good
 - easy to understand, adapt and set up

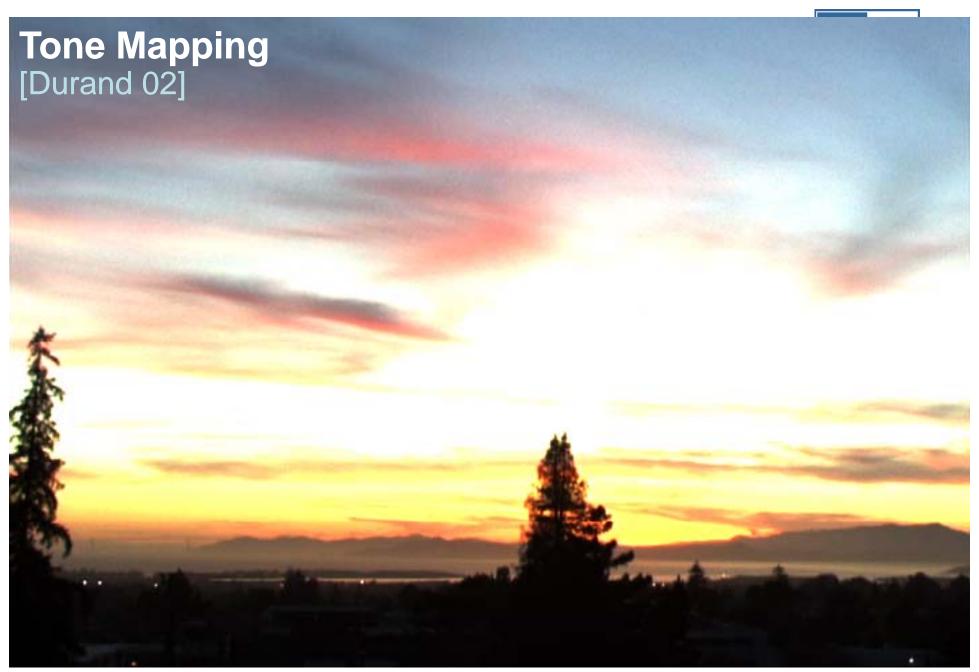
Basic denoising

Noisy input Median 5x5

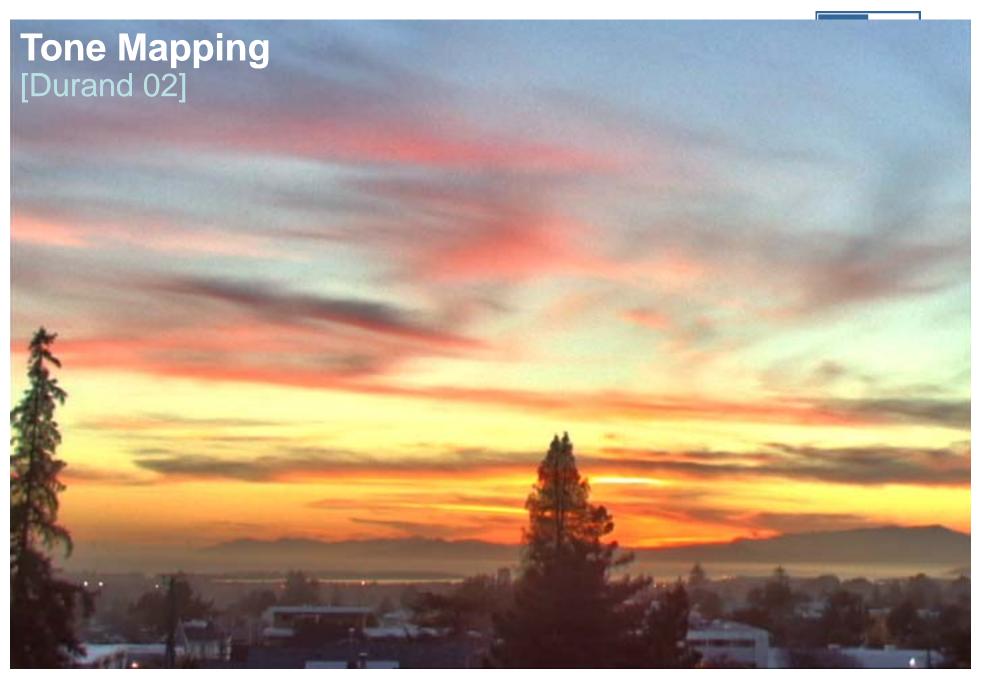
Basic denoising

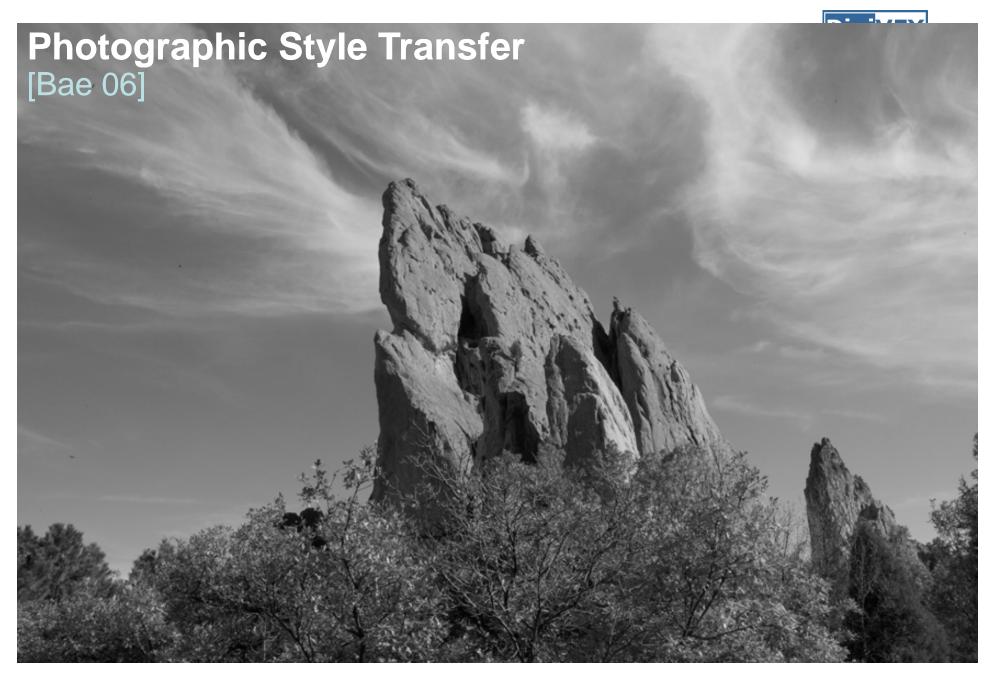
Noisy input

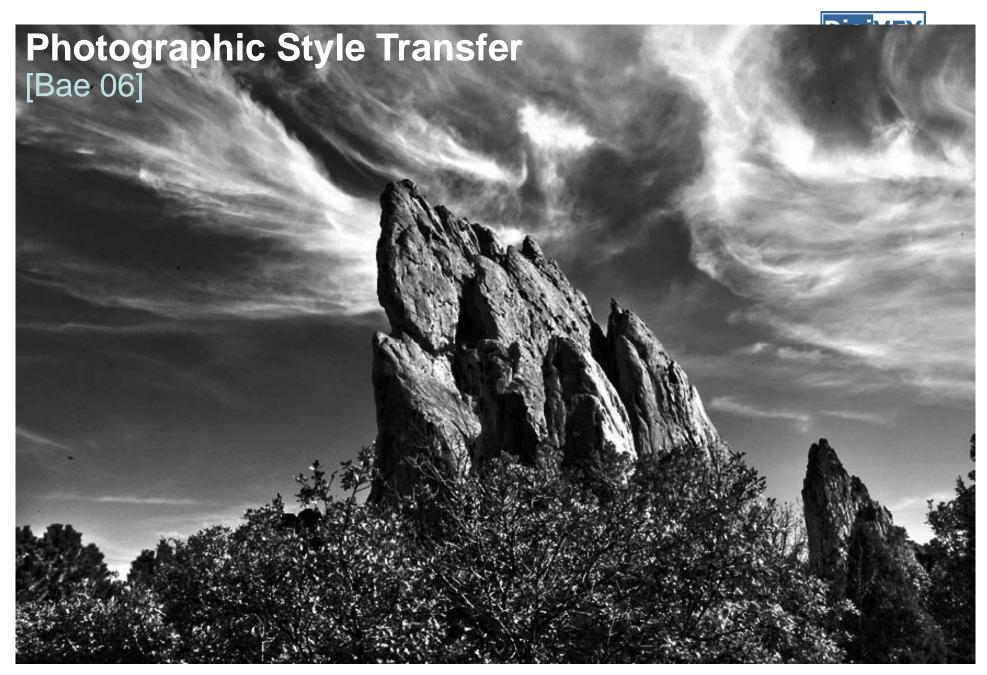
Bilateral filter 7x7 window



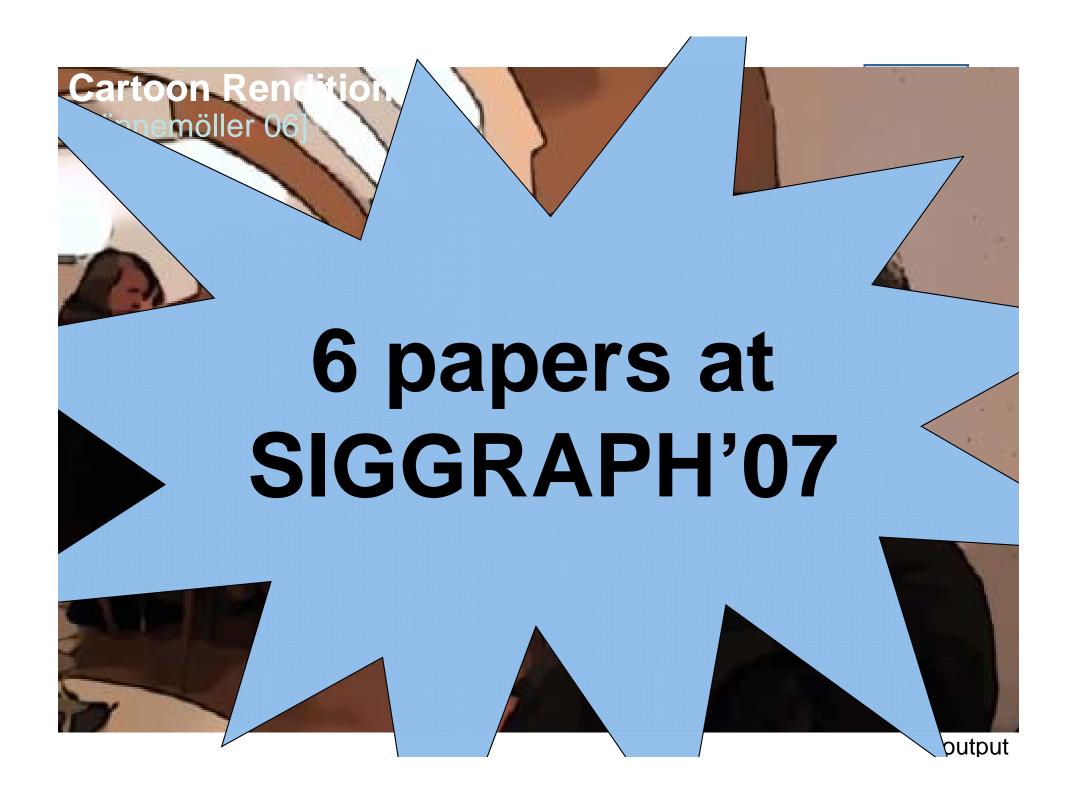
HDR input



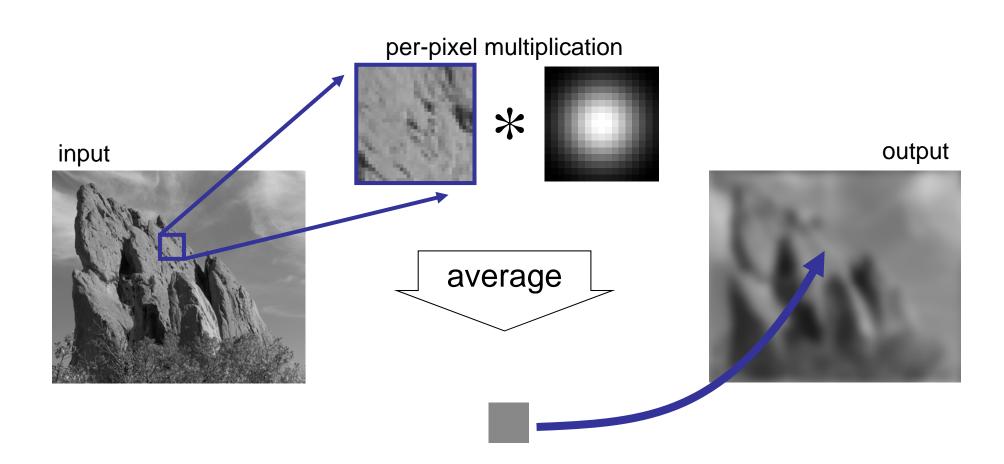


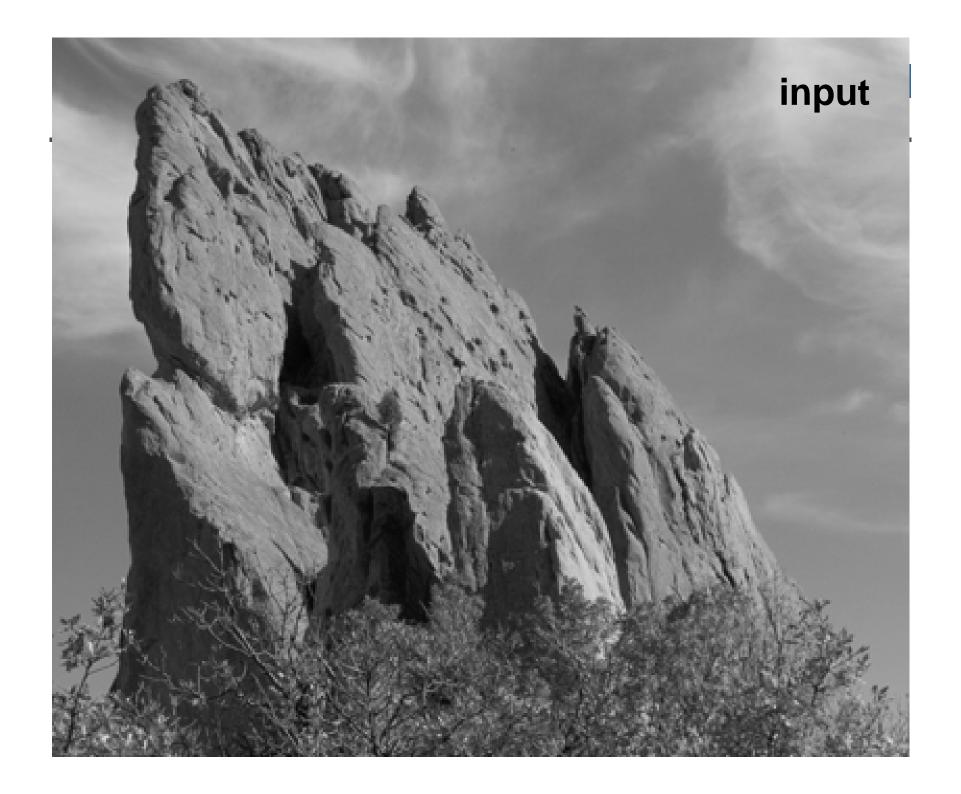


input



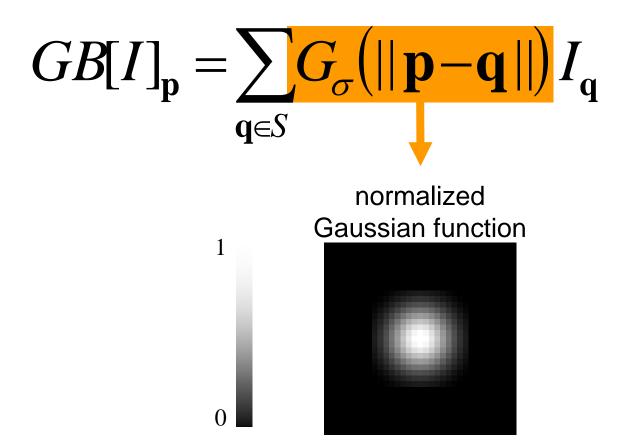
Gaussian Blur





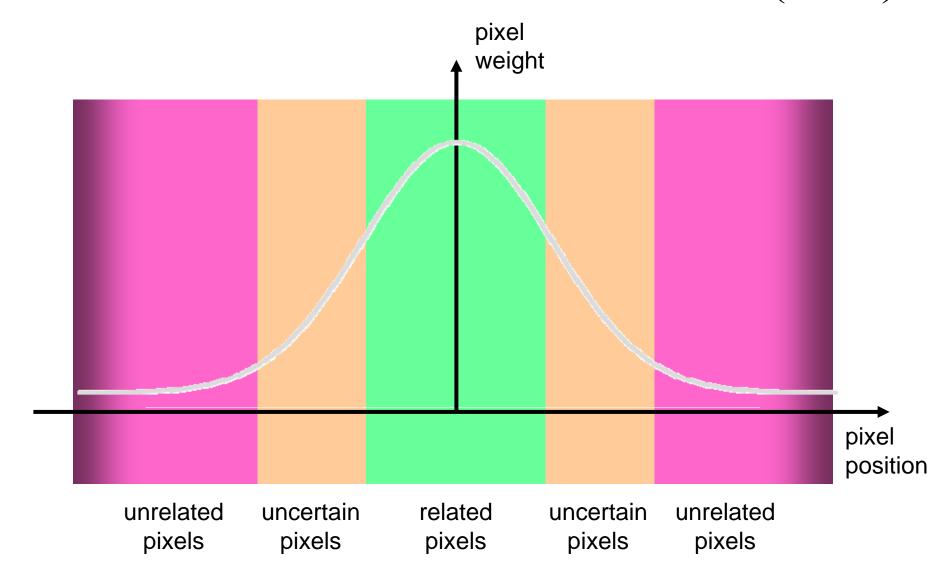
Equation of Gaussian Blur

Same idea: weighted average of pixels.



