Faces and Image-Based Lighting

Digital Visual Effects

Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Alex Efros, Li-Yi Wei and Paul Debevec

Image-based lighting

Outline

- Image-based lighting
- 3D acquisition for faces
- Statistical methods (with application to face super-resolution)
- 3D Face models from single images
- Image-based faces
- Relighting for faces

Rendering

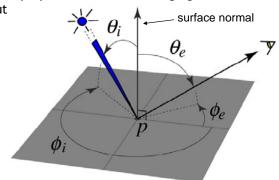
- Rendering is a function of geometry, reflectance, lighting and viewing.
- To synthesize CGI into real scene, we have to match the above four factors.
- Viewing can be obtained from *calibration* or *structure from motion*.
- Geometry can be captured using *3D* photography or made by hands.
- How to capture lighting and reflectance?

Reflectance

Digi<mark>VFX</mark>

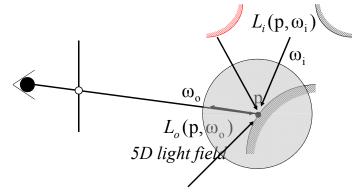
• The Bidirectional Reflection Distribution Function

- Given an incoming ray (θ_i,ϕ_i) and outgoing ray (θ_e,ϕ_e) what proportion of the incoming light is reflected along



Answer given by the BRDF: $ho(heta_i,\phi_i, heta_e,\phi_e)$

Rendering equation



$$L_o(\mathbf{p}, \omega_o) = L_e(\mathbf{p}, \omega_o) + \int_{s^2} \rho(\mathbf{p}, \omega_o, \omega_i) L_i(\mathbf{p}, \omega_i) |\cos \theta_i| d\omega_i$$

Complex illumination

$$L_{o}(\mathbf{p}, \omega_{o}) = L_{e}(\mathbf{p}, \omega_{o})$$

$$+ \int_{s^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

$$B(\mathbf{p}, \omega_{o}) = \int_{s^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{d}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

$$B_{p}(\omega_{o}) = \int_{s^{2}} f_{p,\omega_{o}}(\omega_{i}) L_{d}(\omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

Point lights

Classically, rendering is performed assuming point light sources

directional source

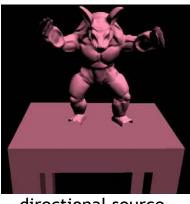
Natural illumination

People perceive materials more easily under natural illumination than simplified illumination.

Images courtesy Ron Dror and Ted Adelson

Natural illumination

Rendering with natural illumination is more expensive compared to using simplified illumination



directional source

natural illumination

Environment maps

Miller and Hoffman, 1984

Examples of complex environment light

Examples of complex environment light

Complex illumination

Function approximation

- G(x): the function to approximate
- $B_1(x)$, $B_2(x)$, ... $B_n(x)$: basis functions
- We want

$$G(x) = \sum_{i=1}^{n} c_i B_i(x)$$

• Storing a finite number of coefficients c_i gives an approximation of G(x)

Function approximation

<u>Digi</u>VFX

- How to find coefficients c_i?
 - Minimize an error measure
- What error measure?
 - L₂ error

$$E_{L_2} = \int_{I} [G(x) - \sum_{i} c_i B_i(x)]^2$$

• Coefficients

$$c_i = \langle G | B_i \rangle = \int_{Y} G(x)B_i(x)dx$$

Function approximation

• We can then use these coefficients to reconstruct an approximation to the original signal

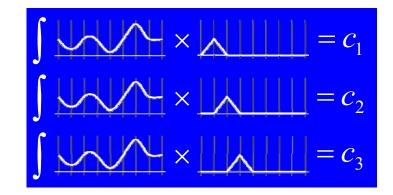
$$c_1 \times \boxed{\qquad} = \boxed{\qquad}$$

$$c_2 \times \boxed{\qquad} = \boxed{\qquad}$$

$$c_3 \times \boxed{\qquad} = \boxed{\qquad}$$

Function approximation

 Basis Functions are pieces of signal that can be used to produce approximations to a function



Function approximation

• We can then use these coefficients to reconstruct an approximation to the original signal

$$\sum_{i=1}^{N} c_i B_i(x) =$$

Orthogonal basis functions

- Orthogonal Basis Functions
 - These are families of functions with special properties

$$\int B_i(x)B_j(x) dx = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- Intuitively, it's like functions don't overlap each other's footprint
 - A bit like the way a Fourier transform breaks a functions into component sine waves

Integral of product

$$I = \int F(x)G(x) dx$$

$$F(x) = \sum_{i} f_{i}B_{i}(x) \qquad G(x) = \sum_{j} g_{j}B_{j}(x)$$

$$\int F(x)G(x) dx = \int \left(\sum_{i} f_{i}B_{i}(x)\sum_{j} g_{j}B_{j}(x)\right) dx$$

$$= \int \sum_{i} \sum_{j} f_{i}g_{j}B_{i}(x)B_{j}(x) dx = \int \sum_{i} f_{i}g_{i}dx = \hat{F} \cdot \hat{G}$$

$$B_{p}(\omega_{o}) = \int_{2} f_{p,\omega_{o}}(\omega_{i})L_{d}(\omega_{i})|\cos\theta_{i}|d\omega_{i}$$

Basis functions

- Transform data to a space in which we can capture the essence of the data better
- Spherical harmonics, similar to Fourier transform in spherical domain, is used in PRT.

