Structure from motion

Digital Visual Effects Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Zhengyou Zhang and Marc Pollefyes

Outline

- Epipolar geometry and fundamental matrix
- Structure from motion
- Factorization method
- Bundle adjustment
- Applications

Epipolar geometry & fundamental matrix

C,C',x,x' and X are coplanar

What if only *C*,*C*',*x* are known?

All points on π project on I and I'

Family of planes π and lines l and l' intersect at e and e'

The epipolar geometry

epipolar pole <u>epipolar geometry demo</u>

- = intersection of baseline with image plane
- = projection of projection center in the other image

epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image

The fundamental matrix F

Two reference frames are related via the extrinsic parameters $\mathbf{n} - \mathbf{Pn'} + \mathbf{T}$

 $\mathbf{p} = \mathbf{R}\mathbf{p'} + \mathbf{T}$

 $\mathbf{p} = \mathbf{R}\mathbf{p'} + \mathbf{T}$

Multiply both sides by
$$\mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}$$

 $[\mathbf{T}]_{\times} = \begin{bmatrix} 0 & -T_{z} & T_{y} \\ T_{z} & 0 & -T_{x} \\ -T_{y} & T_{x} & 0 \end{bmatrix}$

$$\mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}\mathbf{p} = \mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}(\mathbf{R}\mathbf{p'}+\mathbf{T})$$

$$\mathbf{P}^{\mathrm{T}}[\mathbf{T}]_{\times}\mathbf{R}\mathbf{p'}$$

$$\mathbf{p}^{\mathrm{T}}[\mathbf{F}]_{\mathbf{p}'} = 0$$
essential matrix

$$\mathbf{p}^{\mathrm{T}}\mathbf{E}\mathbf{p}'=\mathbf{0}$$

Let ${\bf M}$ and ${\bf M}$ ' be the intrinsic matrices, then

 $p = M^{-1}x$ $p' = M'^{-1}x'$

$$(\mathbf{M}^{-1}\mathbf{x})^{\mathrm{T}}\mathbf{E}(\mathbf{M}^{-1}\mathbf{x}^{\prime}) = 0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{M}^{-\mathrm{T}}\mathbf{E}\mathbf{M}^{-1}\mathbf{x}^{\prime} = 0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x}^{\prime} = 0$$
fundamental matrix

- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points x↔x' in the two images

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x}'=\mathbf{0} \qquad \left(\mathbf{x}^{\mathrm{T}}\mathbf{1}=\mathbf{0}\right)$$

- F is the unique 3x3 rank 2 matrix that satisfies $x^TFx'=0$ for all $x \leftrightarrow x'$
- **1.** Transpose: if F is fundamental matrix for (x,x'), then F^T is fundamental matrix for (x',x)
- **2.** Epipolar lines: $I=Fx' \& I'=F^Tx$
- 3. Epipoles: on all epipolar lines, thus $e^{T}Fx'=0$, $\forall x' \Rightarrow e^{T}F=0$, similarly Fe'=0
- 4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- 5. F is a correlation, projective mapping from a point x to a line I=Fx' (not a proper correlation, i.e. not invertible)

The fundamental matrix F

- It can be used for
 - Simplifies matching
 - Allows to detect wrong matches

• The fundamental matrix F is defined by

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x'}=\mathbf{0}$$

for any pair of matches **x** and **x**' in two images.

• Let $\mathbf{x} = (u, v, 1)^{\mathsf{T}}$ and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

$$uu' f_{11} + uv' f_{12} + uf_{13} + vu' f_{21} + vv' f_{22} + vf_{23} + u' f_{31} + v' f_{32} + f_{33} = 0$$

• In reality, instead of solving $\mathbf{Af} = 0$, we seek f to minimize $\|\mathbf{Af}\|$ subj. $\|\mathbf{f}\| = 1$. Find the vector corresponding to the least singular value.

