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Camera Is an imperfect device BEIVF

e Camera Is an imperfect device for measuring
the radiance distribution of a scene because it
cannot capture the full spectral content and
dynamic range.

e Limitations in sensor design prevent cameras
from capturing all information passed by lens.
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Real-world response functions

n general, the response function is not provided
Dy camera makers who consider it part of their
oroprietary product differentiation. In addition,
they are beyond the standard gamma curves.
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The world iIs high dynamic range
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Real world dynamic range

e Eye can adapt from ~ 10-° to 10° cd/m?
e Often 1 : 100,000 in a scene
e Typical 1:50, max 1:500 for pictures
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Short exposure
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Long exposure
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Camera Is not a photometer

e Limited dynamic range
— Perhaps use multiple exposures?

e Unknown, nonlinear response
= Not possible to convert pixel values to radiance

e Solution:

- Recover response curve from multiple exposures,
then reconstruct the radiance map



Varying exposure

e Ways to change exposure
- Shutter speed
- Aperture
- Neutral density filters
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Shutter speed

e Note: shutter times usually obey a power
series - each “stop” is a factor of 2

e Y. 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500,
1/1000 sec

Usually really Is:

Ya, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512,
1/1024 sec



Varying shutter speeds

V



HDRI capturing from multiple exposur@

e Capture images with multiple exposures

e Image alignment (even if you use tripod, It is
suggested to run alignment)

e Response curve recovery
e Ghost/flare removal
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Image alignment

e \We will introduce a fast and easy-to-implement
method for this task, called Median Threshold
Bitmap (MTB) alignment technique.

e Consider only integral translations. It is enough
empirically.
e The Inputs are N grayscale images. (You can

either use the green channel or convert into
grayscale by Y=(54R+183G+19B)/256)

e MTB iIs a binary image formed by thresholding
the input image using the median of intensities.
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Why is MTB better than gradient?

e Edge-detection filters are dependent on image
exposures

e Taking the difference of two edge bitmaps
would not give a good indication of where the

edges are misaligned.



Search for the optimal offset

e Try all possible
offsets.

e Gradient descent
e Multiscale technique

e |log(max_offset) levels

e Try 9 possibilities for
the top level

e Scale by 2 when
passing down; try its 9
neighbors




Digil2d

Threshold noise

Ignore pixels that are
close to the,threshold

o .:,,-!:' f'??_
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Efficiency considerations

e XOR for taking difference
e AND with exclusion maps
e Bit counting by table lookup
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Results

Success rate = 84%. 10% failure due to rotation.
3% for excessive motion and 3% for too much
high-frequency content.




Recovering response curve
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Recovering response curve

e \We want to obtain the inverse of the response
curve - f
Zi; = f(E;At) [l =

Z;;




Recovering response curve

Image Series

1/2 sec 1/4 sec 1/8 sec




Recovering response curve

Image series
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ldea behind the math

plot of g(Zij) from three pixels observed in five images, assuming unit radiance at each pixel
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ldea behind the math

plot of g(Zij) from three pixels observed in five images, assuming unit radiance at each pixel
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ldea behind the math

normalized plot of g(Z1)) after determining pixel exposures
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Basic 1dea

e Design an objective function
e Optimize it
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Math for recovering response curve

Z;j = f(E;At;)
f 1s monotonic, 1t 1s invertible
In f~'(Zij) = In E; + In At;
let us define function ¢ = In f~*
9(Zij) = In E; + In At;

minimize the following

N P Lmar—1
O = Z 2: (9(Zi;) —In E; —In At;]° + A Z g’ (z)°
1=1 j3=1 z2=Lmin+t1

g"(2) = g(z—1) —29(2) + g(z +1)
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Recovering response curve

e The solution can be only up to a scale, add a
constraint

g(Zmz'd) = 0, where Z,,,;4 = %(me + Zma:c)
e Add a hat weighting function

QU(Z) _ Z — qujn for z <_: %(me T Zmam)
Zma,m —z forz > §(Zmin BB Zmam)

0= Y {w(Z;)[g(Zy;) - ImnE; —In At;]}* +

Lmawe—1

Ay [w()g" ()

2=Zmin+1



Recovering response curve

e \We want N(P_ 1) > (Zmam — min)
If P=11, N~25 (typically 50 is used)

e \We prefer that selected pixels are well
distributed and sampled from constant regions.
They picked points by hand.

e |t Is an overdetermined system of linear
equations and can be solved using SVD
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How to optimize?
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1. Set partial derivatives to zero

0= > {w(Zj)lg(Z;) —In E; — In At;]}* +
A w)g ()P

2=Zmint1
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How to optimize?