Real spherical harmonics

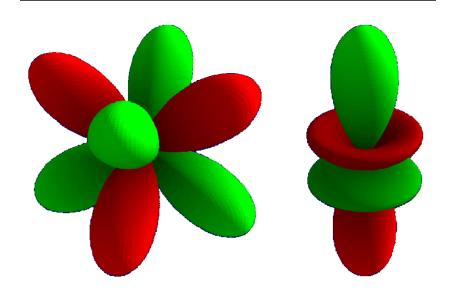
- A system of signed, orthogonal functions over the sphere
- Represented in spherical coordinates by the function

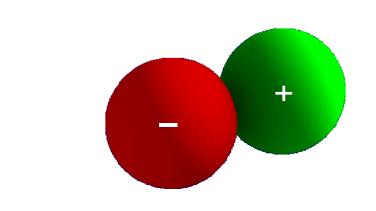
$$y_{l}^{m}(\theta,\varphi) = \begin{cases} \sqrt{2}K_{l}^{m}\cos(m\varphi)P_{l}^{m}(\cos\theta), & m > 0\\ \sqrt{2}K_{l}^{m}\sin(-m\varphi)P_{l}^{-m}(\cos\theta), & m < 0\\ K_{l}^{0}P_{l}^{0}(\cos\theta), & m = 0 \end{cases}$$

where l is the band and m is the index within the band

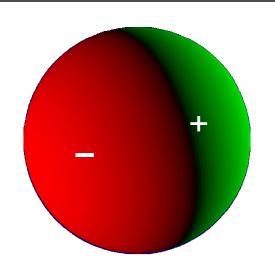
Real spherical harmonics

Reading SH diagrams

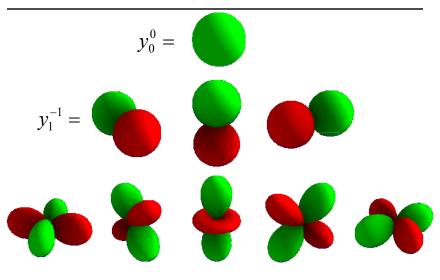




Reading SH diagrams

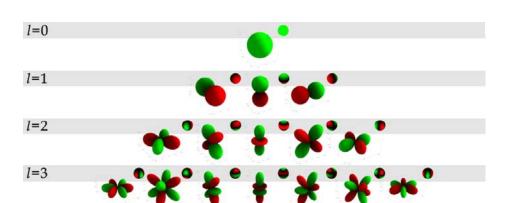


The SH functions



The SH functions

X



Spherical harmonics

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

$$Y_{00}(\theta, \phi) = 0.282095$$

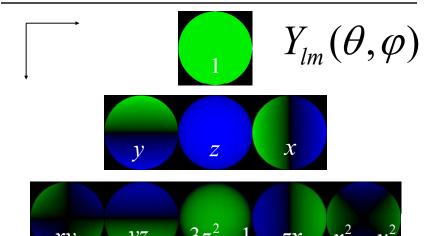
$$(Y_{11}; Y_{10}; Y_{1-1}) (\theta, \phi) = 0.488603 (x; z; y)$$

$$(Y_{21}; Y_{2-1}; Y_{2-2}) (\theta, \phi) = 1.092548 (xz; yz; xy)$$

$$Y_{20}(\theta, \phi) = 0.315392 (3z^2 - 1)$$

$$Y_{22}(\theta, \phi) = 0.546274 (x^2 - y^2)$$

Spherical harmonics



SH projection

• First we define a strict order for SH functions

$$i = l(l+1) + m$$

 Project a spherical function into a vector of SH coefficients

$$c_i = \int_S f(s) y_i(s) ds$$

SH reconstruction

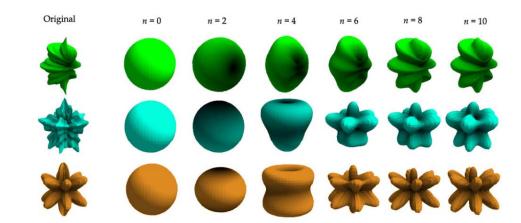
Digi<mark>VFX</mark>

• To reconstruct the approximation to a function

$$\widetilde{f}(s) = \sum_{i=0}^{N^2} c_i y_i(s)$$

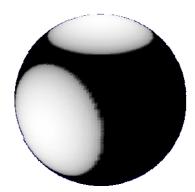
 We truncate the infinite series of SH functions to give a low frequency approximation

Examples of reconstruction



An example

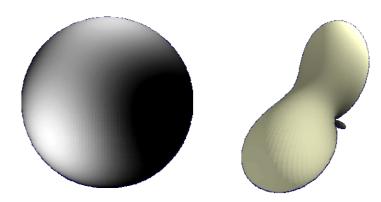
- Take a function comprised of two area light sources
 - SH project them into 4 bands = 16 coefficients



1.329, -0.679, 0.930, 0.908, -0.940, 0, 0.417, 0, 0.278, -0.642, 0.001, 0.317, 0.837, -0.425, 0, -0.238

Low frequency light source

- We reconstruct the signal
 - Using only these coefficients to find a low frequency approximation to the original light source



SH lighting for diffuse objects

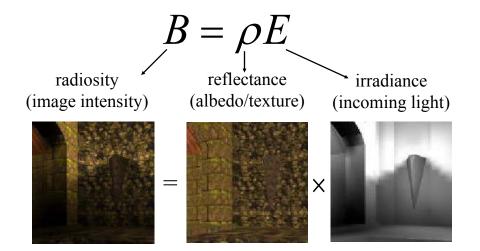
- An Efficient Representation for Irradiance Environment Maps, Ravi Ramamoorthi and Pat Hanrahan, SIGGRAPH 2001
- Assumptions
 - Diffuse surfaces
 - Distant illumination
 - No shadowing, interreflection

$$B(p,\omega_o) = \int_{s^2} f(p,\omega_o,\omega_i) L_d(p,\omega_i) |\cos \theta_i| d\omega_i$$

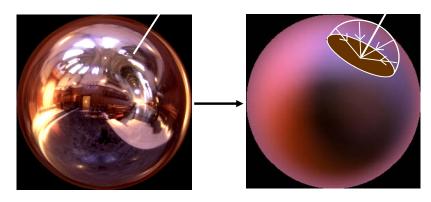
$$B(p,n) = \rho(p)E(n)$$

irradiance is a function of surface normal

Diffuse reflection



Irradiance environment maps



$$E(n) = \int_{\Omega} L(\omega)(n \cdot \omega) d\omega$$

Spherical harmonic expansion

Expand lighting (L), irradiance (E) in basis functions

$$L(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} L_{lm} Y_{lm}(\theta,\phi)$$

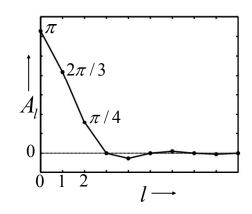
$$E(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} E_{lm} Y_{lm}(\theta,\phi)$$