Gaussian Profile

$$G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

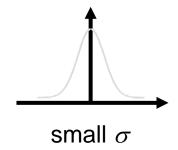


Spatial Parameter

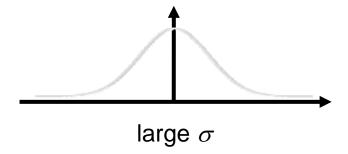
input

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

size of the window



limited smoothing



strong smoothing

How to set σ

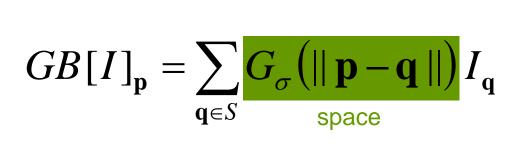
- Depends on the application.
- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

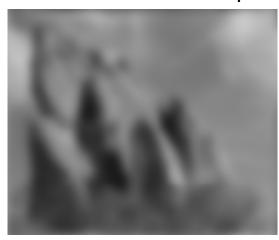
Properties of Gaussian Blur

- Weights independent of spatial location
 - linear convolution
 - well-known operation
 - efficient computation (recursive algorithm, FFT...)

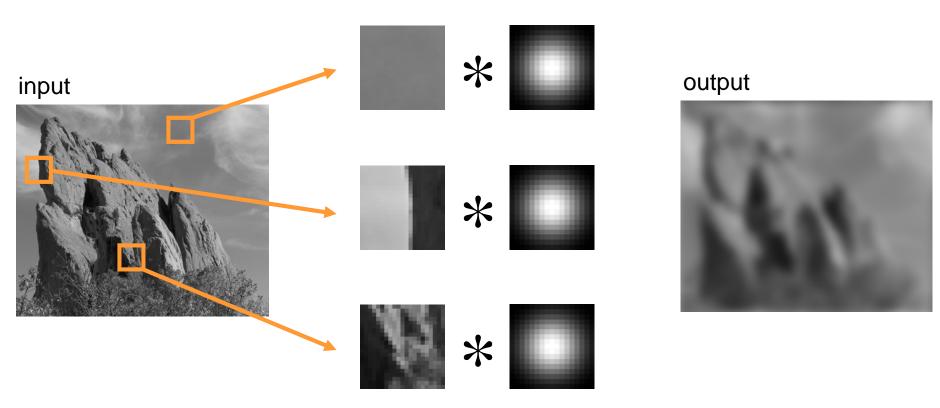
Properties of Gaussian Blur

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term



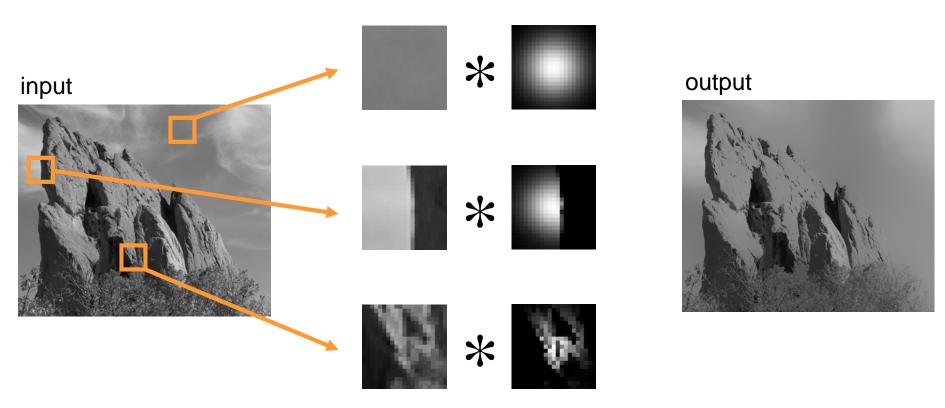


Blur Comes from Averaging across Edges



Same Gaussian kernel everywhere.

Bilateral Filter No Averaging across Edges



The kernel shape depends on the image content.

Bilateral Filter Definition

Same idea: weighted average of pixels.

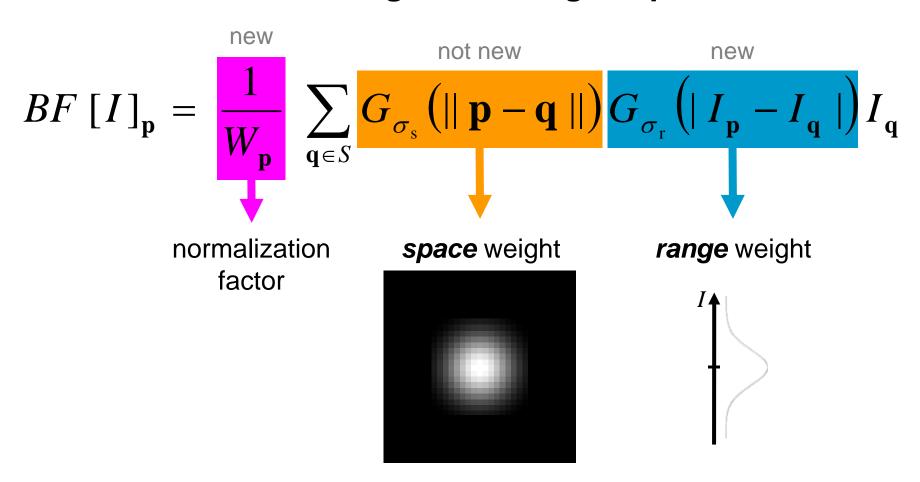
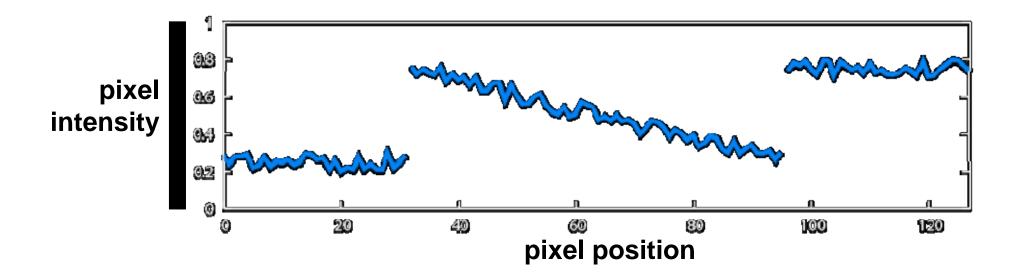


Illustration a 1D Image

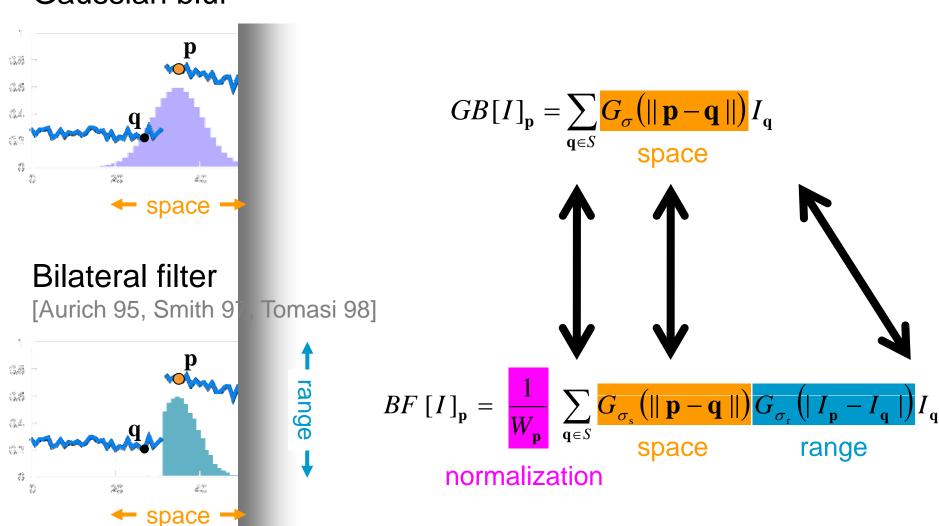
• 1D image = line of pixels

Better visualized as a plot



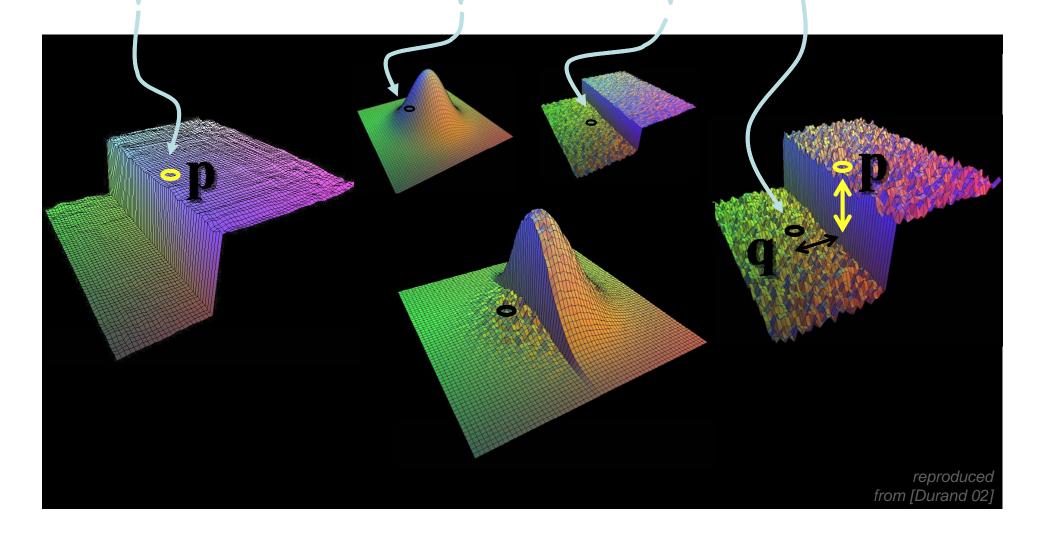
Gaussian Blur and Bilateral Filter Digivex

Gaussian blur



Bilateral Filter on a Height Field

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

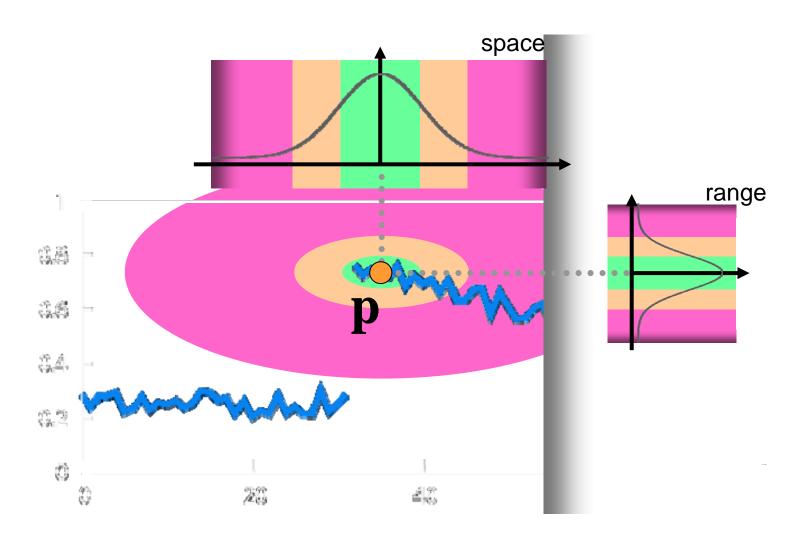


Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- space σ_s : spatial extent of the kernel, size of the considered neighborhood.
- range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Only pixels close in space and in range are considered.



input

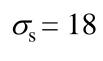
Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$

 $\sigma_{\rm r} = 0.25$

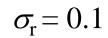
 $\sigma_{\rm r} = \infty$ (Gaussian blur)

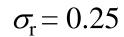
 $\sigma_{\rm s} = 2$



input

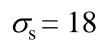
Varying the Range Parameter

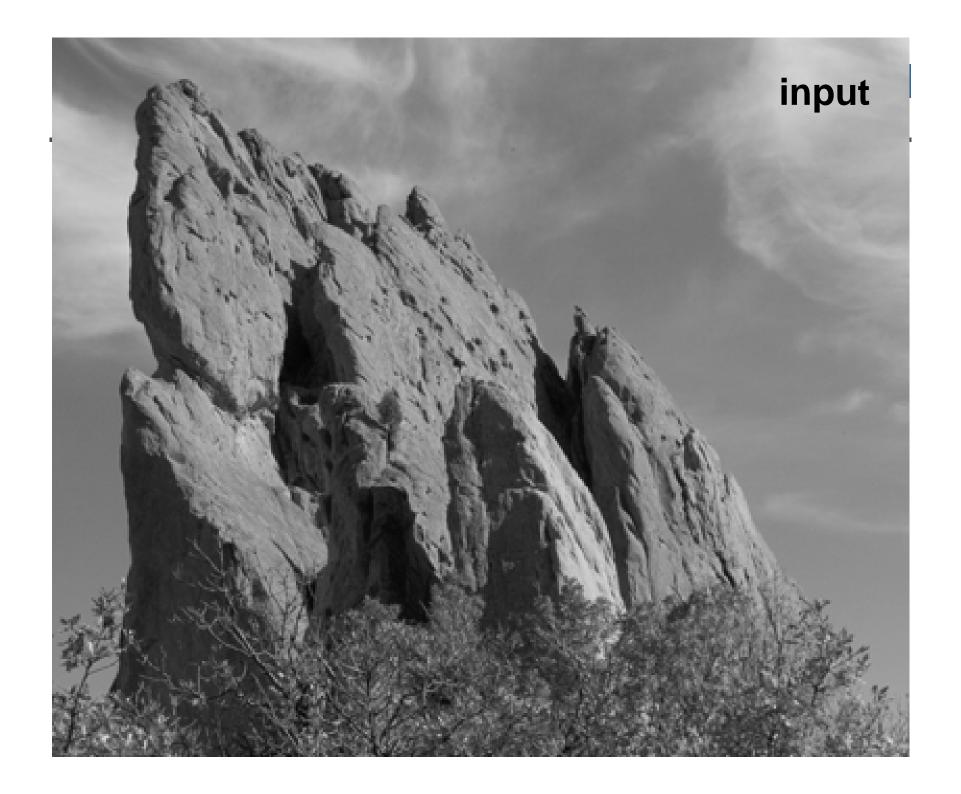




$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

 $\sigma_{\rm s} = 2$





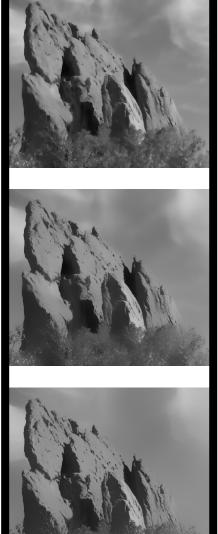
Varying the Space Parameter

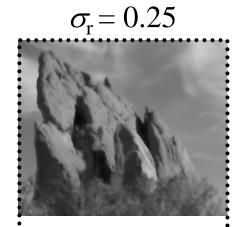
input

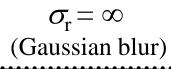
$$\sigma_{s} = 2$$

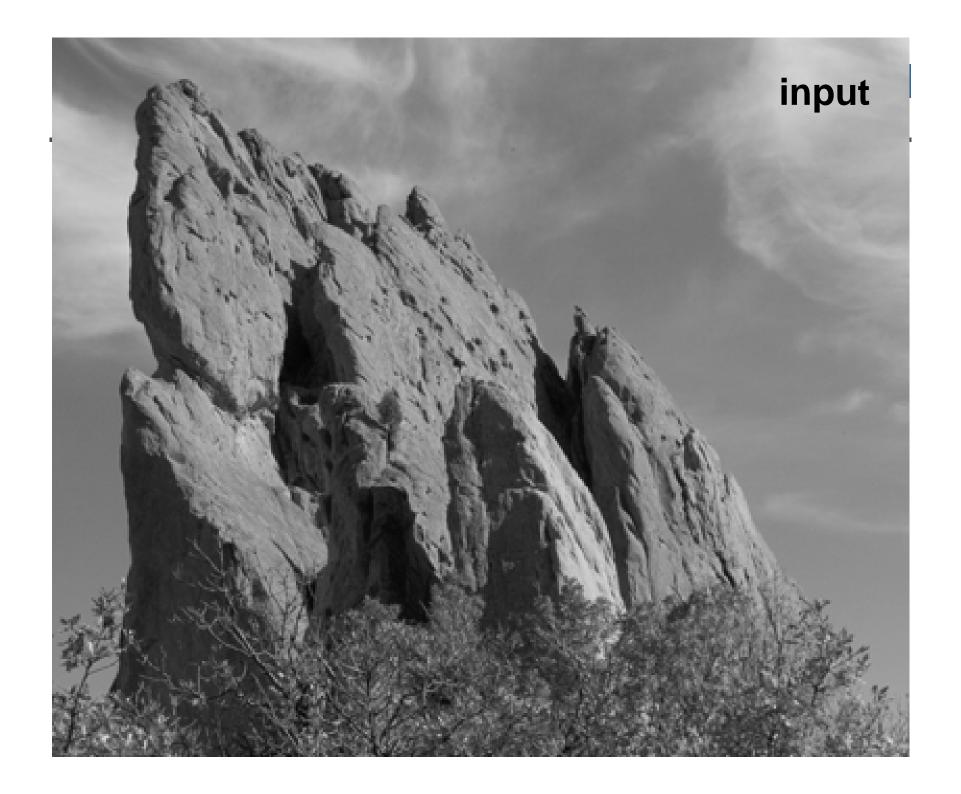
$$\sigma_{\rm s} = 6$$

$$\sigma_{\rm s} = 18$$









How to Set the Parameters

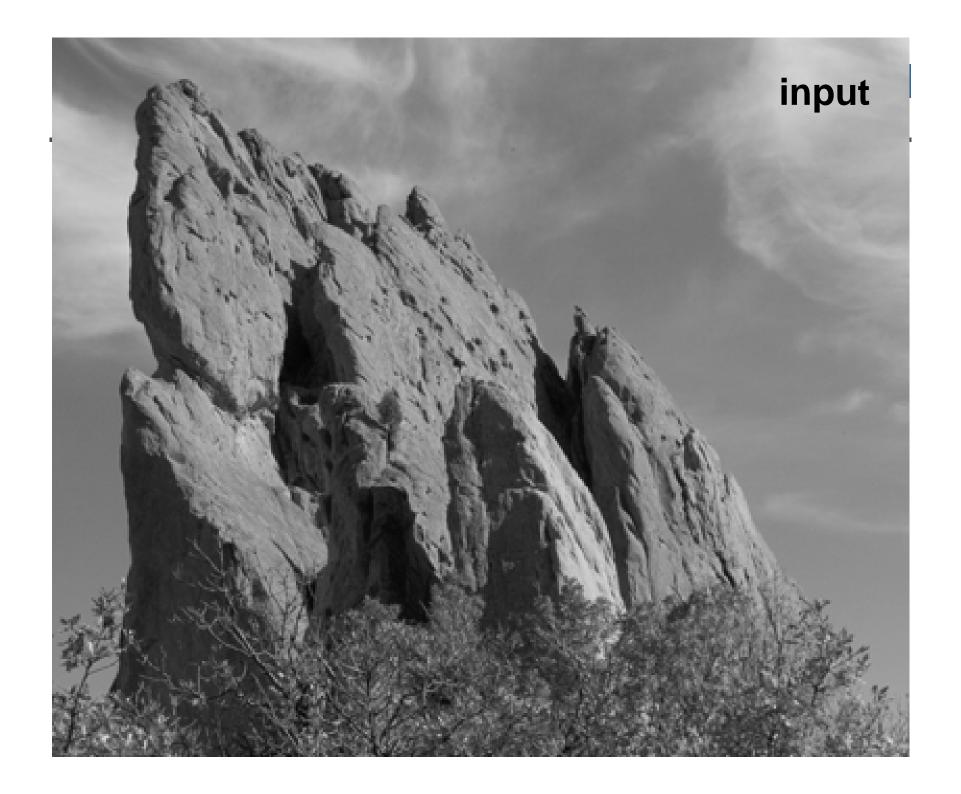
Depends on the application. For instance:

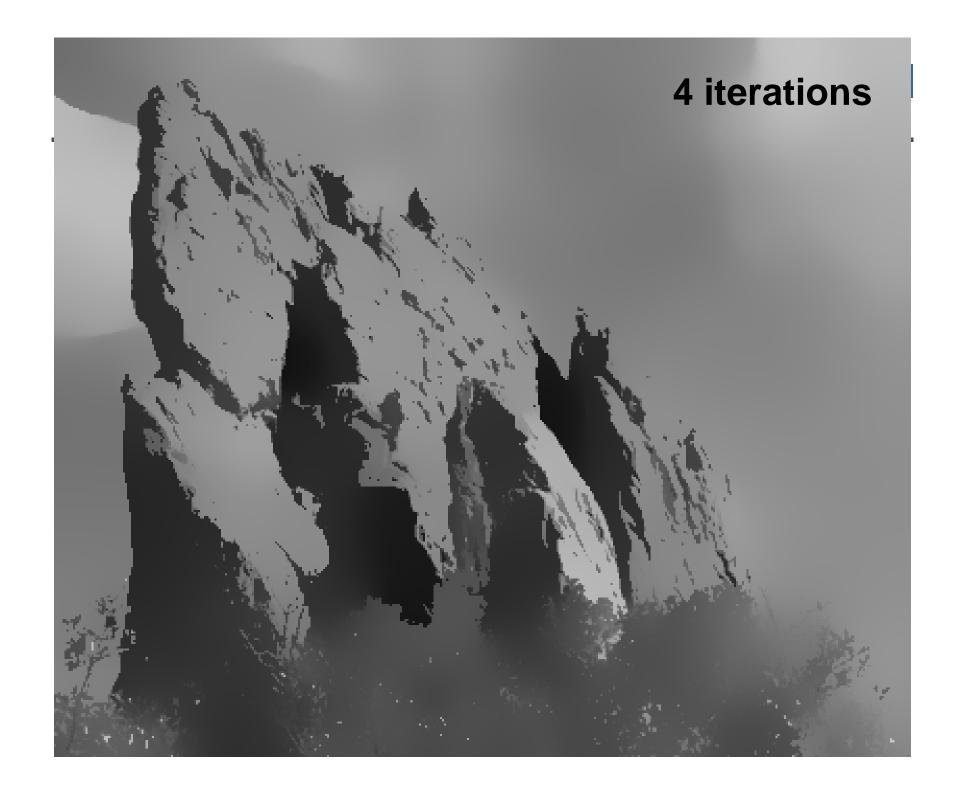
- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

Iterating the Bilateral Filter

$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.





Advantages of Bilateral Filter

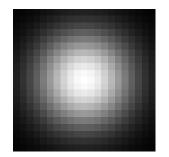
- Easy to understand
 - Weighted mean of nearby pixels
- Easy to adapt
 - Distance between pixel values
- Easy to set up
 - Non-iterative

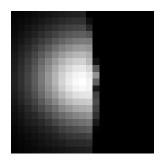
Hard to Compute

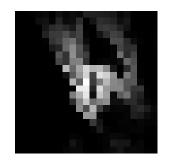
Nonlinear

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...









Brute-force implementation is slow > 10min

But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
 - [Elad 02]: Gauss-Seidel iterations
 - Only for many iterations

- [Durand 02, Weiss 06]: fast approximation
 - No formal understanding of accuracy versus speed
 - [Weiss 06]: Only box function as spatial kernel

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
 - Gaussian on *space* distance
 - Gaussian on *range* distance
 - sum to 1

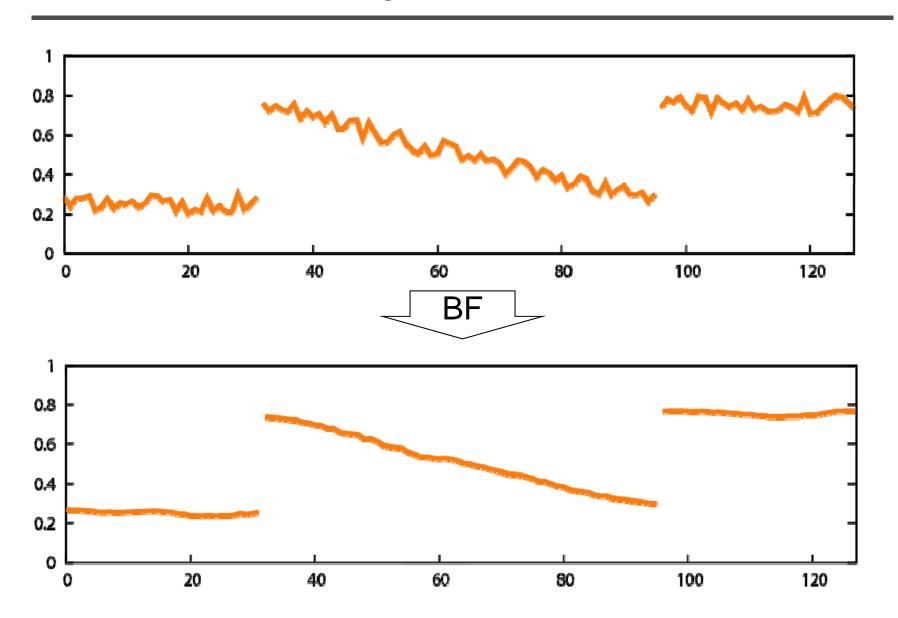
$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
space range

Contributions

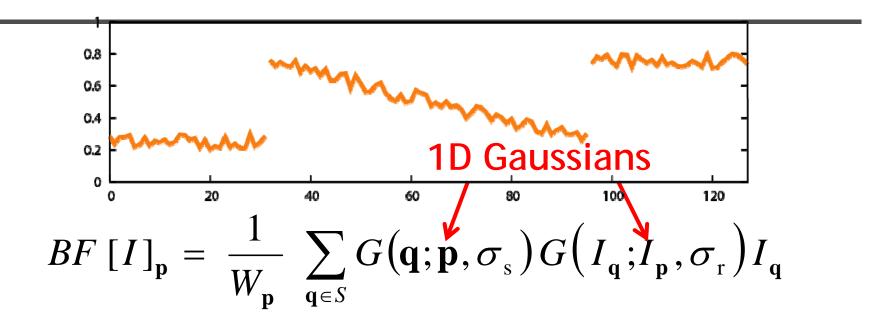
Link with linear filtering

Fast and accurate approximation

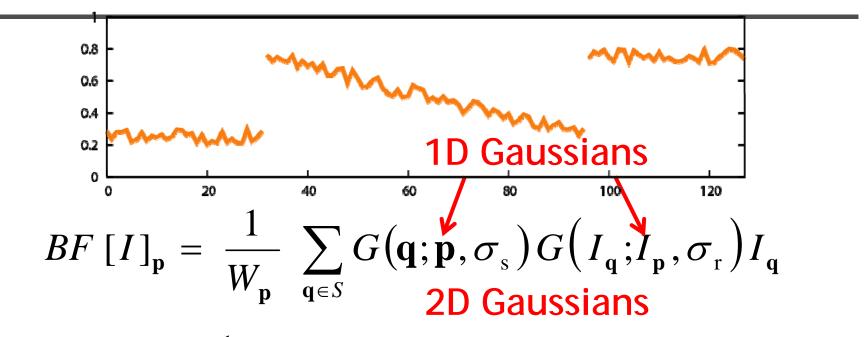
Intuition on 1D Signal



Basic idea

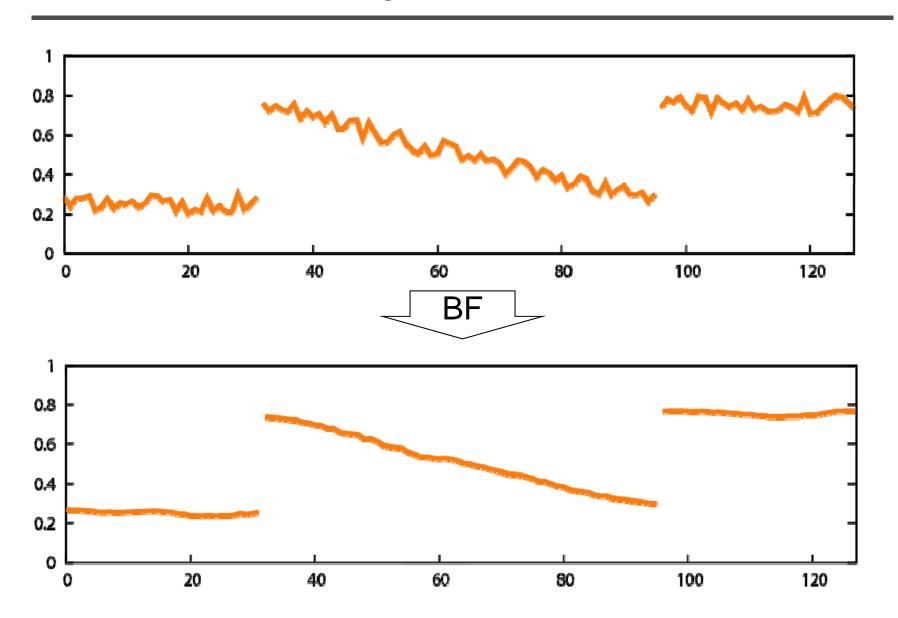


Basic idea

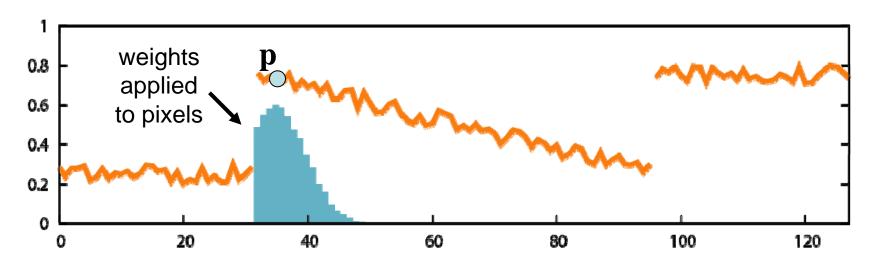


$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle \in S'} G(\mathbf{q}, I_{\mathbf{q}}; \mathbf{p}, I_{\mathbf{p}}, \sigma_{\mathbf{s}}, \sigma_{\mathbf{r}}) I_{\langle \mathbf{q}, I'_{\mathbf{q}} \rangle}$$
a special

Intuition on 1D Signal

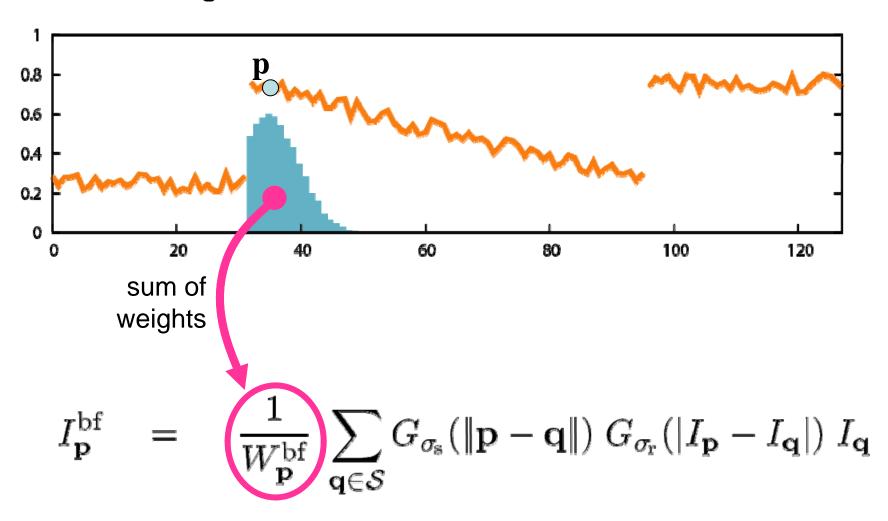


Intuition on 1D Signal Weighted Average of Neighbors



- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.

1. Handling the Division



Handling the division with a projective space.

Formalization: Handling the Division

$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}}^{\mathrm{bf}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

- Normalizing factor as homogeneous coordinate
 - Multiply both sides by $W_{f p}^{
 m bf}$

$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} I_{\mathbf{q}} \\ 1 \end{pmatrix}$$

Formalization: Handling the Division

$$\begin{pmatrix} \begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix} \text{ with } W_{\mathbf{q}} = 1$$

- Similar to homogeneous coordinates in projective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

2. Introducing a Convolution

space: 1D Gaussian

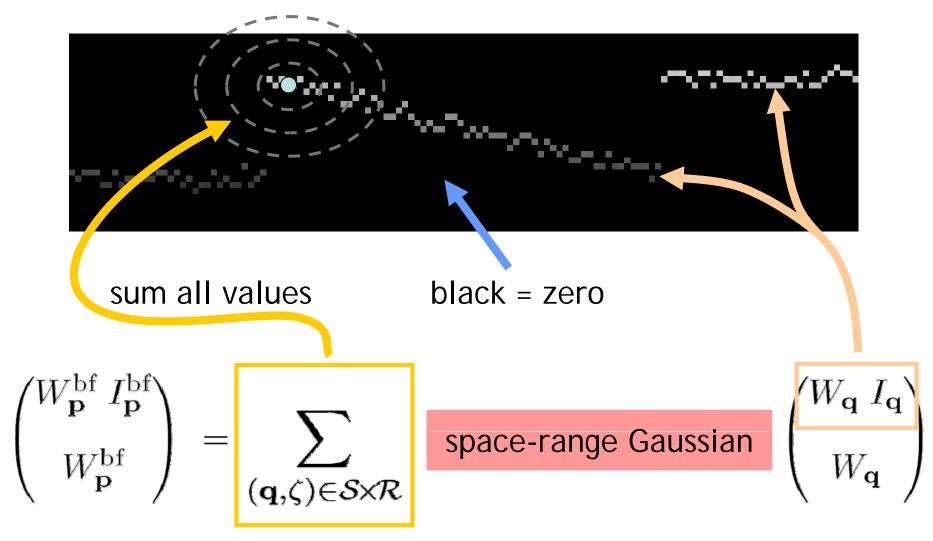
× range: 1D Gaussian

$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \, I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\!s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\!r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} \, I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$
space range

Link with Linear Filtering space: 1D Gaussian 2. Introducing a Convolution × range: 1D Gaussian combination: 2D Gaussian 8.0 0.6 0.4 0.2 0 20 40 80 100 120 60 $\left(egin{array}{c} W_{\mathbf{p}}^{\mathbf{p}} & I_{\mathbf{p}}^{\mathbf{p}} \end{array} ight) = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\!\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\!\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \ W_{\mathbf{q}} \end{array} \left(egin{array}{c} W_{\mathbf{q}} & I_{\mathbf{q}} \ W_{\mathbf{q}} \end{array} ight)$

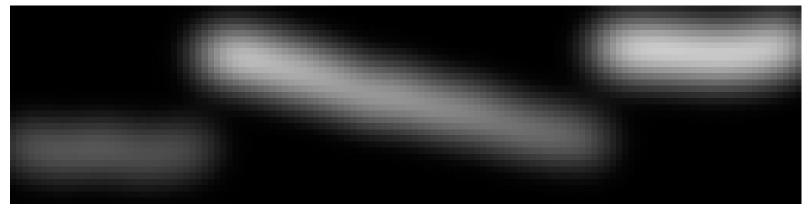
Corresponds to a 3D Gaussian on a 2D image.