O =) > {w(Z;)[9(Zy;) —ImEi —ln At]}* +
A ()" ()
2=Zmin+1

1. Set partial derivatives to zero
2. o7 Tw

N
min Z (a,x—b.)* — least - square solution of X =
i=1
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Sparse linear system
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_|&239))
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Questions

e Will g(127)=0 always be satisfied? Why or why
not?

e How to find the least-square solution for an
over-determined system?
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Least-square solution for a linear syst@

AX = b

mxn n
m>n

They are often mutually incompatible. We instead find x to
minimize the norm |Ax —b| of the residual vector Ax—b.

If there are multiple solutions, we prefer the one with the
minimal length ||x|.
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Least-square solution for a linear syst@

If we perform SVD on A and rewrite it as

A=Ux)V"'

then x ={VX"U'lb is the least-square solution.
pseudo inverse

/0, 0 - 0




Proof
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Libraries for SVD

e Matlab
e GSL

e Boost
e LAPACK
e ATLAS



Matlab code

€ J€ J° P Jf dP OF O P Jf JP P JP J° JP OF P Jf Jf P Of of JF of of

gsolve.m - Solve for imaging system response function

Given a set of pixel wvalues observed for several pixels in several
images with different exposure times, this function returns the

imaging system’s response function g as well as the log film irradiance
values for the observed pixels.

Assumes:
Zmin = 0
Zmax = 255

Arguments:
Zz(i,4) 1is
B(]) is
1 is
wi(z) is

Returns:
g(z) is
1E(i) is

the pixel wvalues of pixel location number i in image j

the log delta t, or log shutter speed, for image ]

lamdba, the constant that determines the amount of smoothness
the weighting function wvalue for pixel wvalue =

the log exposure corresponding to pixel value z
the log film irradiance at pixel location i



Matlab code

function [g,IE]:gsoIve(Z,B,i,w)

256;
zeros(size(Z,1)*si1ze(Z,2)+n+1,n+size(Z,1));
zeros(size(A,1),1);

= 1; %% Include the data-fitting equations
or 1=1:s1ze(Z,1)
for j=1:si1ze(Z,2)
wij = w(Z(i,j)+1);
Ak,Zz(i,D+1) = wij; Ak,n+i) = -wij; b(k,1) = wij * B( });

=X OX>>

k=k+1;
end
end
A(k,129) = 1; %% Fix the curve by setting i1ts middle value to O
k=k+1;
for 1=1:n-2 %% Include the smoothness equations

Ak, D=1*w(i+1); A(k,i+D)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
k=k+1;
end

X = A\Db; %% Solve the system using SVD

g = X(l:n);
IE = x(n+1l:size(x,1));
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Constructing HDR radiance map

In EE — g(Z‘ij) — In Atj

combine pixels to reduce noise and obtain a more
reliable estimation

> w(Zij)(9(Zij) — In At;)

In E@ = [z
= w(Zij)




Reconstructed radiance map




What is this for? DigilY[3

e Human perception
e Vision/graphics applications




Automatic ghost removal

before

after




Welighted variance

Moving objects nd high-contrast edges render high variance.



Region masking

Thresholding; dilation; identify regions;



Best exposure In each region

r




L ens flare removal

before




Easier HDR reconstruction
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Easier HDR reconstruction

Exposure (X)
A

At

Xy=E* Atj



Portable floatMap (.pfm)

e 12 bytes per pixel, 4 for each channel

sign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm

Image format: PF
768 512
1
<binary image data>

Floating Point TIFF similar
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Radiance format (.pic, .hdr, .rad)

32 bits/pixel
CETETTTEET [T T 11

Red Green Blue Exponent

(145,215, 87, 149) = (145,215,87,103) =
(145,215, 87) * 2/(149-128) = (145, 215, 87) * 27(103-128) =
1190000 1760000 713000 0.00000432 0.00000641 0.00000259

Ward, Greg. "Real Pixels," in Graphics Gems 1V, edited by James Arvo, Academic Press, 1994



ILM’s OpenEXR (.exr)

e 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

« Several lossless compression options, 2:1 typical
e Compatible with the “half”” datatype in NVidia's Cg
e Supported natively on GeForce FX and Quadro FX

e Available at http://www.openexr.net/




Radiometric self calibration

e Assume that any .
response function
can be modeled ..
as a high-order —
polynomial 0.6 FUJIGHROME VELVIA (FLM)

AGFACHROME RS5X200 (FILM)

M CANON OPTURA (VIDEQ)
_ _ m
X_g(Z)_ZCmZ 0.4+
m=0

SONY DXC950 (y= 1) (VIDEO)

e No need to know |
exposure time In
advance. Useful ¥ _ _ .