Analytic irradiance formula

Digi<mark>VFX</mark>

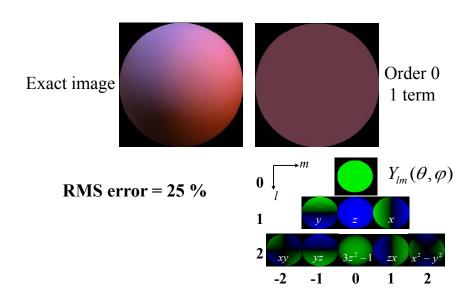
Lambertian surface acts like low-pass filter

$$E_{lm} = A_l L_{lm}$$
cosine term

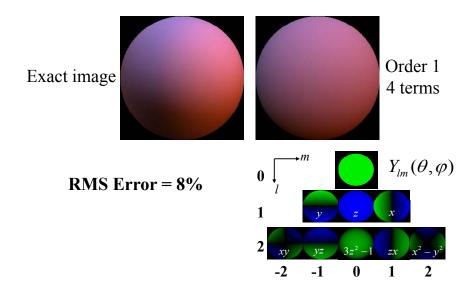


$$A_{l} = 2\pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)} \left[\frac{l!}{2^{l} \left(\frac{l}{2} ! \right)^{2}} \right] \quad l \text{ even}$$

9 parameter approximation



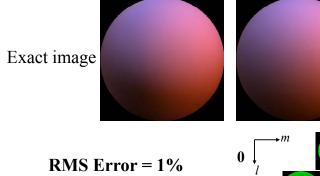
9 Parameter Approximation



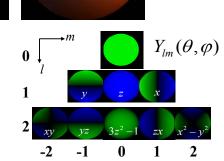
9 Parameter Approximation

Order 2

9 terms



For any illumination, average error < 3% [Basri Jacobs 01]



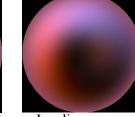
Comparison

Complex geometry

Incident illumination 300x300

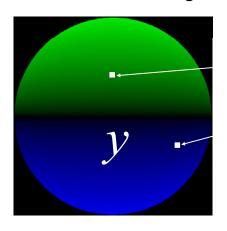
Irradiance map Texture: 256x256 Hemispherical Integration 2Hrs

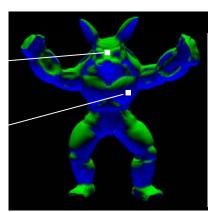
Time $\propto 300 \times 300 \times 256 \times 256$



Irradiance map Texture: 256x256 Spherical Harmonic Coefficients 1sec Time $\propto 9 \times 256 \times 256$

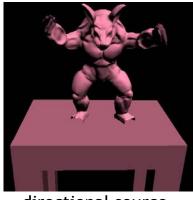
Assume no shadowing: Simply use surface normal





Natural illumination

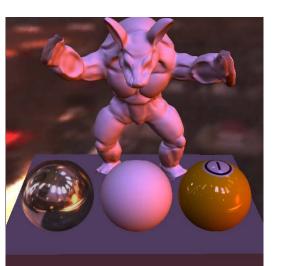
For diffuse objects, rendering with natural illumination can be done quickly

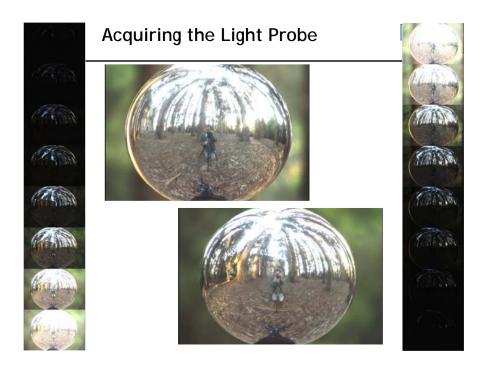


directional source

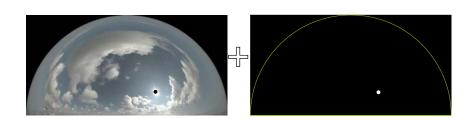
natural illumination

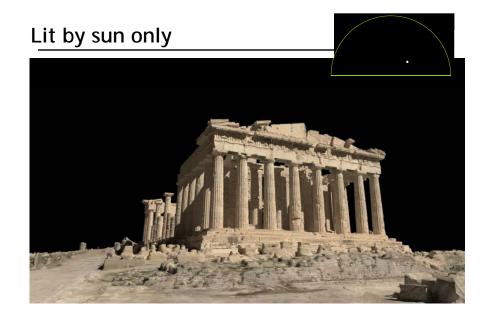
Video

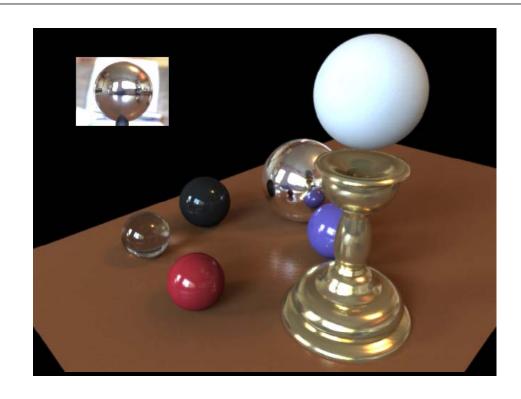


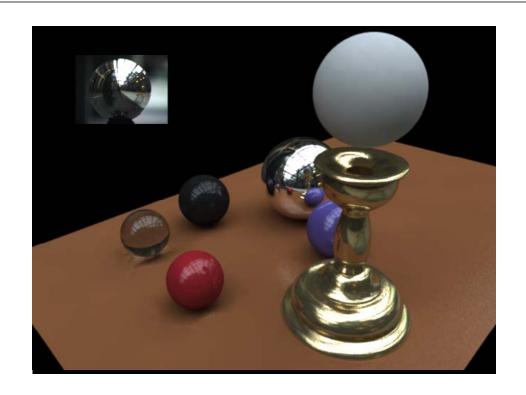


Clipped Sky + Sun Source





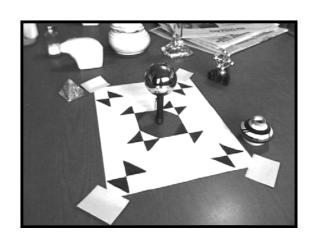




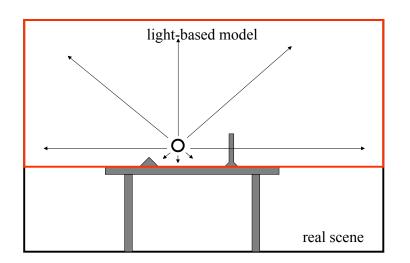
Real Scene Example

Light Probe / Calibration Grid

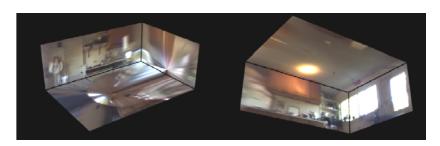
• Goal: place synthetic objects on table