2. Introducing a Convolution



sum all values multiplied by kernel ⇒ convolution

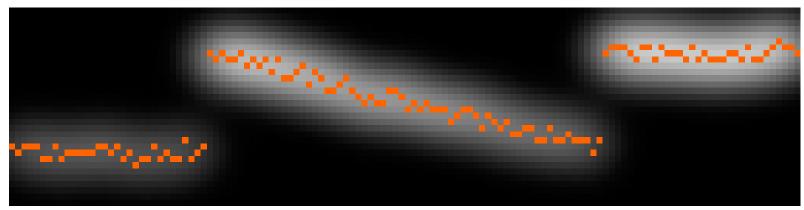
2. Introducing a Convolution



result of the convolution

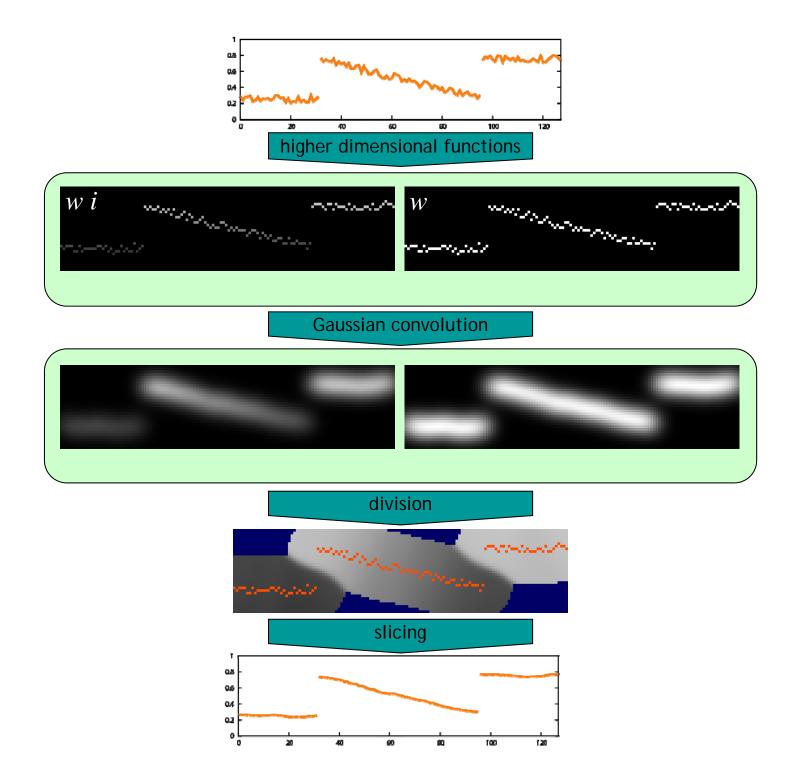
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} \ I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q}, \zeta) \in \mathcal{S} \times \mathcal{R}} \quad \text{space-range Gaussian} \quad \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$

2. Introducing a Convolution



result of the convolution

$$egin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{(\mathbf{q},\zeta) \in \mathcal{S} imes \mathcal{R}} \quad ext{space-range Gaussian} \quad egin{pmatrix} W_{\mathbf{q}} I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix}$$

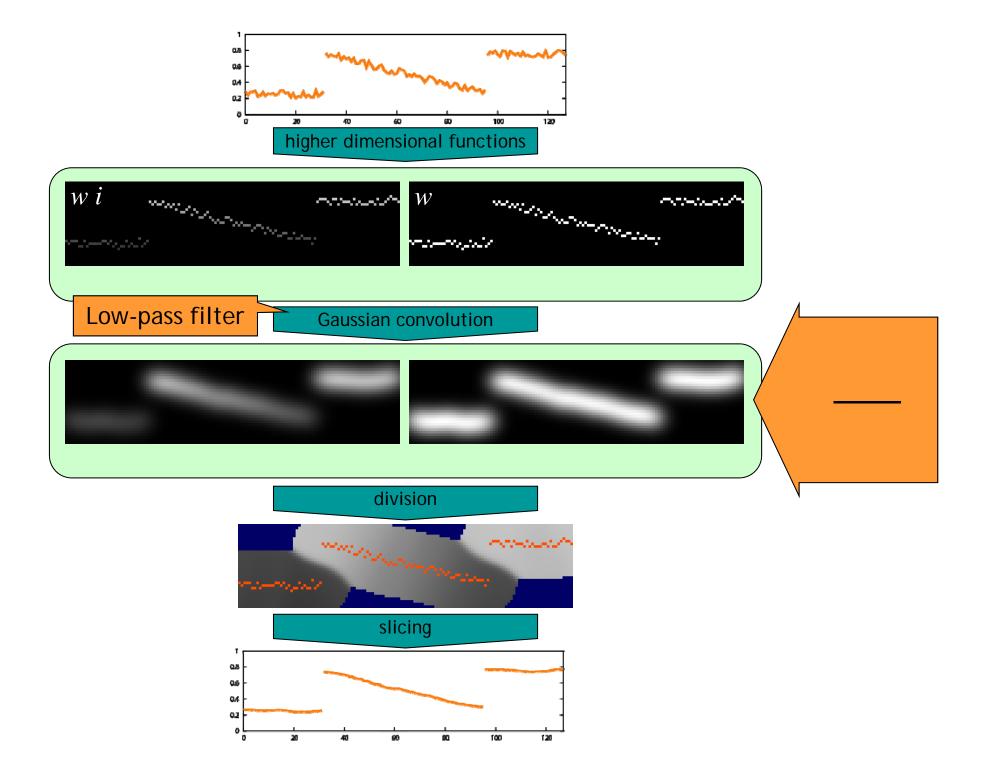


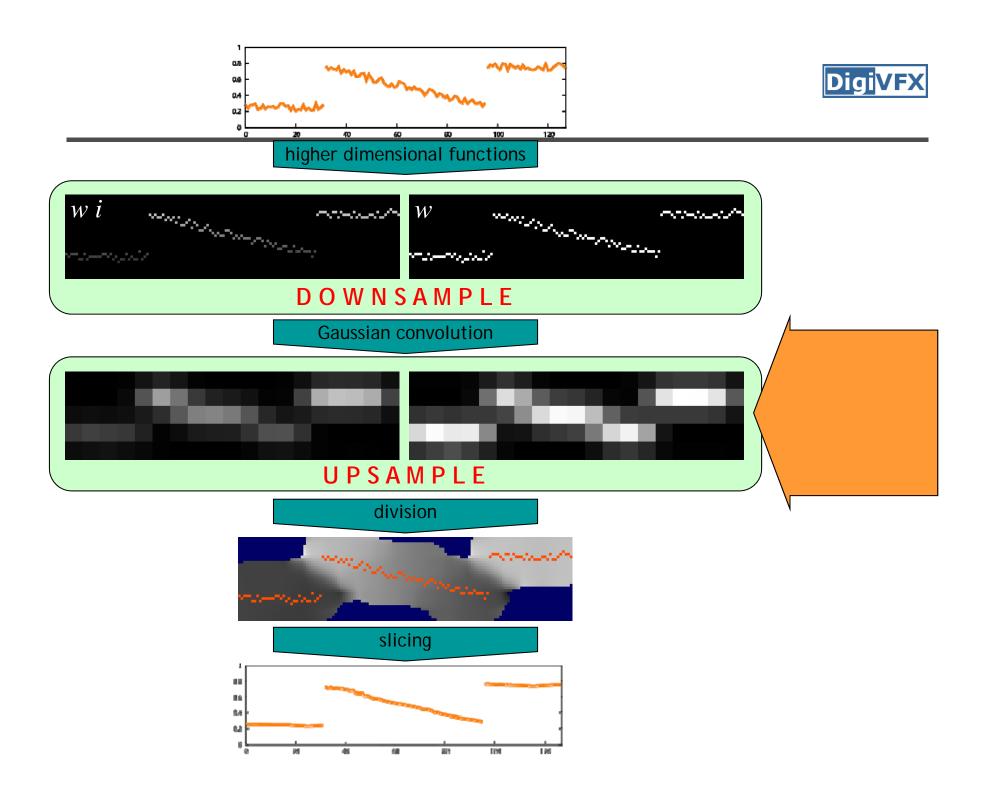
Reformulation: Summary

linear:
$$(w^{\mathrm{bf}}\ i^{\mathrm{bf}}, w^{\mathrm{bf}}) = g_{\sigma_{\!\!\mathbf{s}}, \sigma_{\!\!\mathbf{r}}} \otimes (wi, w)$$
nonlinear: $I^{\mathrm{bf}}_{\mathbf{p}} = \frac{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})\ i^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}{w^{\mathrm{bf}}(\mathbf{p}, I_{\mathbf{p}})}$

- 1. Convolution in higher dimension
 - expensive but well understood (linear, FFT, etc)
- 2. Division and slicing
 - nonlinear but simple and pixel-wise

Exact reformulation



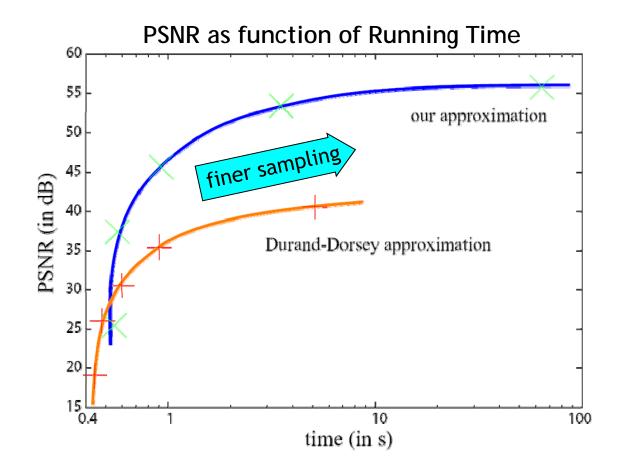


Fast Convolution by Downsampling

- Downsampling cuts frequencies above Nyquist limit
 - Less data to process
 - But induces error
- Evaluation of the approximation
 - Precision versus running time
 - Visual accuracy

Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.



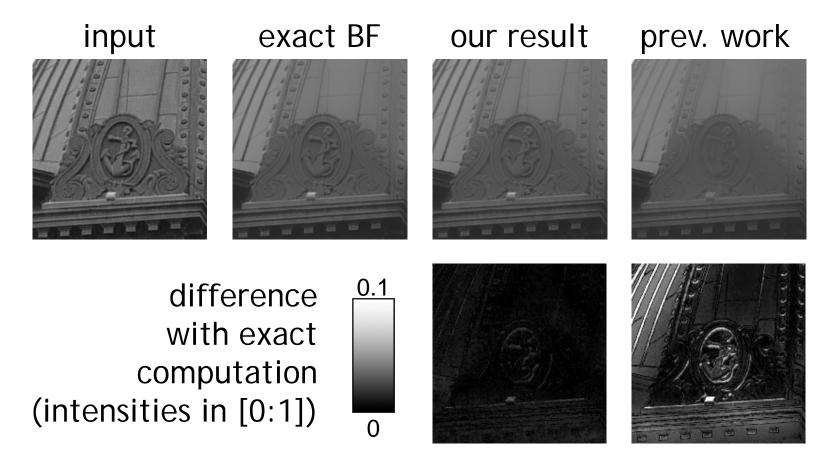
Digital photograph 1200 × 1600

Straightforward implementation is over 10 minutes.

Visual Results

- Comparison with previous work [Durand 02]
 - running time = 1s for both techniques

 1200×1600



higher dimension ⇒ "better" computation

Practical gain

- Interactive running time
- Visually similar results
- Simple to code (100 lines)

Theoretical gain

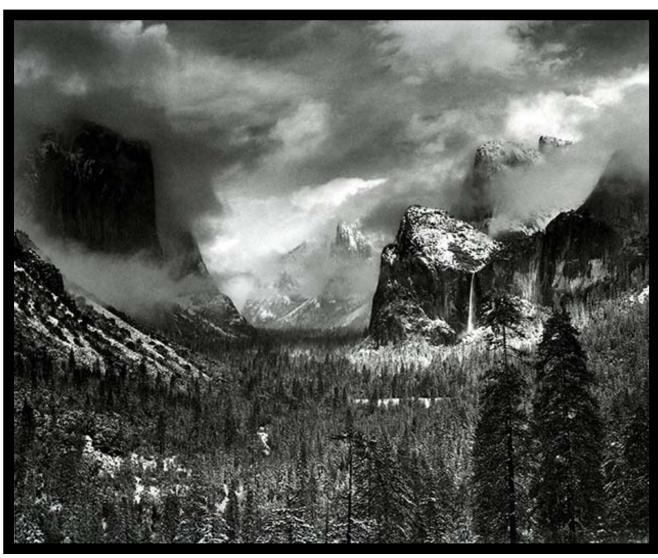
- Link with linear filters
- Separation linear/nonlinear
- Signal processing framework

Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

SIGRAPH2006

Ansel Adams



Ansel Adams, Clearing Winter Storm

An Amateur Photographer



Goals

- Control over photographic look
- Transfer "look" from a model photo

For example,

we want

with the look of

DigiVFX

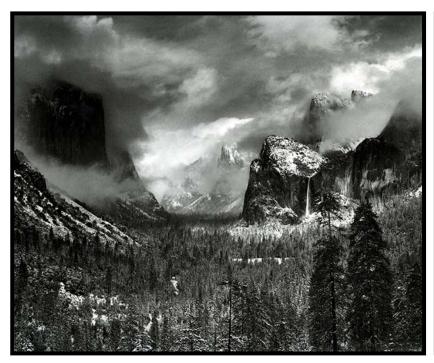
Aspects of Photographic Look

- Subject choice
- Framing and composition
- → Specified by input photos
- Tone distribution and contrast
- → Modified based on model photos