0 0.2 0.4 06 0.8 1

for cheap Z
cameras




Mitsunaga and Nayar

e To find the coefficients ¢, to minimize the
following

é‘:Z ‘ Zc Zm RJ]HZC Zz,+1

i=1 j=1[ ‘

A guess for the ratio of
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Mitsunaga and Nayar

e Again, we can only solve up to a scale. Thus,
add a constraint f(1)=1. It reduces to M
variables.

e How to solve it?
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Mitsunaga and Nayar

e \We solve the above iteratively and update the
exposure ratio accordingly

e How to determine M? Solve up to M=10 and pick
up the one with the minimal error. Notice that
you prefer to have the same order for all
channels. Use the combined error.



Space of response curves
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Space of response curves
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Robertson et. al.

Z, = f(EA)
g(Zij) — f_l(Zij) = Ez’Atj

Given Z;and Af, the goal is to find both
£, and g(Zij)

Maximum likelihood

1
Pr(E,,g|Z;,At;) o« CXp(—EZW(Zg)(g(Zij)_EiAtj)z)
i

gk, =arg gliEnZW(Zy‘)(g(Zy‘) _Ez'Atj)z
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Robertson et. al.

g,E, =arg r;lliEnZW(ZU-)(g(Zg) - EAL j)z
B/

repeat
assuming g(Z;) is known, optimize for E,
assuming E. is known, optimize for g(Z;)
until converge
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Robertson et. al.

g,E, =arg r;lliEnZW(Z,-,-)(g(Zy) - EAL j)2
B/

repeat

assuming g(Z,) is known, optimize for E,
assuming E. is known, optimize for g(Z;)
until converge
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Robertson et. al.

g,E, =arg r;lliEnZW(ZU-)(g(Zy) - EAL j)2
B/

repeat

assuming g(Z,) is known, optimize for E,
assuming E. is known, optimize for g(Z;)
until converge

Zw(zij) g(Z,)At,
E =

J
l > W(Z,)At;
j
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Robertson et. al.

g,E, =arg r;lliEnZW(ZU-)(g(Zy) ~EAtf
R/

repeat

assuming g(Z;) is known, optimize for E,
assuming E. is known, optimize for g(Z;)
until converge

1
g(m)=——Y EAt,

normalize so that
2(128) =1



Patch-Based HDR Digillz

Input LDR sources Reconstructed LDR images Final tonemapped HDE. result



Deep learning HDR assembly
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Deep learning HDR assembly

= e B B

Kang (40.02 dB) Sen (46.12 dB) Ours (48.88 dB) Ground Truth




Deep reverse tone mapping

DYIVEX
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Deep reverse tone mapping




HDR Video EFlvex

e High Dynamic Range Video
Sing Bing Kang, Matthew Uyttendaele, Simon
Winder, Richard Szeliski

SIGGRAPH 2003

video
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Assorted pixel

goa. =o=

7005 Sony-Kihara Ressarch Centar, Inc.
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Assorted pixel

Hormal Camera

H-...n-n—

TR
[ -

¢ 2005 Sony-Kihara Research Canter, Inc.




Digi\Yl 2.4

A Versatile HDR Video System

CONTRAST

ME sensor
0.075Q

’/beam splitter 2 (94/6)

J0su8s JH

0.92 Q

0.0044 Q
LE sensor

beam splitter 1 (92/8)

video

L
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A Versatile HDR Video System

sample llumination scene illumination
darker brighter

weighting factor
HE sensor ’;1 1|a|4|slﬂwli1ii ------- Debevec and Malik
ME sensor ’I -I|1|1 -||5|

— our approach
Esensor IR LA [ 3 [t [ s [ el 7 [s [ [n[n[w]® [u]sFems

Iy

our merged HDR image (approx)
]-|1|1I3|'|5I6|?|=|!IﬂﬂﬁﬂlHIEIﬁlvlﬂlﬂlml N N T T T O B 5
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HDR becomes common practice

e Many cameras has bracket exposure modes

e For example, since iPhone 4, iPhone has HDR
option. But, it could be more exposure blending
rather than true HDR.
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