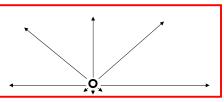


Modeling the Scene



The *Light-Based* Room Model





Rendering into the Scene

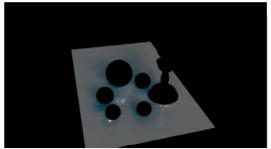
• Background Plate

• Objects and Local Scene matched to Scene

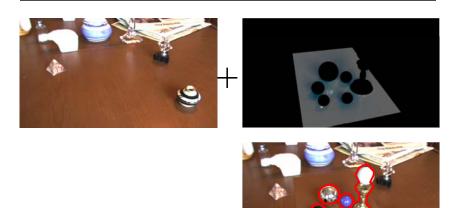
Differential rendering

• Local scene w/o objects, illuminated by model

Differential rendering

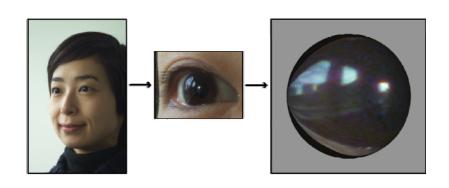


Differential rendering

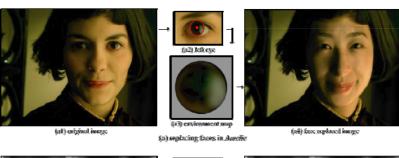


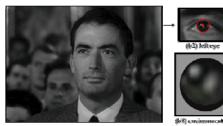
Environment map from single image? DigiVFX

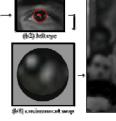
Eye as light probe! (Nayar et al)



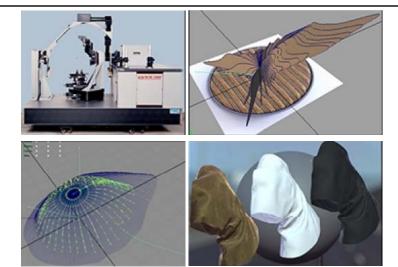
Results



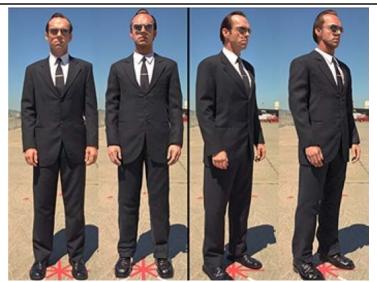




Capturing reflectance



Application in "The Matrix Reloaded" DigiVFX



Cyberware scanners

face & head scanner

whole body scanner

Making facial expressions from photos DigiVFX

3D acquisition for faces

- Similar to Façade, use a generic face model and view-dependent texture mapping
- Procedure
 - 1. Take multiple photographs of a person
 - 2. Establish corresponding feature points
 - 3. Recover 3D points and camera parameters
 - 4. Deform the generic face model to fit points
 - 5. Extract textures from photos

Reconstruct a 3D model

DigiVFX



generic 3D face model

pose estimation

more features

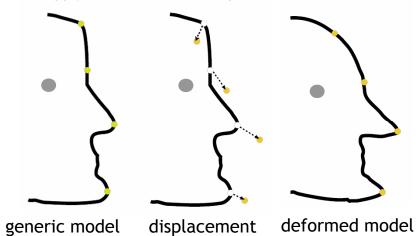
deformed model

Mesh deformation

DigiVFX

DigiVFX

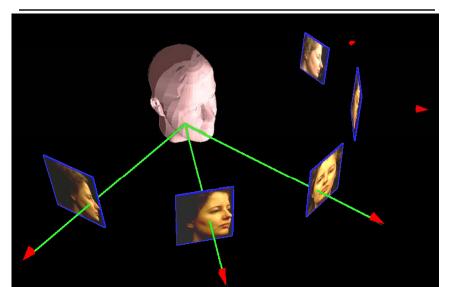
- Compute displacement of feature points
- Apply scattered data interpolation



Texture extraction

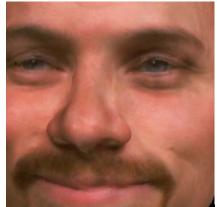
- The color at each point is a weighted combination of the colors in the photos
- Texture can be:
 - view-independent
 - view-dependent
- Considerations for weighting
 - occlusion
 - smoothness
 - positional certainty
 - view similarity

Texture extraction



Texture extraction

Texture extraction



view-dependent

Model reconstruction

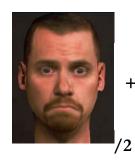
Use images to adapt a generic face model.

Creating new expressions

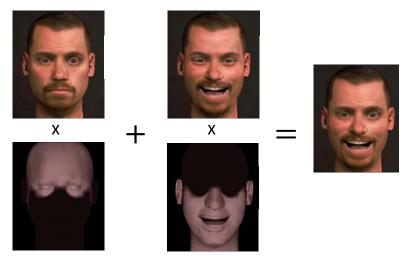
- In addition to global blending we can use:
 - Regional blending
 - Painterly interface

Creating new expressions

New expressions are created with 3D morphing:

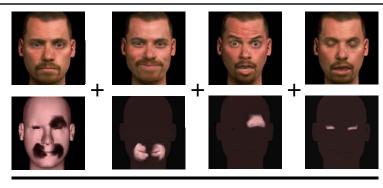


Applying a global blend



Applying a region-based blend

Creating new expressions



Using a painterly interface

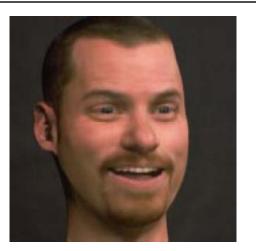
Drunken smile

Animating between expressions

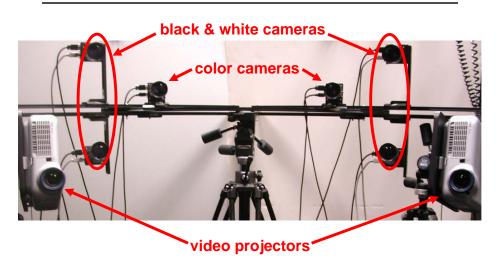
Morphing over time creates animation:

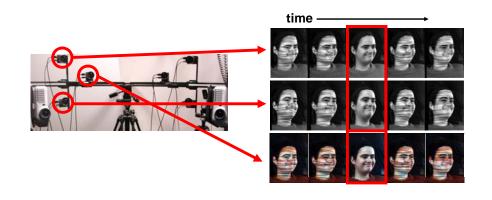
"neutral"

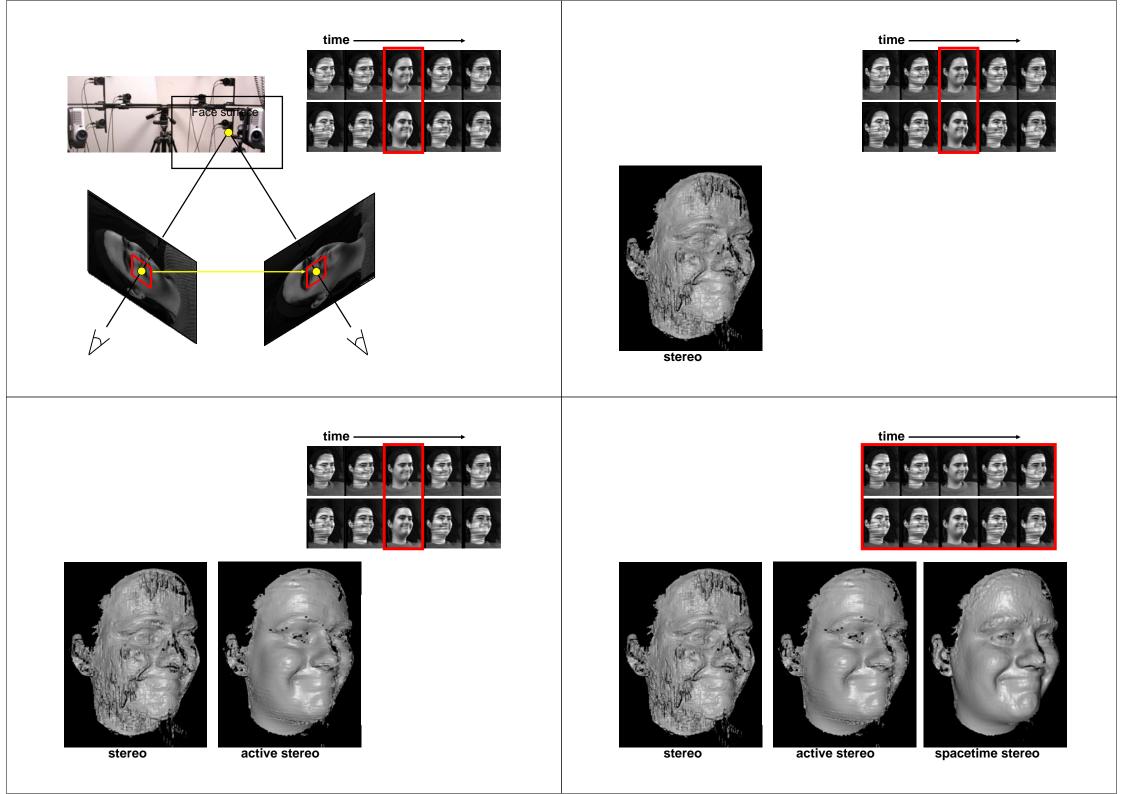
"joy"