Input

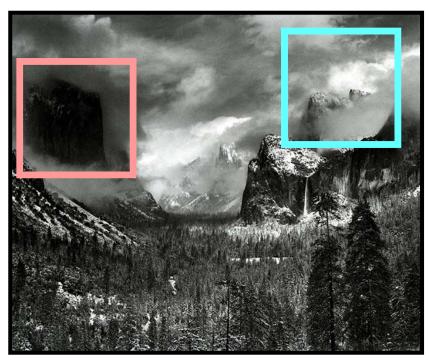
Model

Tonal Aspects of Look



Ansel Adams Kenro Izu

Tonal aspects of Look - Global Contrast



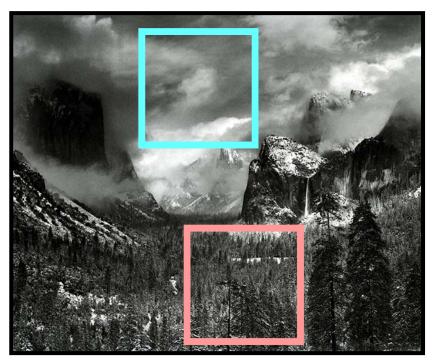
Ansel Adams

Kenro Izu

High Global Contrast

Low Global Contrast

Tonal aspects of Look - Local Contrast



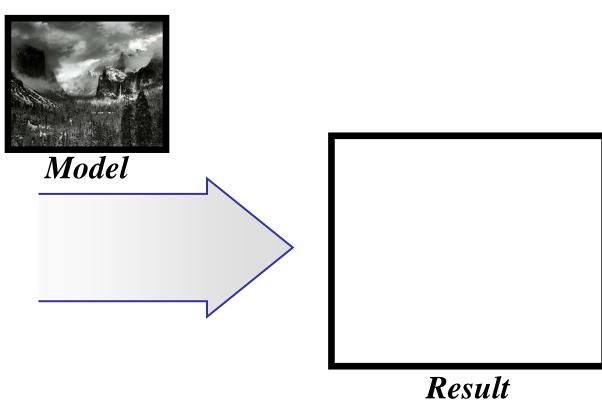
Ansel Adams

Kenro Izu

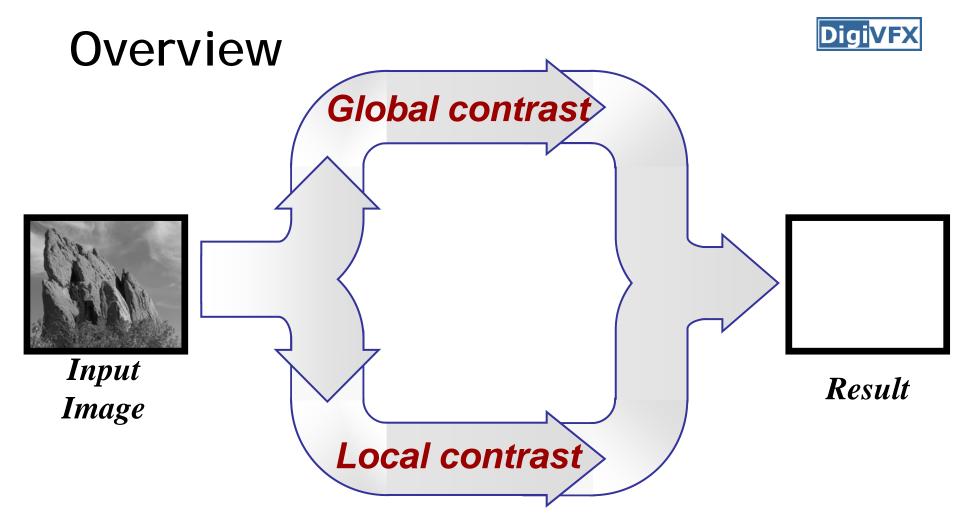
Variable amount of texture

Texture everywhere

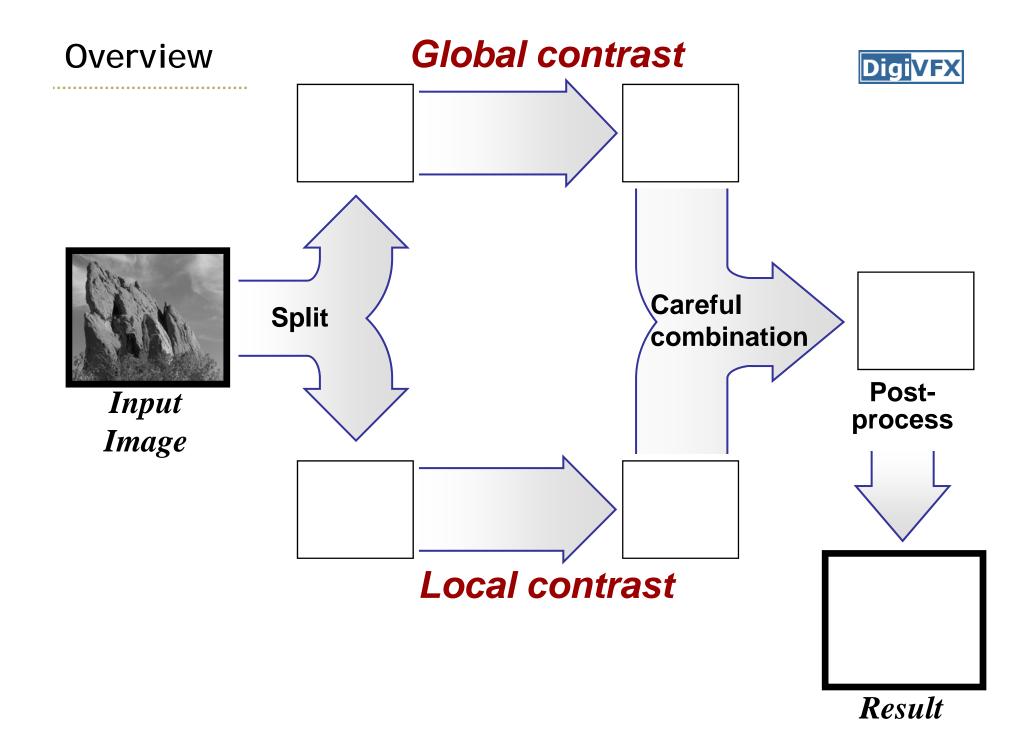
Overview

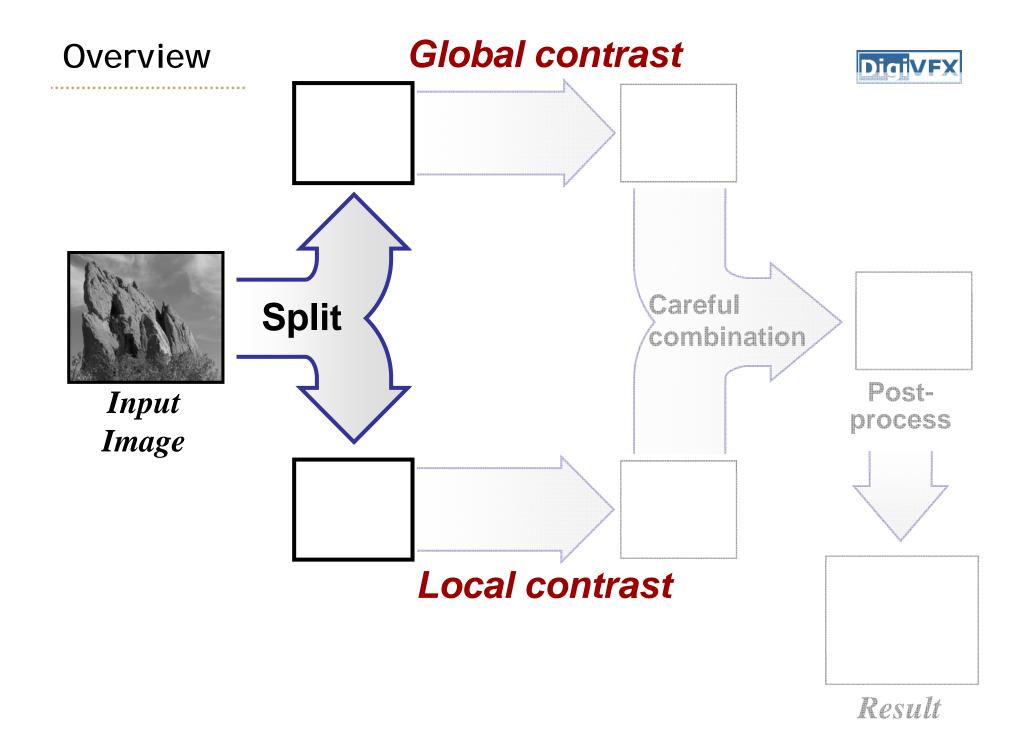


- Transfer look between photographs
 - Tonal aspects



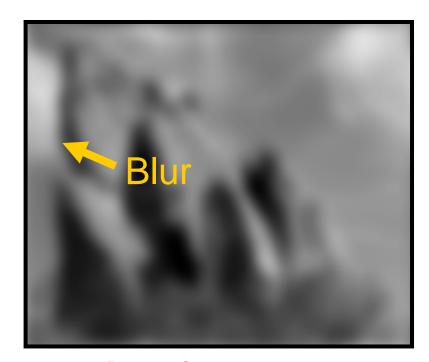
Separate global and local contrast





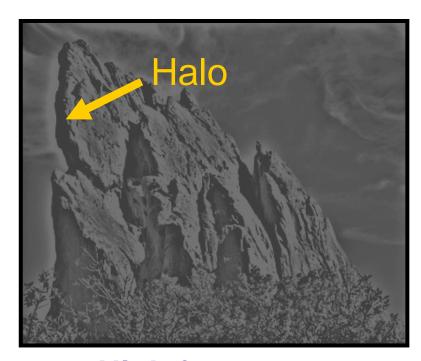
Split Global vs. Local Contrast

- Naïve decomposition: low vs. high frequency
 - Problem: introduce blur & halos



Low frequency

Global contrast



High frequency

Local contrast

Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

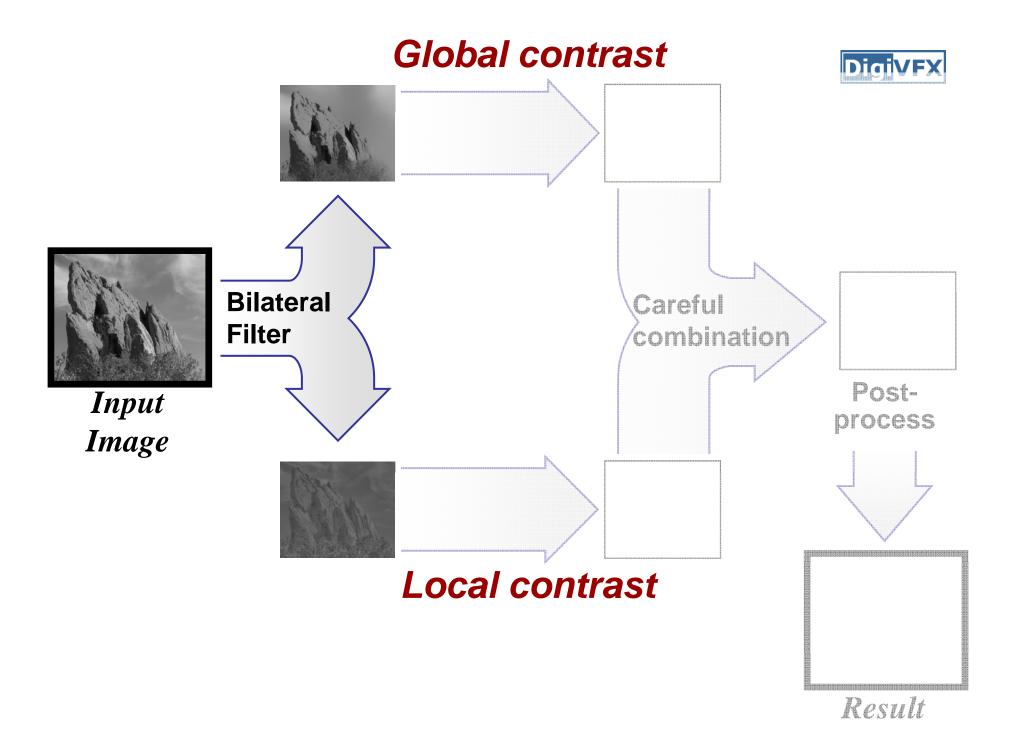
Residual after filtering Local contrast

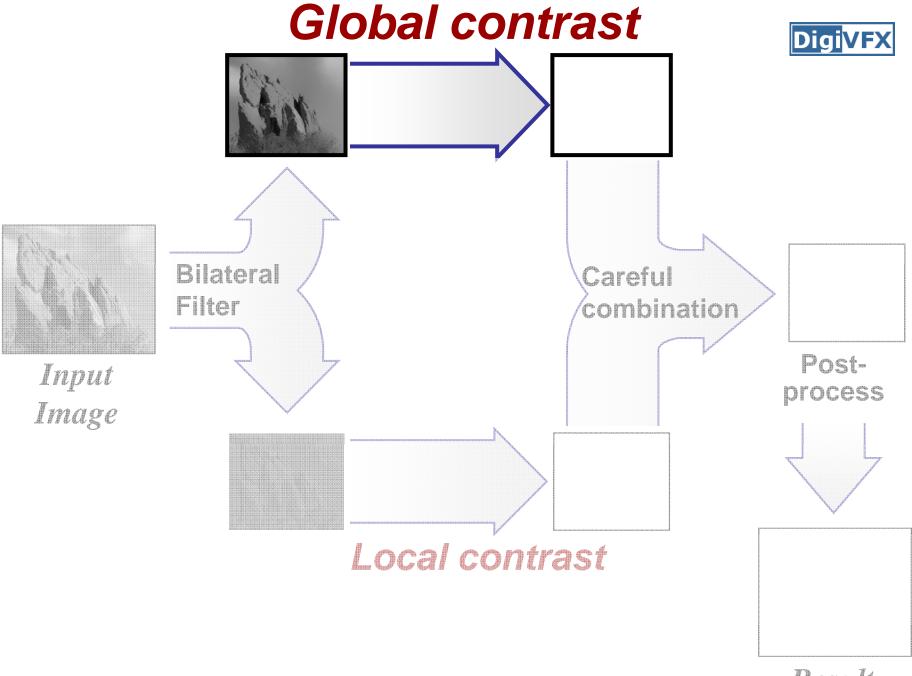
Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

Residual after filtering Local contrast



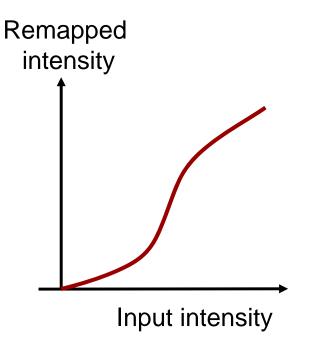


Result

Global Contrast

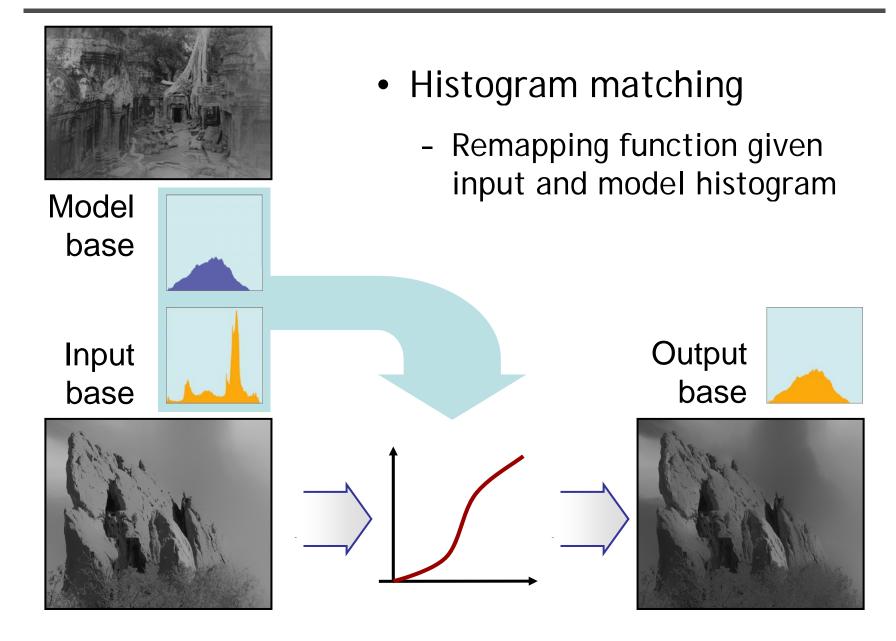
Intensity remapping of base layer

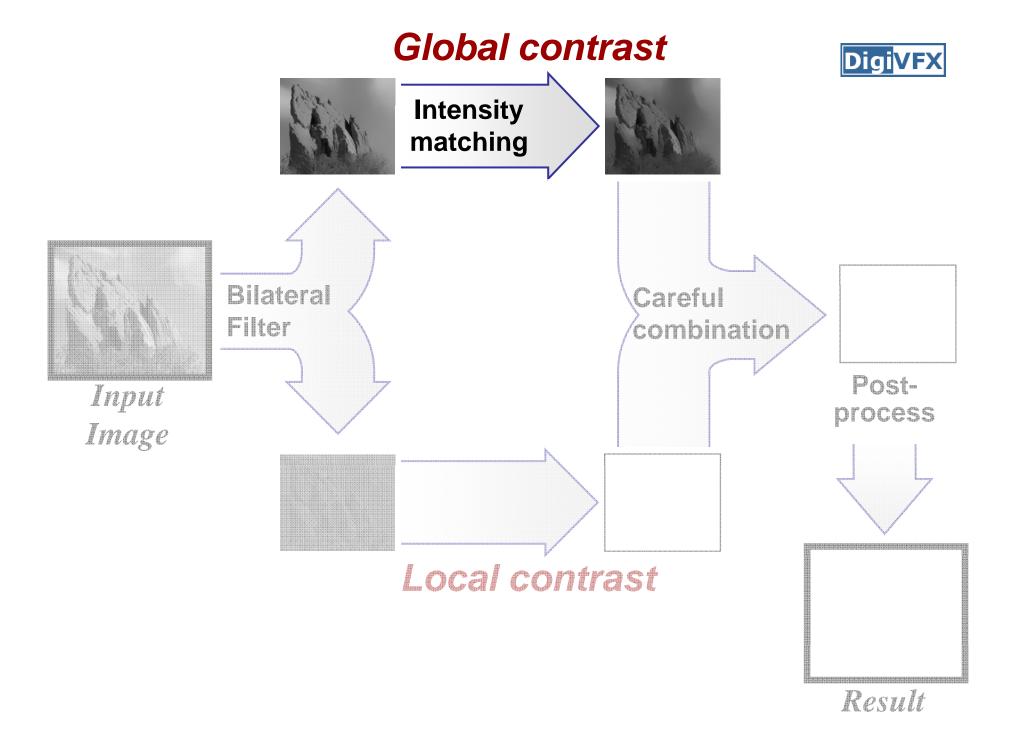
Input base

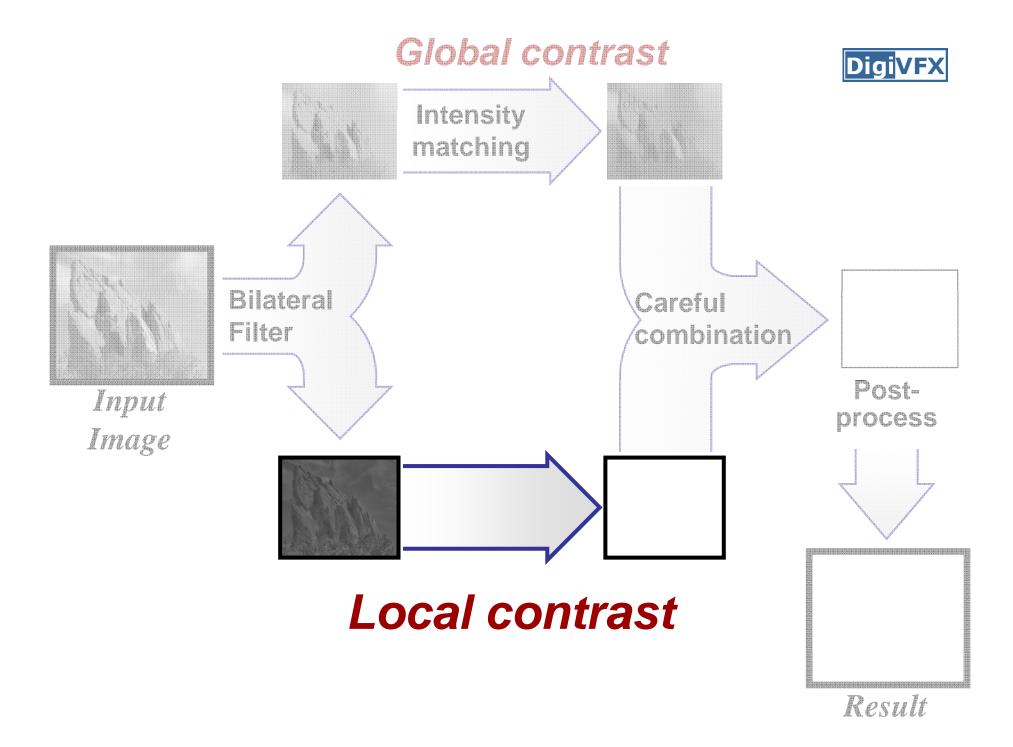


After remapping

Global Contrast (Model Transfer)





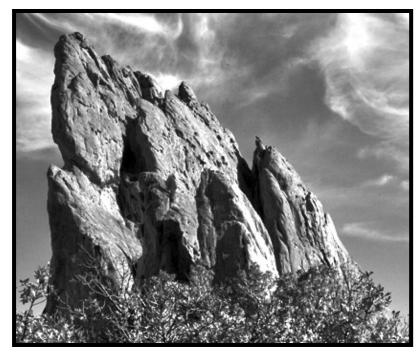


DigiVFX

Local Contrast: Detail Layer

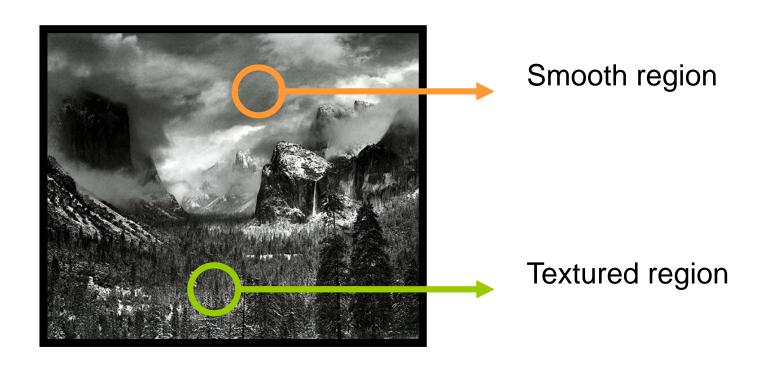
- Uniform control:
 - Multiply all values in the detail layer