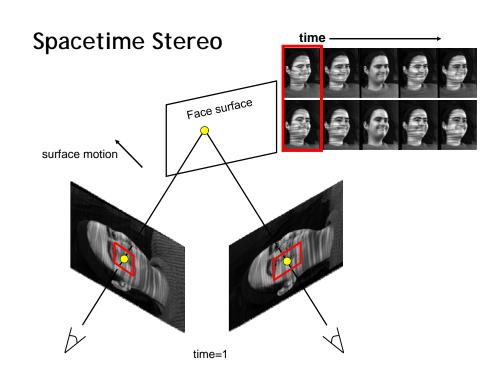


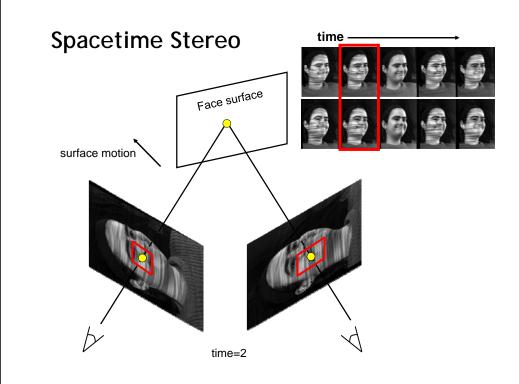
Spacetime faces

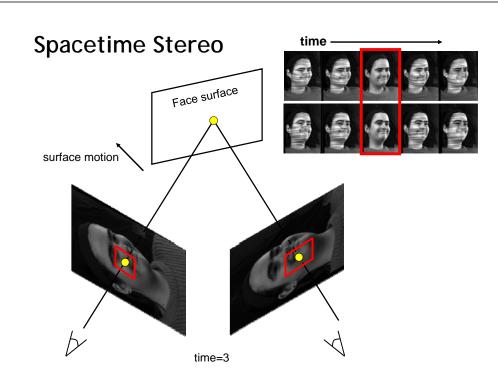


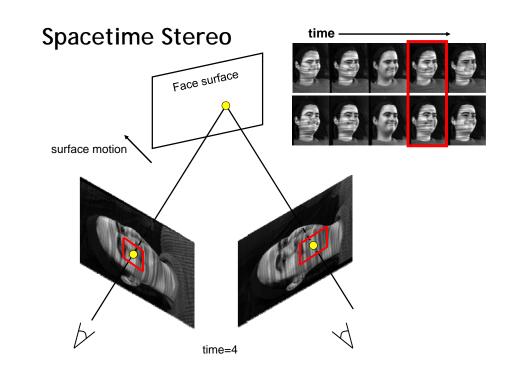


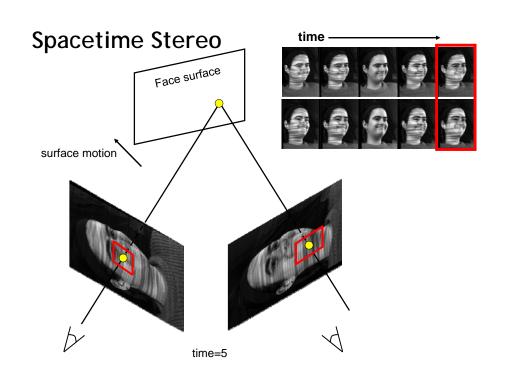


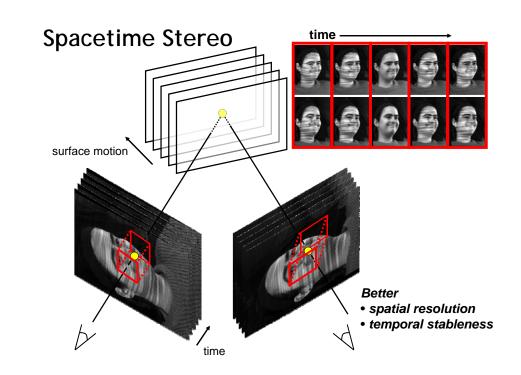








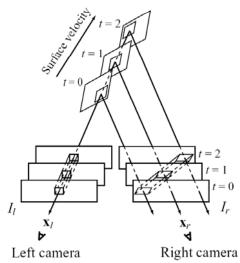




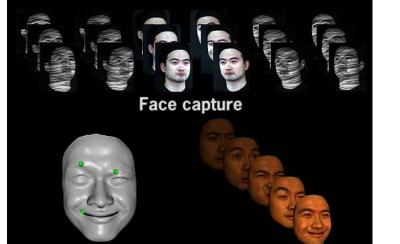
Spacetime stereo matching

DigiVFX

A moving oblique surface

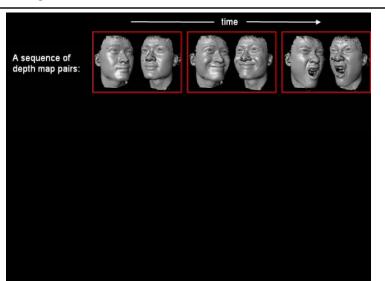


Video

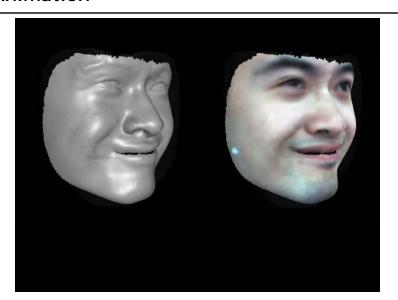


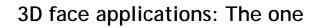
Animation

Editing



Animation





3D face applications: Gladiator

extra 3M

Statistical methods

Statistical methods

para-
meters
$$z \longrightarrow f(z)+\varepsilon \longrightarrow y$$
 observed
signal

$$z^* = \max_{z} P(z \mid y)$$
 Example:
super-resolution
$$= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$$
 de-noising
de-blocking
Inpainting
$$= \min_{z} L(y \mid z) + L(z)$$
 ...

Statistical methods

para-
meters
$$z \longrightarrow f(z)+\varepsilon \longrightarrow y$$
 observed signal
$$z^* = \min_z L(y \mid z) + L(z)$$
data
$$\frac{\|y - f(z)\|^2}{\sigma^2} \quad a\text{-priori}$$
evidence σ^2 knowledge

Statistical methods

Digi<mark>VFX</mark>

There are approximately 10^{240} possible 10×10 gray-level images. Even human being has not seen them all yet. There must be a strong statistical bias.

Takeo Kanade

Approximately 8X10¹¹ blocks per day per person.

Generic priors

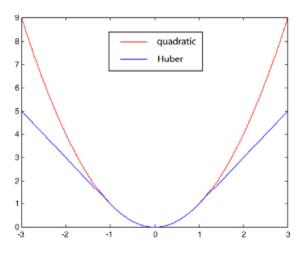
"Smooth images are good images."

$$L(z) = \sum_{x} \rho(V(x))$$

Gaussian MRF $\rho(d) = a^2$

Huber MRF
$$\rho(d) = \begin{cases} d^2 & |a| \le T \\ T^2 + 2T(|d| - T) & d > T \end{cases}$$

Generic priors

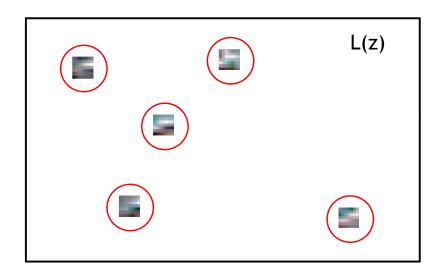


Example-based priors

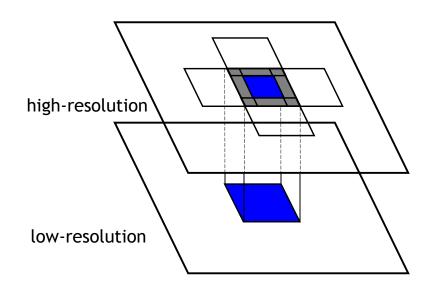
"Existing images are good images."

six 200×200 Images \Rightarrow 2,000,000 pairs

Example-based priors



Example-based priors



Model-based priors

"Face images are good images when working on face images ..."

Parametric model

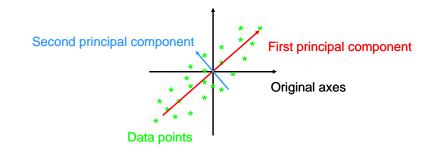
$$Z=WX+\mu$$
 $L(X)$

$$Z^* = \min_{z} L(y \mid z) + L(z)$$

$$\begin{cases} X^* = \min_{x} L(y \mid WX + \mu) + L(X) \\ Z^* = WX^* + \mu \end{cases}$$

PCA

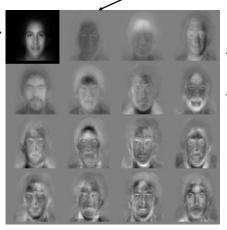
 Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace



PCA on faces: "eigenfaces"

Model-based priors

Average face First principal component



Other components

For all except average, "gray" = 0, "white" > 0, "black" < 0 "Face images are good images when working on face images ..."