Input



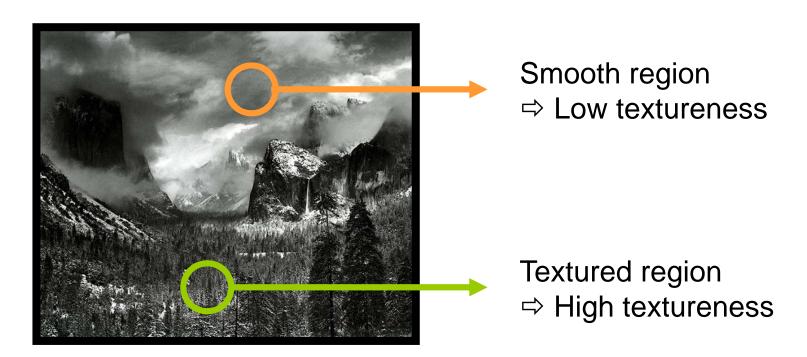
Base + 3 × Detail

The amount of local contrast is not uniform

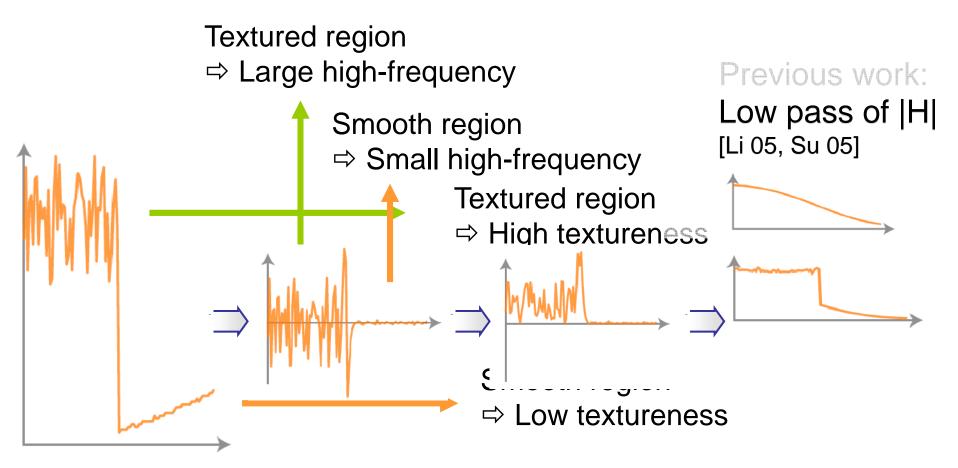


Local Contrast Variation

- We define "textureness": amount of local contrast
 - at each pixel based on surrounding region

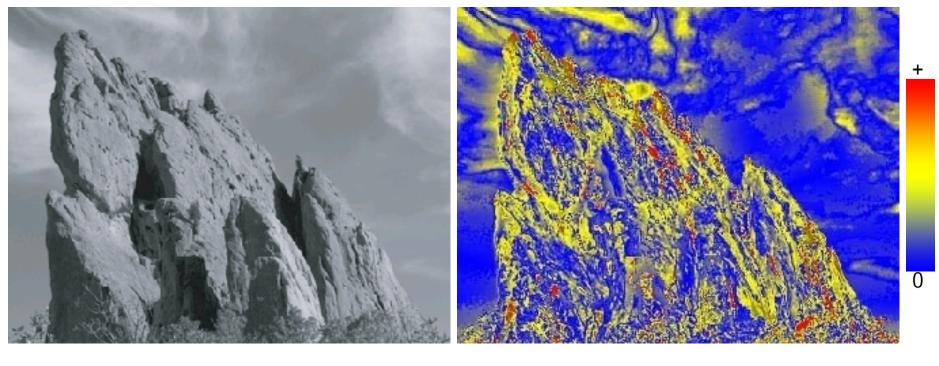


"Textureness": 1D Example



Input signal High frequency H Amplitude |H| Edge-preserving filter

Textureness



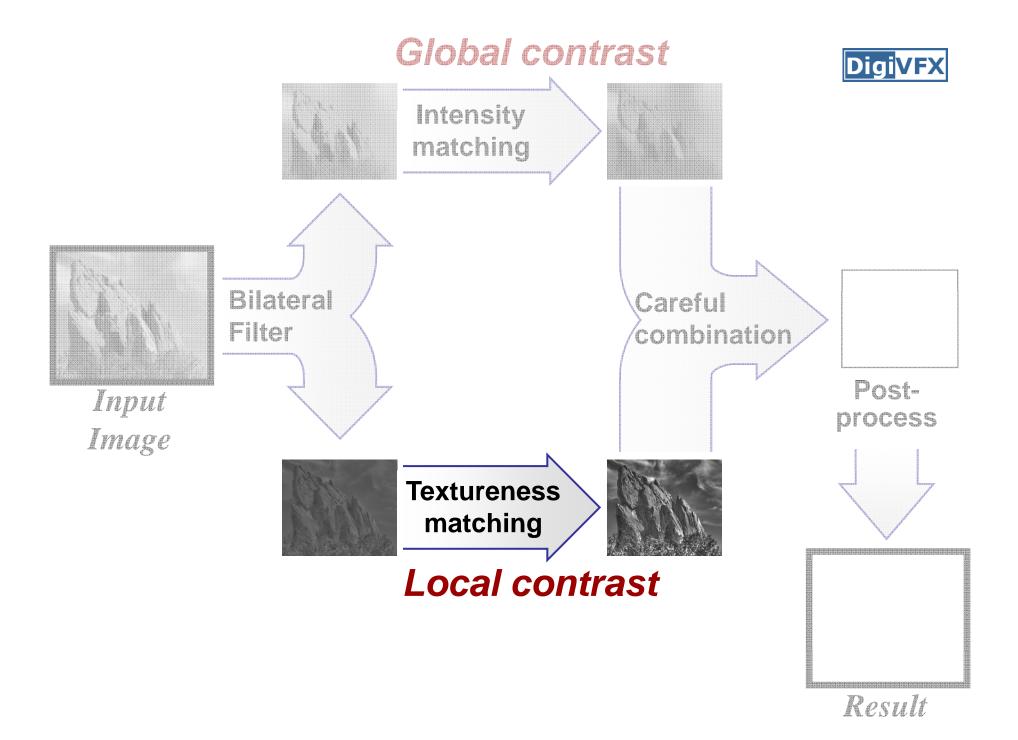
Input Textureness

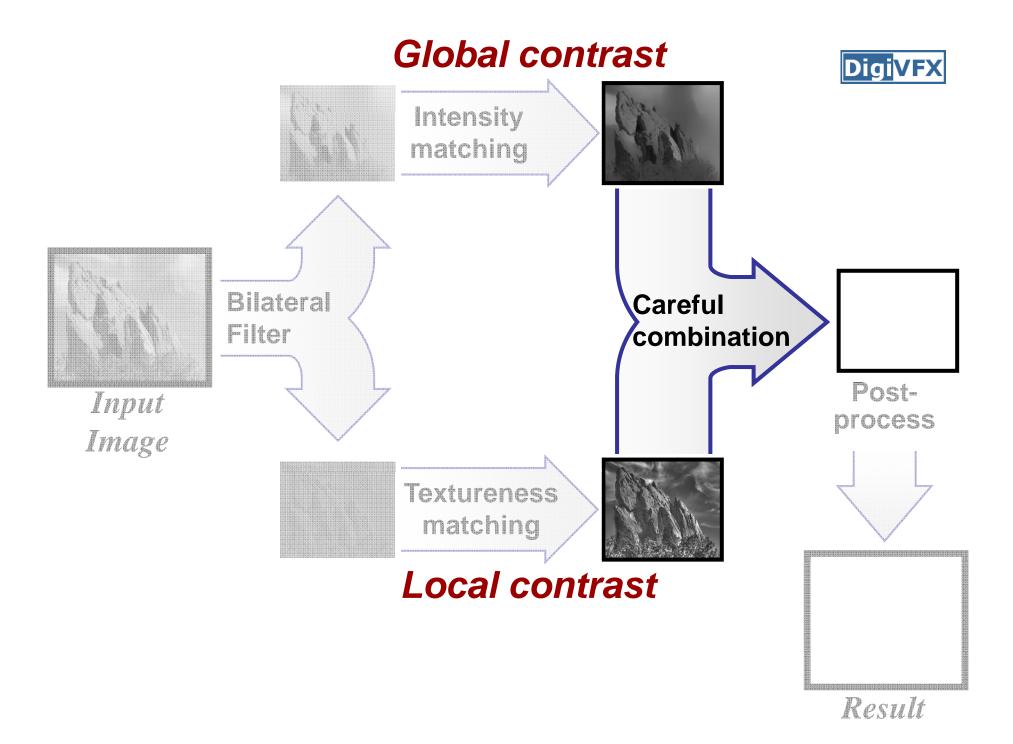
Textureness Transfer

Output detail

Model Step 1: Histogram transfer textureness **Desired** Input Hist. transfer textureness textureness x 0.5 Step 2: Scaling detail layer x 2.7 (per pixel) to match desired textureness x 4.3

Input detail



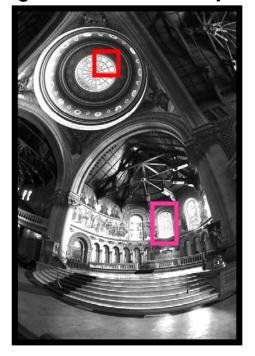


A Non Perfect Result

- Decoupled and large modifications (up to 6x)
 - → Limited defects may appear

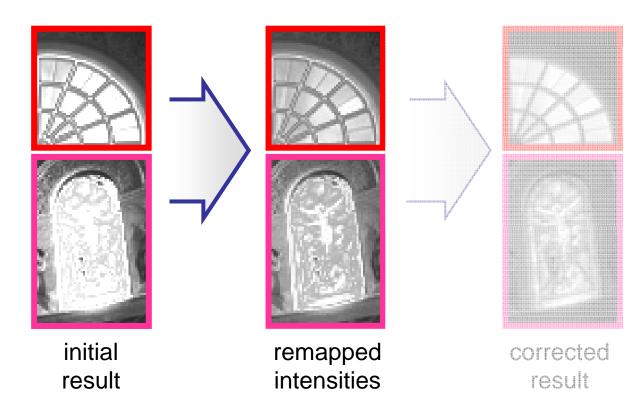
input (HDR)

result after global and local adjustments



Intensity Remapping

- Some intensities may be outside displayable range.
- → Compress histogram to fit visible range.



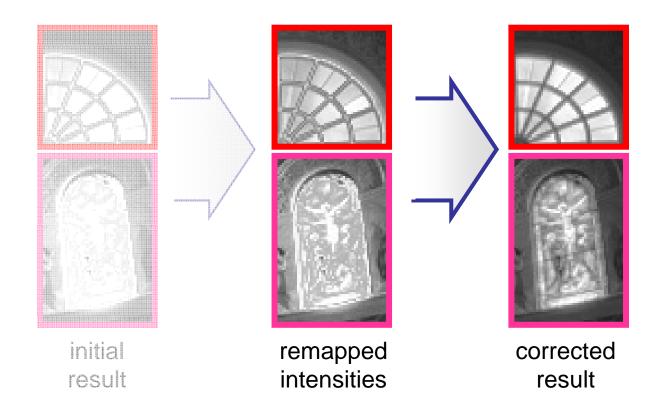
DigiVFX

Preserving Details

1. In the gradient domain:

- Compare gradient amplitudes of input and current
- Prevent extreme reduction & extreme increase

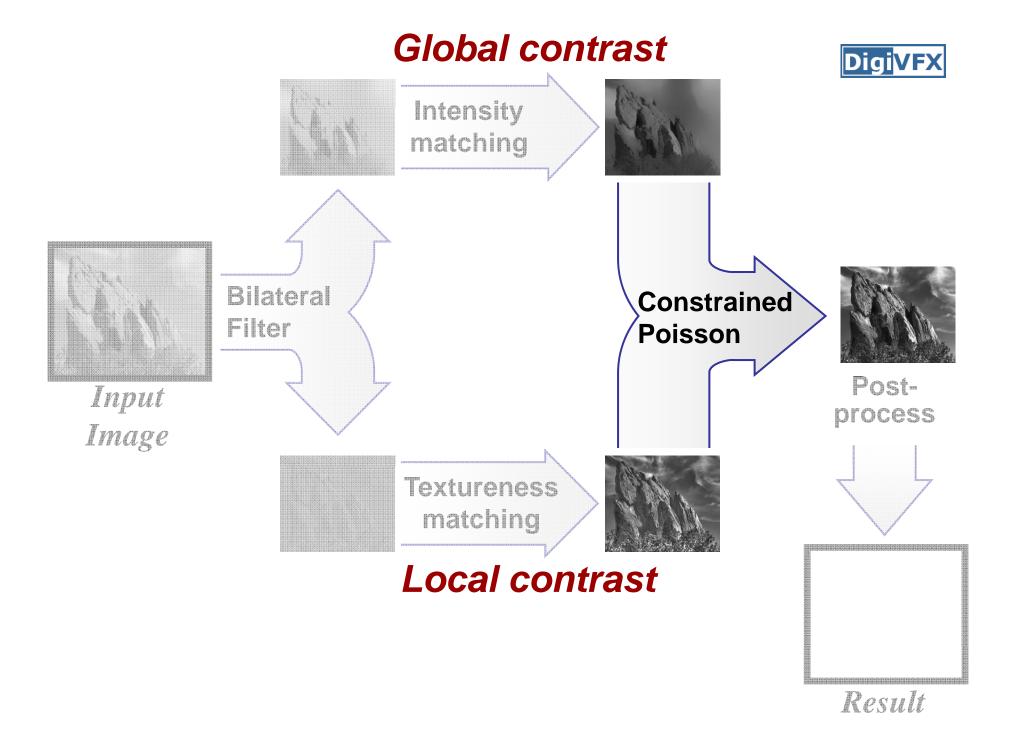
2. Solve the Poisson equation.

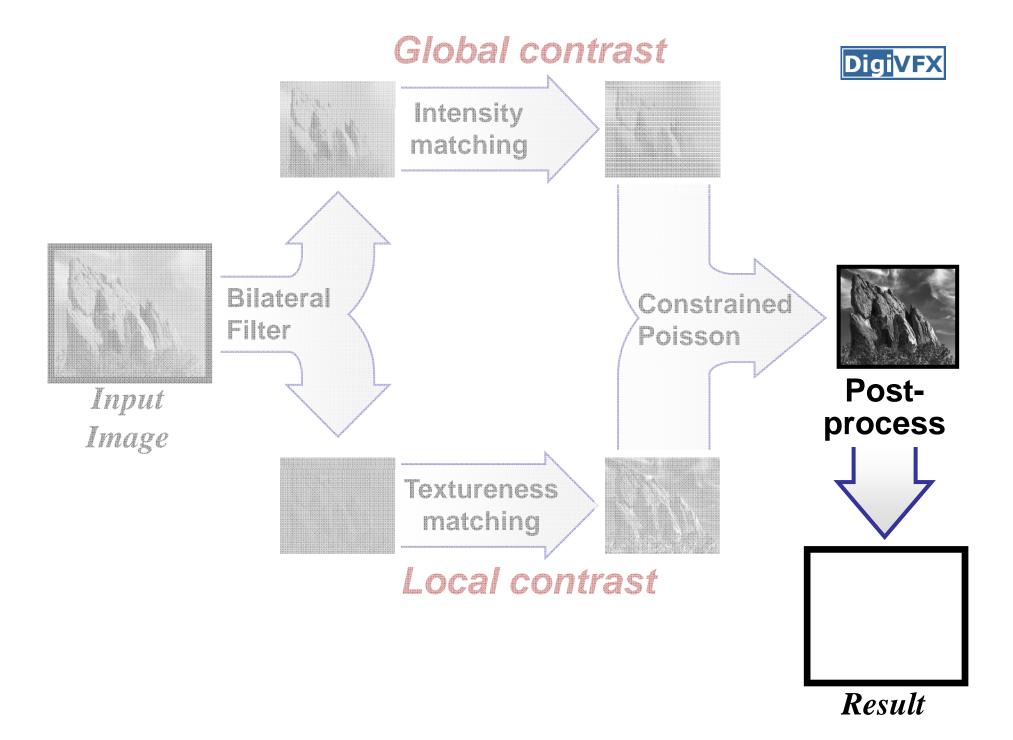


Effect of Detail Preservation

uncorrected result

corrected result





Additional Effects

model

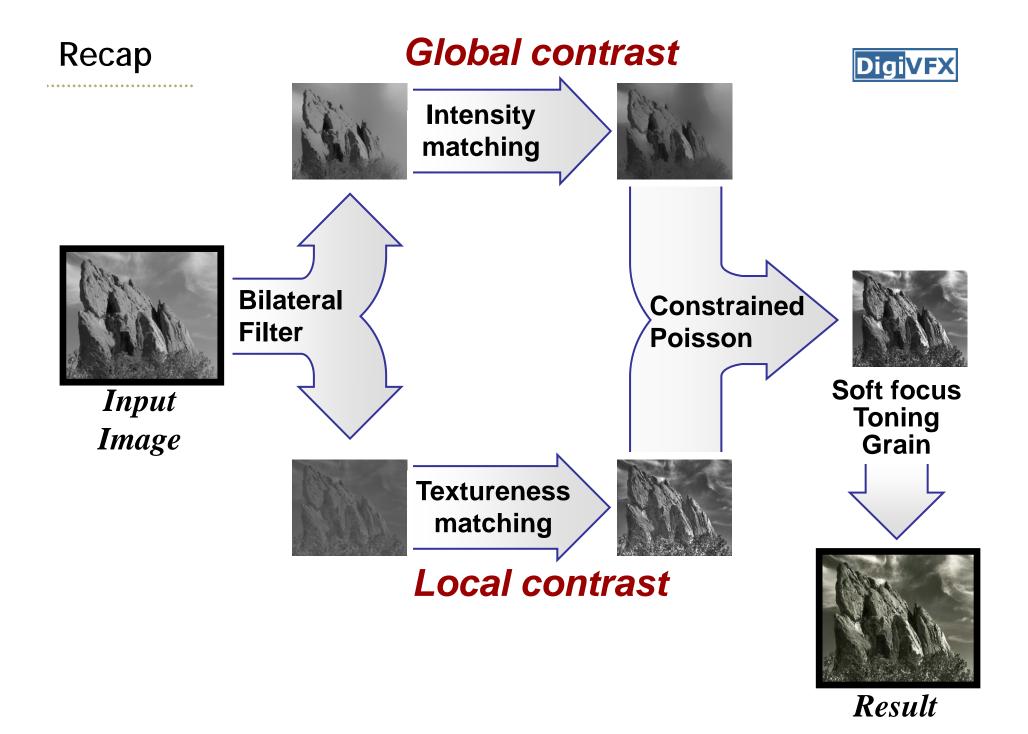
- Soft focus (high frequency manipulation)
- Film grain (texture synthesis [Heeger 95])
- Color toning (chrominance = f (luminance))

before effects

after effects

Global contrast **Digi**VFX Intensity matching Bilateral Constrained Filter Poisson **Soft focus** Input **Toning** Image Grain Textureness matching Local contrast

Result



Results

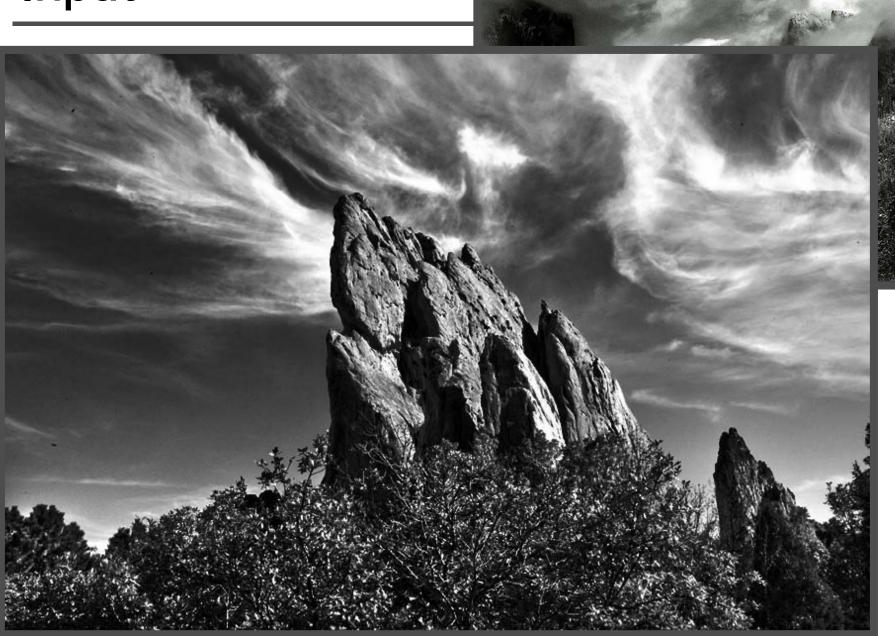
User provides input and model photographs.