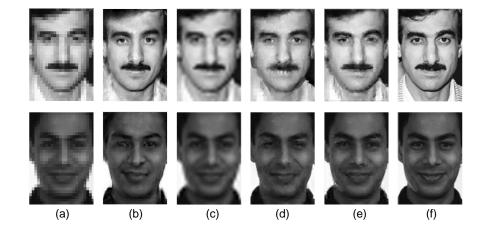
Parametric model

$$Z=WX+\mu$$
 $L(X)$

$$Z^* = \min_{z} L(y \mid z) + L(z)$$

$$\begin{cases} X^* = \min_{z} L(y \mid WX + \mu) + L(X) \\ Z^* = WX^* + \mu \end{cases}$$

Super-resolution



(c) Cubic B-Spline

(e) Baker et al. (f) Original high 96×128

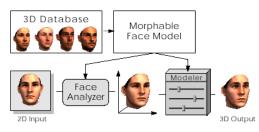
(a) Input low 24×32 (b) Our results

(d) Freeman et al.

Face models from single images

Morphable model of 3D faces

 Start with a catalogue of 200 aligned 3D Cyberware scans



 Build a model of average shape and texture, and principal variations using PCA

Morphable model

shape examplars

texture examplars

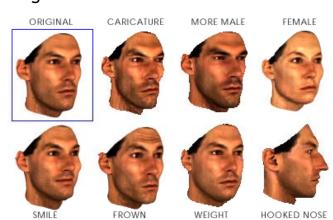
$$S_{model} = \overline{S} + \sum_{i=1}^{m-1} \alpha_i s_i, \ T_{model} = \overline{T} + \sum_{i=1}^{m-1} \beta_i t_i, \quad (1)$$

 $\vec{\alpha}, \vec{\beta} \in \Re^{m-1}$. The probability for coefficients $\vec{\alpha}$ is given by

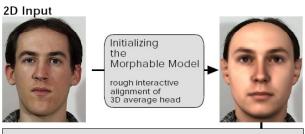
$$p(\vec{\alpha}) \sim exp[-\frac{1}{2} \sum_{i=1}^{m-1} (\alpha_i / \sigma_i)^2],$$
 (2)

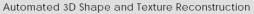
Morphable model of 3D faces

Adding some variations



Reconstruction from single image





 $\alpha_j \beta_j$

Rendering must be similar to the input if we guess right

Reconstruction from single image

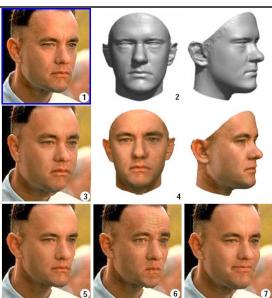
 $E = \frac{1}{\sigma_N^2} E_I + \sum_{j=1}^{m-1} \frac{\alpha_j^2}{\sigma_{S,j}^2} + \sum_{j=1}^{m-1} \frac{\beta_j^2}{\sigma_{T,j}^2} + \sum_j \frac{(\rho_j - \bar{\rho}_j)^2}{\sigma_{\rho,j}^2}$ prior

$$E_I = \sum_{x,y} \|\mathbf{I}_{input}(x,y) - \mathbf{I}_{model}(x,y)\|^2$$

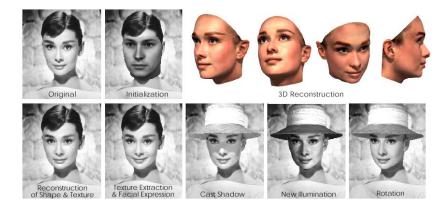
shape and texture priors are learnt from database

 $\boldsymbol{\rho}$ is the set of parameters for shading including camera pose, lighting and so on

Modifying a single image



Animating from a single image



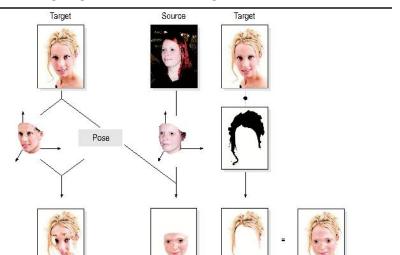
Video

A Morphable Model for the Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics Tübingen, Germany

Exchanging faces in images



Exchange faces in images

Exchange faces in images

Exchange faces in images

Digi<mark>VFX</mark>

Exchange faces in images

Morphable model for human body

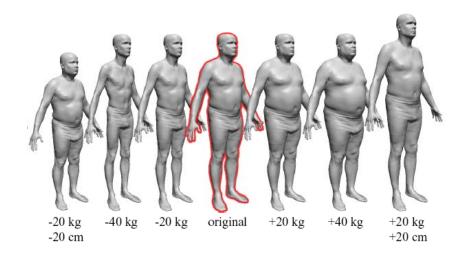
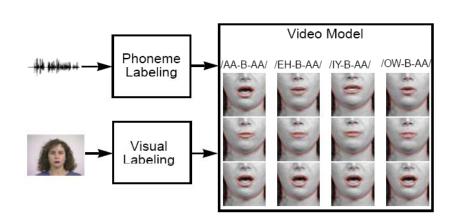
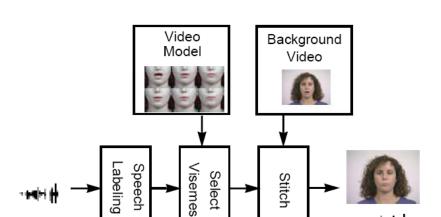


Image-based faces (lip sync.)