→ Our system automatically produces the result.

Running times:

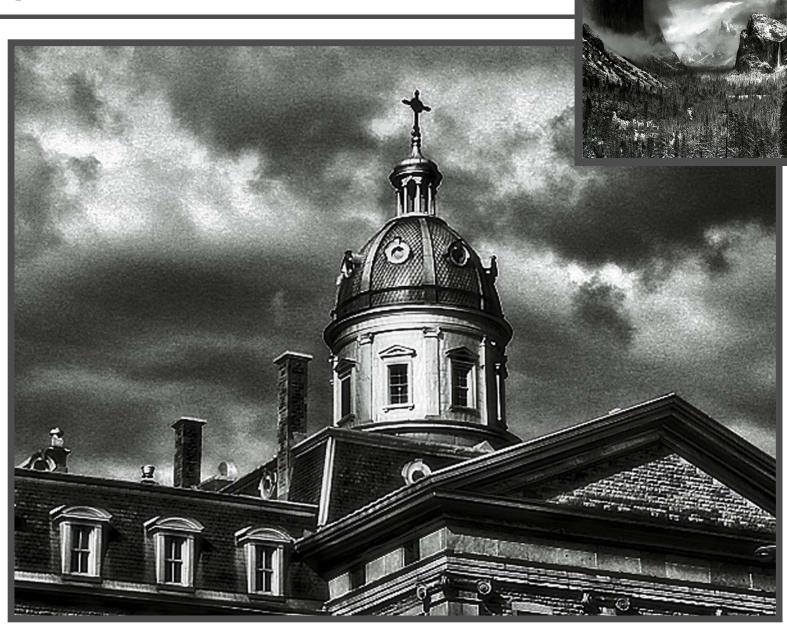
- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

Repult

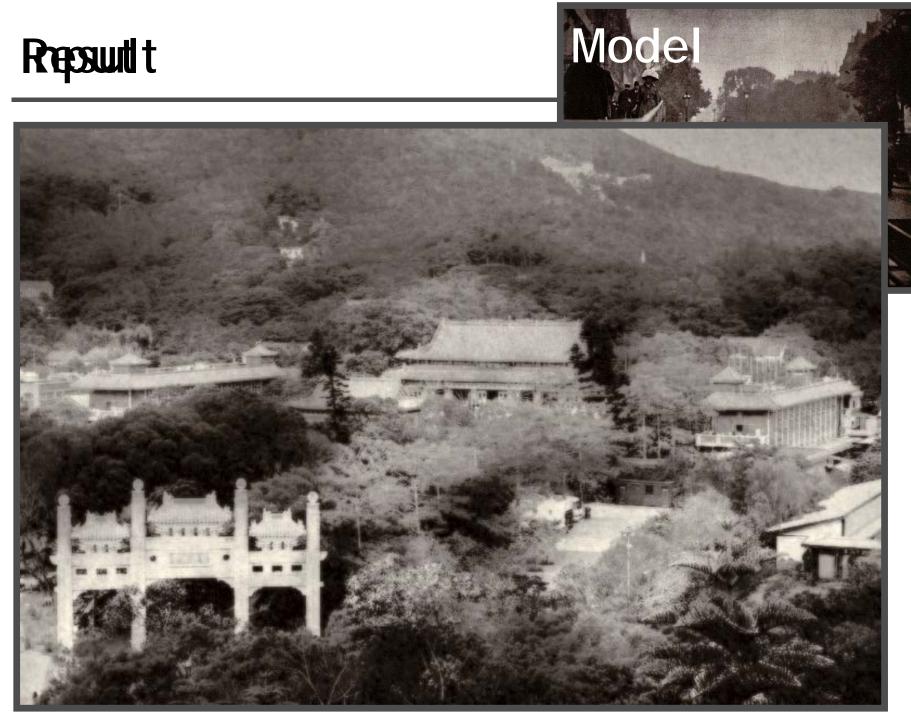


Model

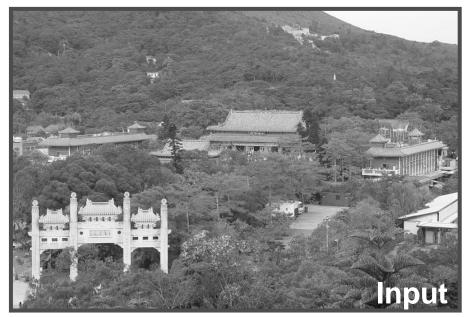
Reposult

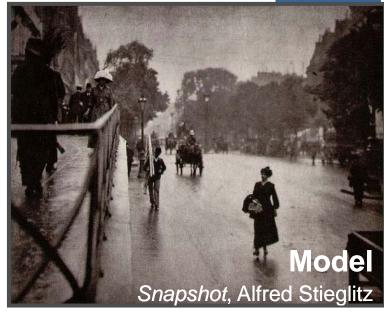


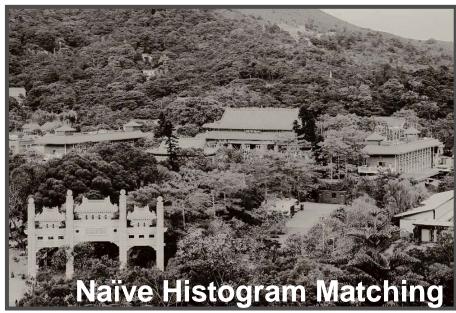
Reposult t

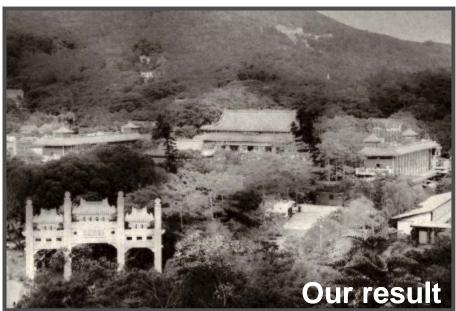


Comparison with Naïve Histogram Matching



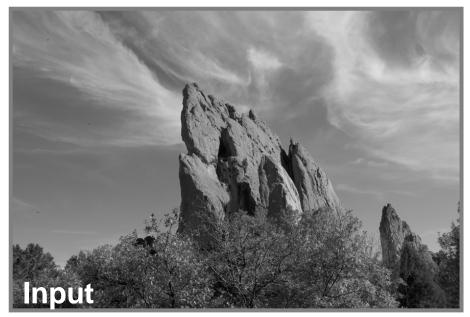






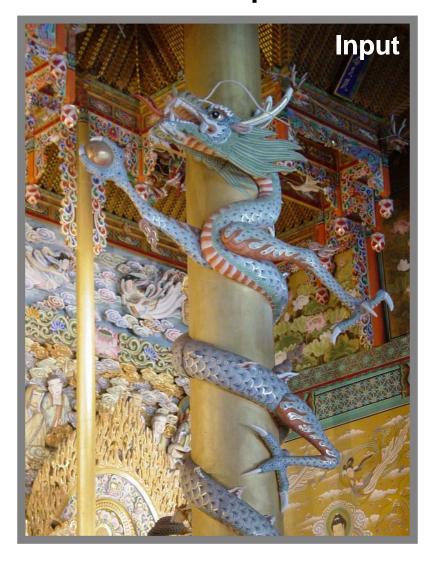
Local contrast, sharpness unfaithful

Comparison with Naïve Histogram Matching



Local contrast too low

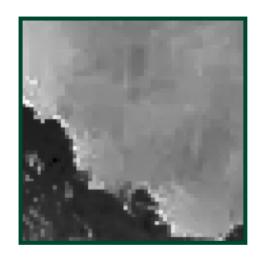
• Lab color space: modify only luminance





Limitations

- Noise and JPEG artifacts
 - amplified defects



- Can lead to unexpected results if the image content is too different from the model
 - Portraits, in particular, can suffer

Conclusions

- Transfer "look" from a model photo
- Two-scale tone management
 - Global and local contrast
 - New edge-preserving textureness
 - Constrained Poisson reconstruction
 - Additional effects

Video Enhancement Using Per Pixel Exposures (Bennett, 06)

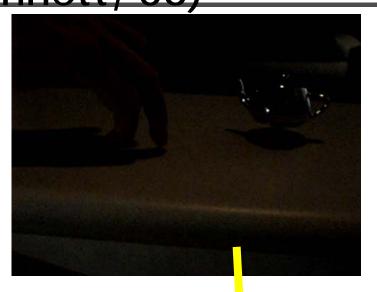
DigiVFX

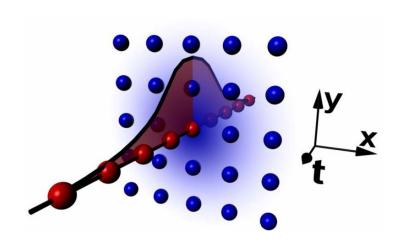
From this video:

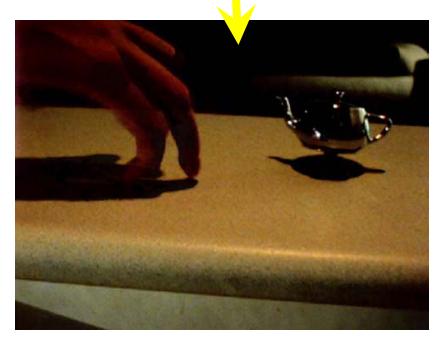
ASTA: <u>A</u>daptive

<u>S</u>patio<u>T</u>emporal

<u>A</u>ccumulation Filter







Joint bilateral filtering

$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

Flash / No-Flash Photo Improvement Digivex (Petschnigg04) (Eisemann04)

Merge best features: warm, cozy candle light (no-flash) low-noise, detailed flash image

Overview

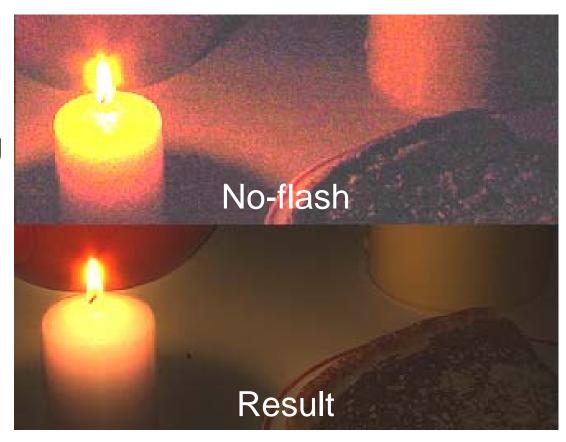
Basic approach of both flash/noflash papers

Remove noise + details from image A,

Keep as image A Lighting

Obtain noise-free details from image B,

Discard Image B Lighting

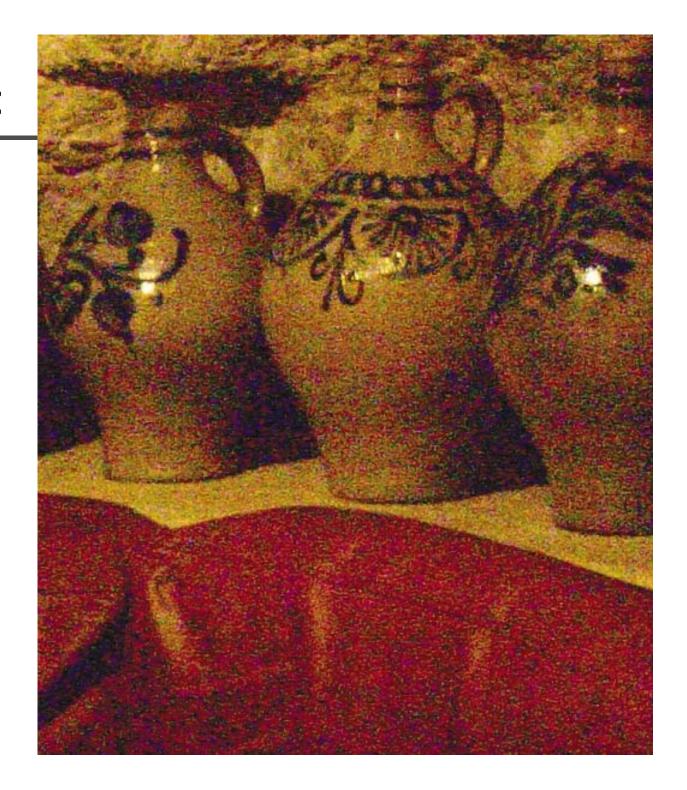


Petschnigg:

• Flash

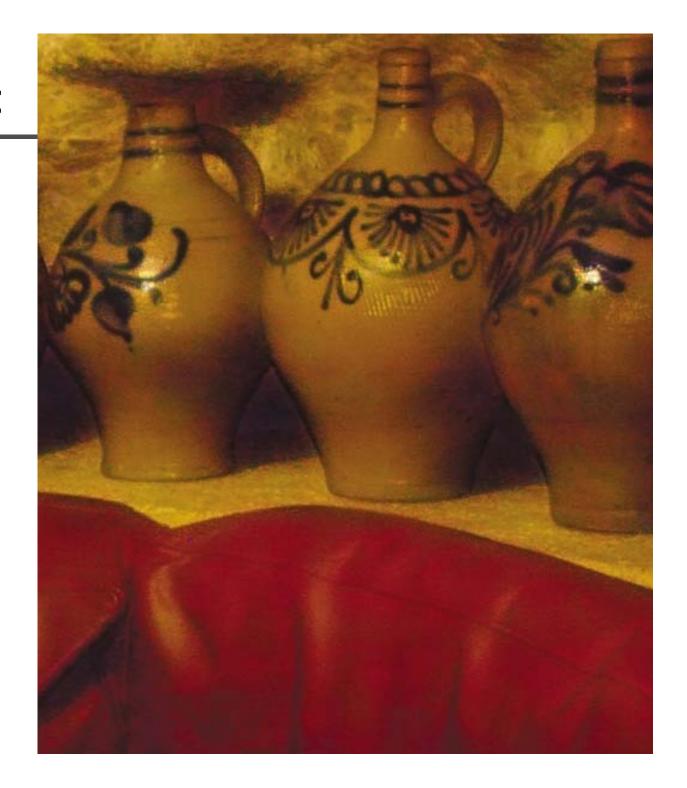
Petschnigg:

No Flash,



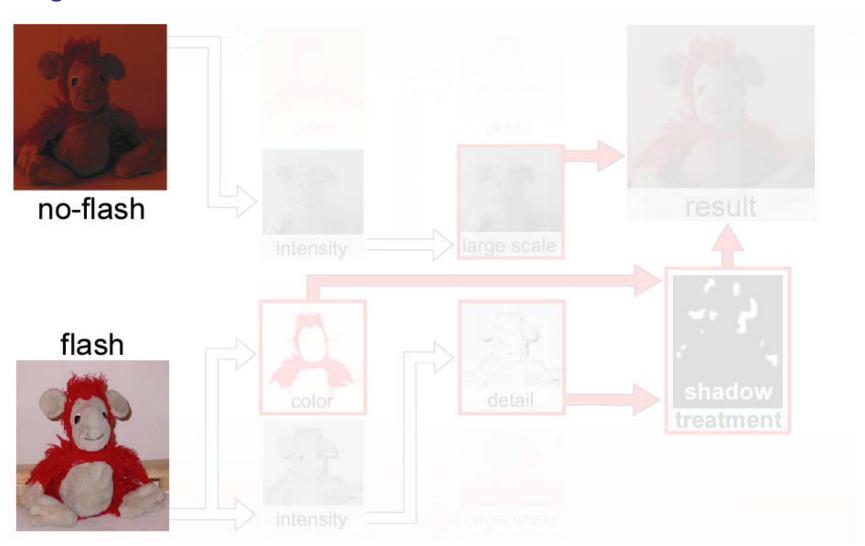
Petschnigg:

• Result



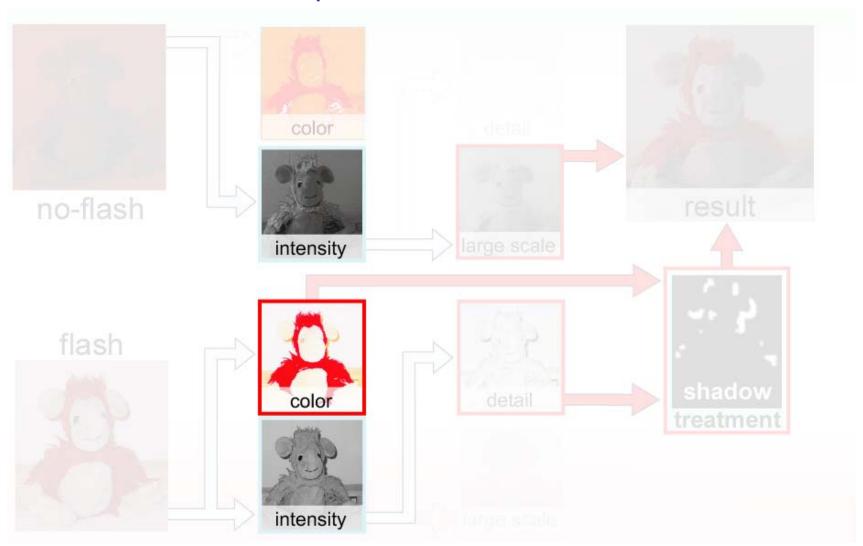
Our Approach

Registration

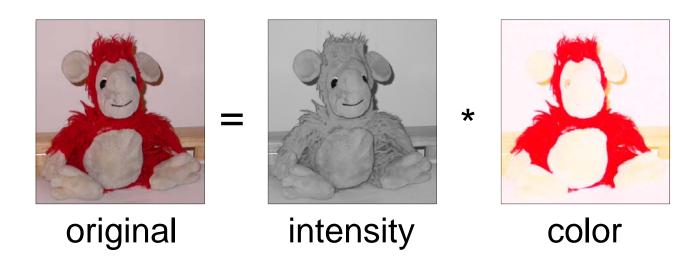


Our Approach

Decomposition

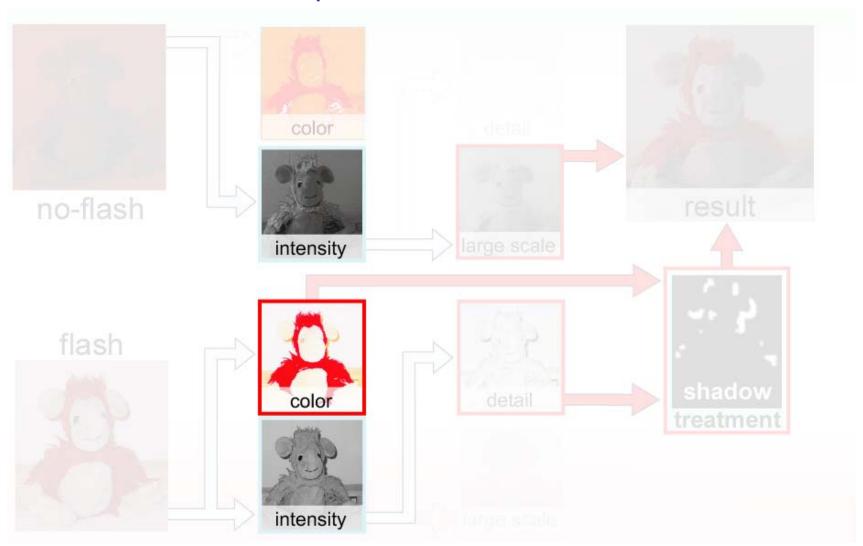


Color / Intensity:



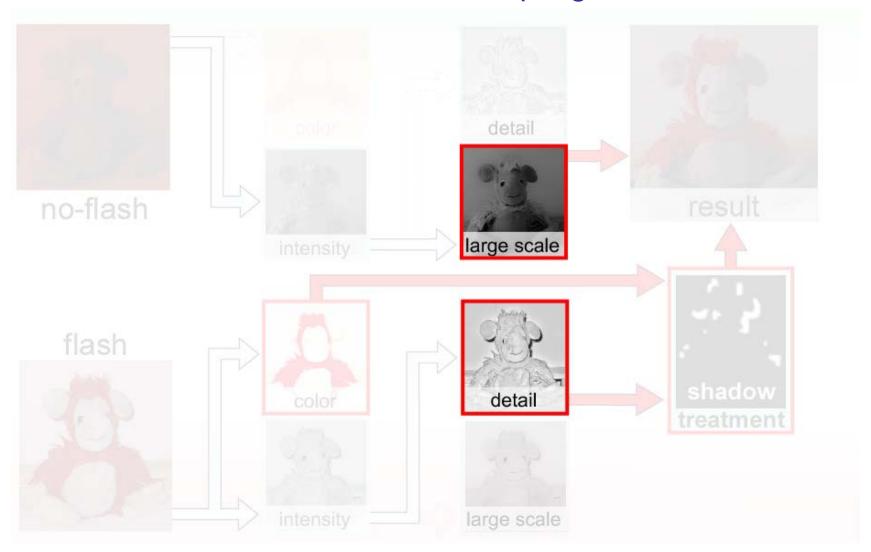
Our Approach

Decomposition



Our Approach

Decoupling



Decoupling

• Lighting : Large-scale variation

• Texture : Small-scale variation

Lighting

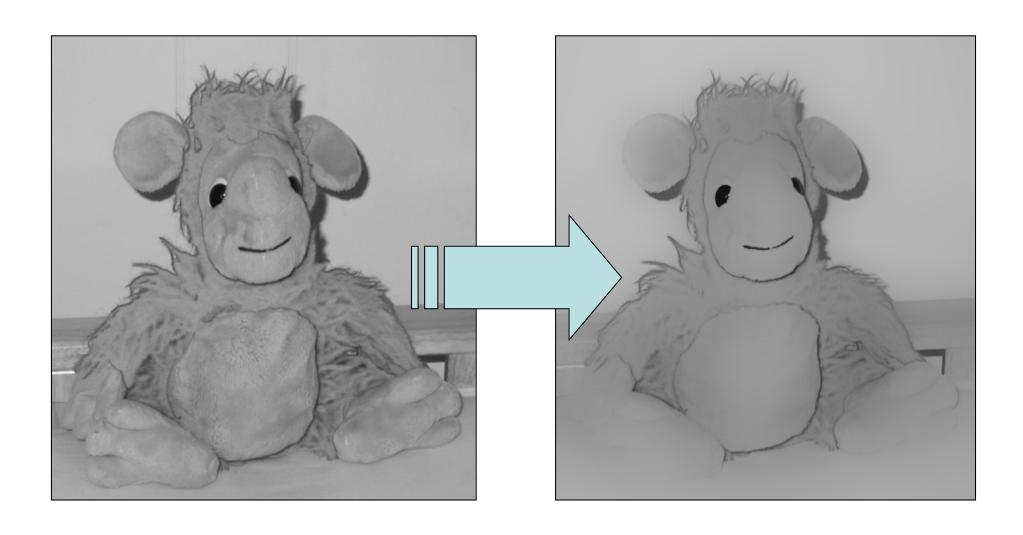
Texture

Bilateral filter – edge preserving filter

Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002 Input Output

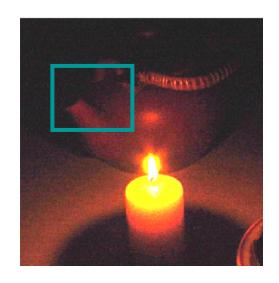
Large-scale Layer

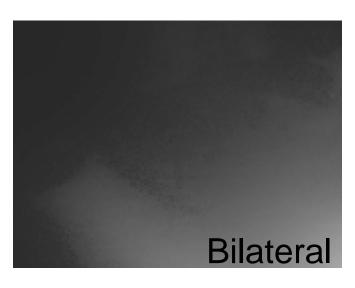
• Bilateral filter



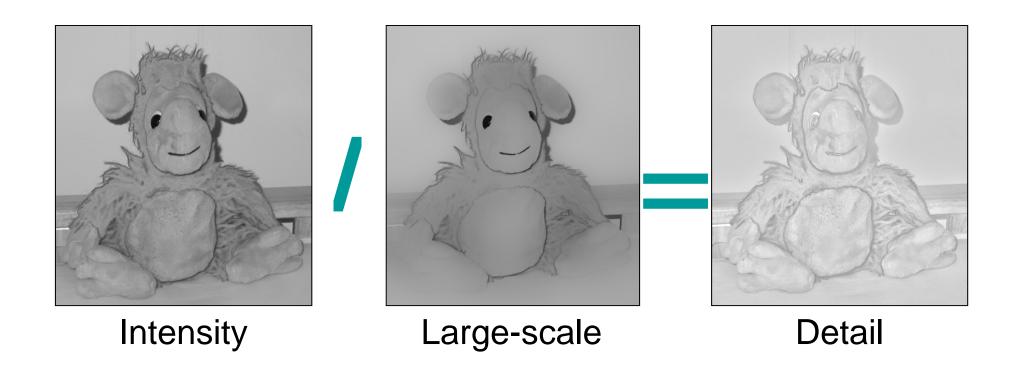
Cross Bilateral Filter

- Similar to joint bilateral filter by Petschnigg et al.
- When no-flash image is too noisy
- Borrow similarity from flash image
 - edge stopping from flash image



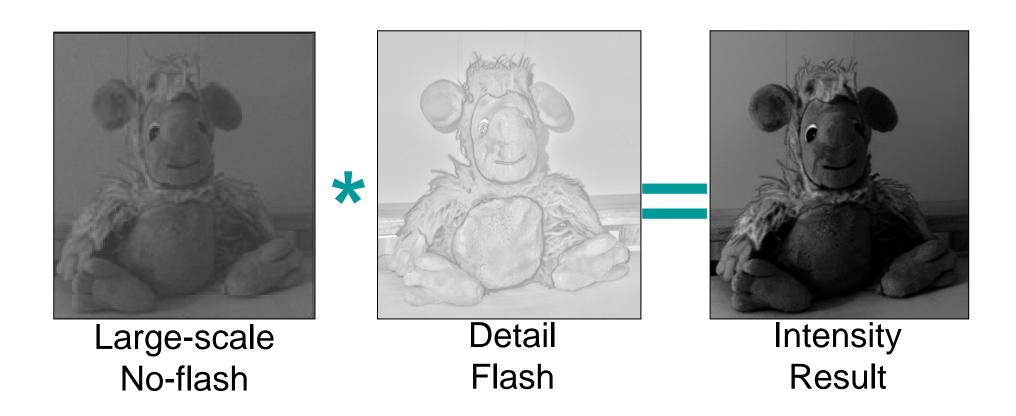


Detail Layer



Recombination: Large scale * Detail = Intensity

Recombination



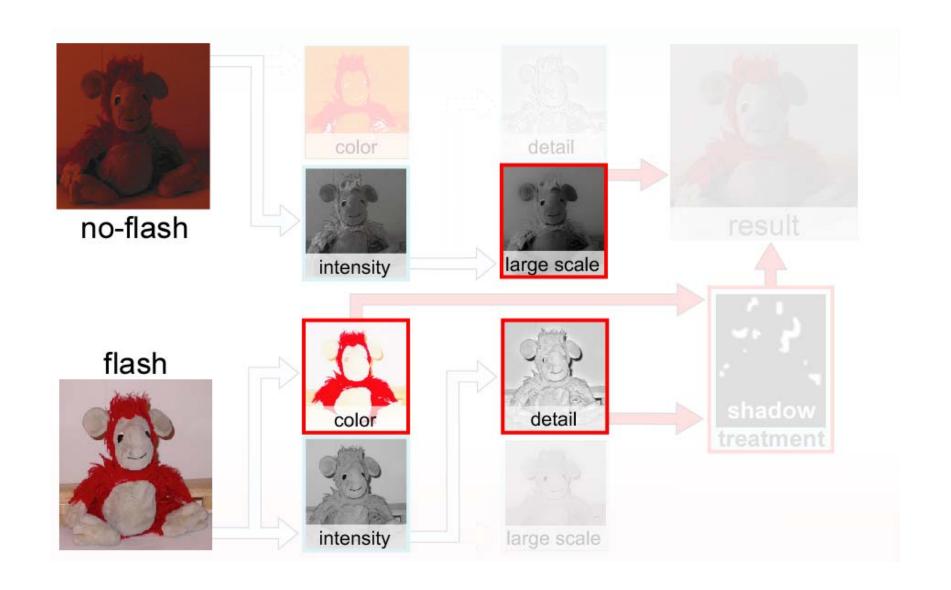
Recombination: Large scale * Detail = Intensity

Recombination

shadows

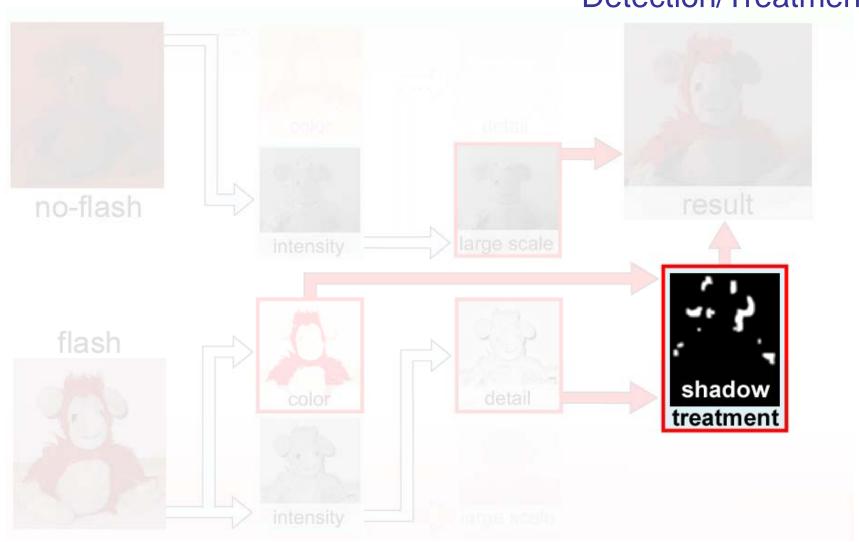
Recombination: Intensity * Color = Original

Our Approach



Our Approach

Shadow Detection/Treatment



Results

No-flash

Flash

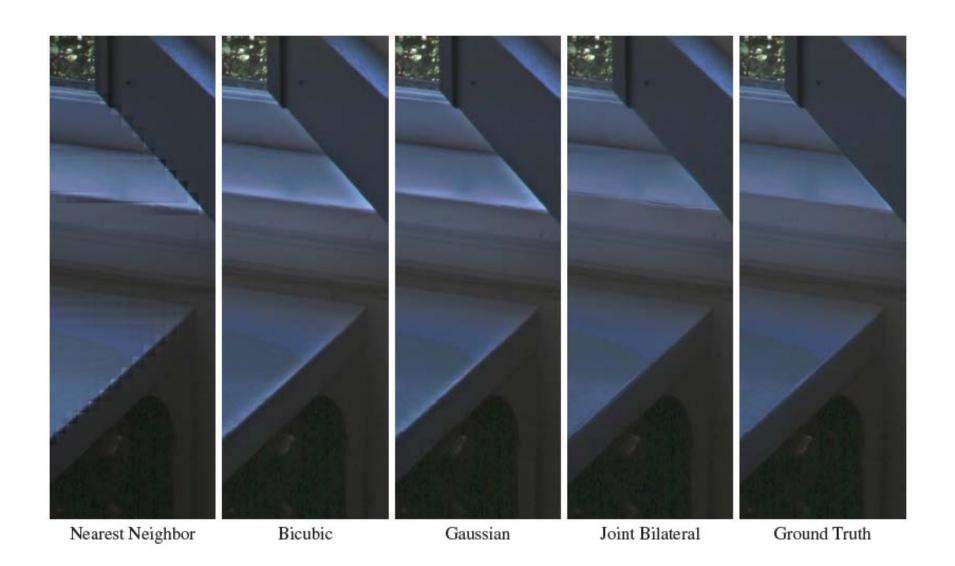
$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p - q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

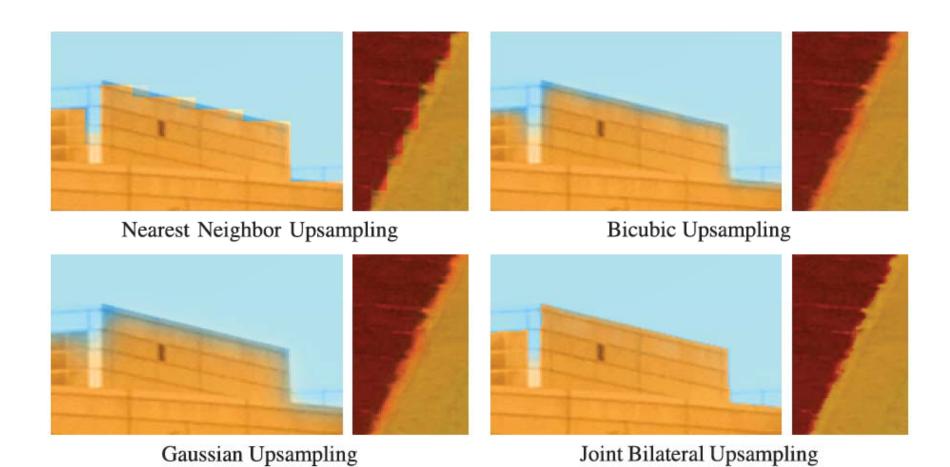
$$\tilde{S}_p = \frac{1}{k_p} \sum_{q_{\perp} \in \Omega} S_{q_{\downarrow}} f(||p_{\downarrow} - q_{\downarrow}||) g(||\tilde{I}_p - \tilde{I}_q||)$$

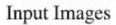


Upsampled Result



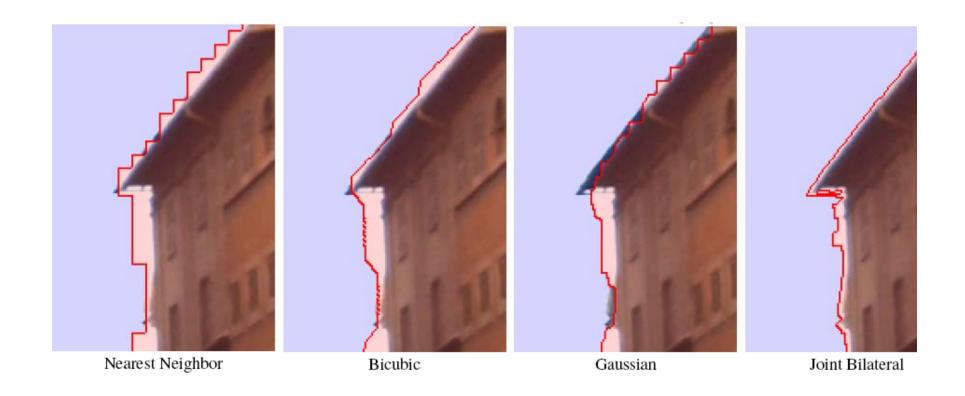
Upsampled Result





Downsampled

Input Solution



Upsampled Result