Video rewrite (analysis)



Video rewrite (synthesis)



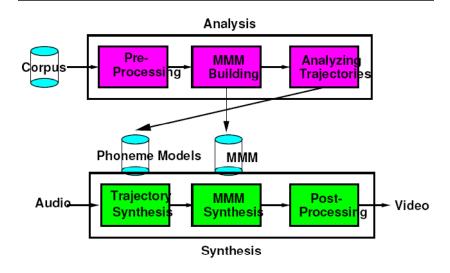
Results

- Video database
 - 2 minutes of JFK
 - Only half usable
 - Head rotation

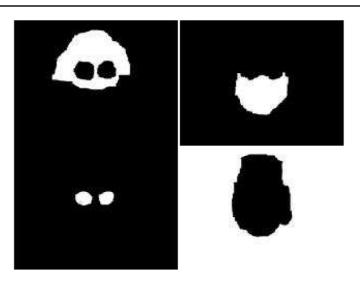
<u>training video</u><u>Read my lips.</u>I never met Forest Gump.

Morphable speech model

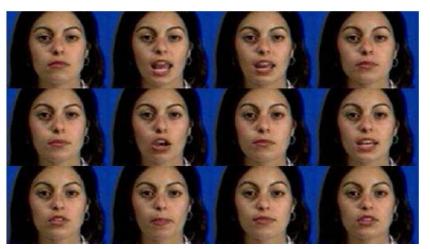
ए प्रस्ति हो। होन



Preprocessing



Prototypes (PCA+k-mean clustering)



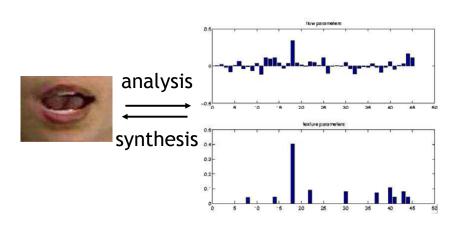
We find I_i and C_i for each prototype image.

Morphable model

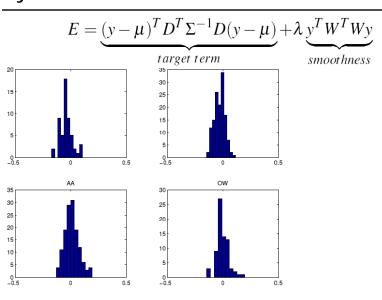
$$I^{morph}(\alpha,\beta) = \sum_{i=1}^{N} \beta_i \mathbf{W}(I_i, \mathbf{W}(\sum_{j=1}^{N} \alpha_j C_j - C_i, C_i))$$

analysis $I \stackrel{\textstyle \longrightarrow}{\longrightarrow} \alpha \beta$ synthesis

Morphable model



Synthesis



Relighting faces

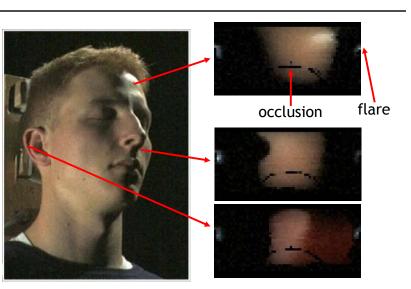
Light is additive

Light stage 1.0

Input images

Digi<mark>VFX</mark>

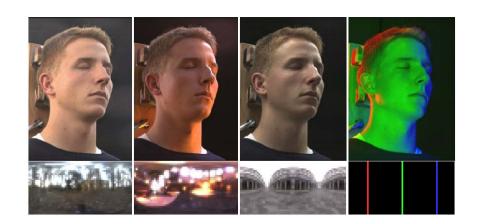
Reflectance function



DigiVFX

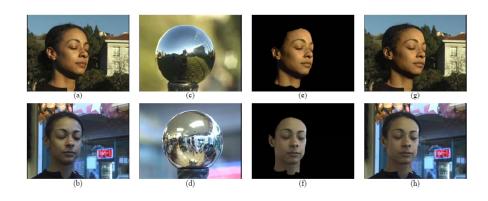
Relighting

Results



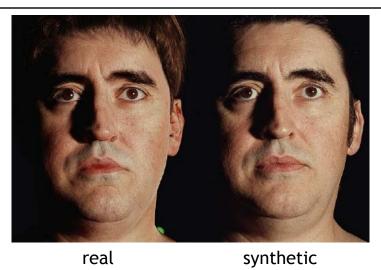
Changing viewpoints

Results

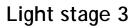


3D face applications: Spiderman 2

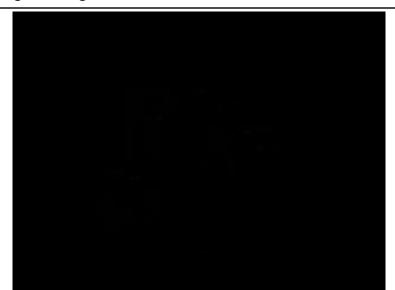
Spiderman 2



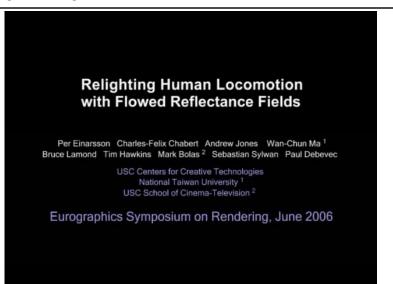
Spiderman 2

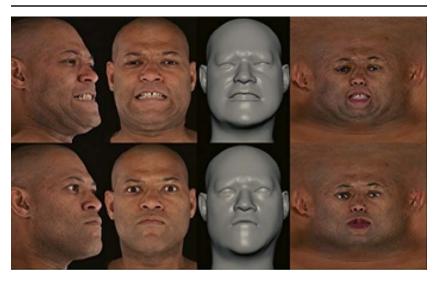


video









Application: The Matrix Reloaded

References

- Paul Debevec, Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography, SIGGRAPH 1998.
- F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, and R. Szeliski. Synthesizing realistic facial expressions from photographs. SIGGRAPH 1998, pp75-84.
- Li Zhang, Noah Snavely, Brian Curless, Steven M. Seitz, Spacetime Faces: High Resolution Capture for Modeling and Animation, SIGGRAPH 2004.
- Blanz, V. and Vetter, T., A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 1999, pp187-194.
- Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar, <u>Acquiring the</u> Reflectance Field of a Human Face, SIGGRAPH 2000.
- Christoph Bregler, Malcolm Slaney, Michele Covell, Video Rewrite: Driving Visual Speeach with Audio, SIGGRAPH 1997.
- Tony Ezzat, Gadi Geiger, Tomaso Poggio, Trainable Videorealistic Speech Animation, SIGGRAPH 2002.