- To enforce that F is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F'}\|$ subject to det $\mathbf{F'} = 0$.
- It is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}_{r}^{\mathrm{T}}$ where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \boldsymbol{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

% Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(npts,1)];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V % corresponding to the smallest singular value. F = reshape(V(:,9),3,3)';

```
% Enforce rank2 constraint
  [U,D,V] = svd(F);
  F = U*diag([D(1,1) D(2,2) 0])*V';
```


- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

→ least-squares yields poor results

Normalized 8-point algorithm

1. Transform input by
$$\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$$
, $\hat{\mathbf{x}}_i' = \mathbf{T}\mathbf{x}_i'$
2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
3. $\mathbf{F} = \mathbf{T'}^T \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

normalized least squares yields good results Transform image to ~[-1,1]x[-1,1]

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise F = T2'*F*T1;

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')'; % Centroid newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid. newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

repeat

select minimal sample (8 matches)

compute solution(s) for F

determine inliers

until Γ(#*inliers*,#*samples*)>95% or too many times

compute F based on all inliers

Results (8-point algorithm)

Results (normalized 8-point algorithm)

■ Normalized 8-point algorithm

Structure from motion

Structure from motion

structure for motion: automatic recovery of <u>camera motion</u> and <u>scene structure</u> from two or more images. It is a self calibration technique and called *automatic camera tracking* or *matchmoving*.

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds

Matchmove

SFM pipeline

Structure from motion

- Step 1: Track Features
 - Detect good features, Shi & Tomasi, SIFT
 - Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - window-based correlation
 - SIFT matching

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

- Step 2: Estimate Motion and Structure
 - Simplified projection model, e.g., [Tomasi 92]
 - 2 or 3 views at a time [Hartley 00]

Structure from Motion

- Step 3: Refine estimates
 - "Bundle adjustment" in photogrammetry
 - Other iterative methods

Structure from Motion

• Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)

Factorization methods

Problem statement

Notations

- *n* 3D points are seen in *m* views
- **q**=(*u*,*v*,1): 2D image point
- p=(x,y,z,1): 3D scene point
- П: projection matrix
- π : projection function
- q_{ij} is the projection of the *i*-th point on image *j*
- λ_{ij} projective depth of q_{ij}

$$\mathbf{q}_{ij} = \pi(\Pi_j \mathbf{p}_i) \qquad \pi(x, y, z) = (x / z, y / z)$$
$$\lambda_{ij} = z$$

- Estimate \prod_{j} and \mathbf{p}_{i} to minimize $\varepsilon(\mathbf{\Pi}_{1}, \dots, \mathbf{\Pi}_{m}, \mathbf{p}_{1}, \dots, \mathbf{p}_{n}) = \sum_{j=1}^{m} \sum_{i=1}^{n} w_{ij} \log P(\pi(\mathbf{\Pi}_{j}\mathbf{p}_{i}); \mathbf{q}_{ij})$ $w_{ij} = \begin{cases} 1 & \text{if } p_{i} \text{ is visible in view } j \\ 0 & \text{otherwise} \end{cases}$
- Assume isotropic Gaussian noise, it is reduced to

$$\varepsilon(\mathbf{\Pi}_1,\cdots,\mathbf{\Pi}_m,\mathbf{p}_1,\cdots,\mathbf{p}_n) = \sum_{j=1}^m \sum_{i=1}^n w_{ij} \|\pi(\mathbf{\Pi}_j\mathbf{p}_i) - \mathbf{q}_{ij}\|^2$$

• Start from a simpler projection model

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

SFM under orthographic projection

- Trick
 - Choose scene origin to be centroid of 3D points
 - Choose image origins to be centroid of 2D points
 - Allows us to drop the camera translation:

$$\mathbf{q} = \mathbf{\Pi} \mathbf{p}$$

projection of *n* features in one image:

$$\begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} = \prod_{2 \times 3} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

projection of *n* features in *m* images

 $\begin{bmatrix} \mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1n} \\ \mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{m1} & \mathbf{q}_{m2} & \cdots & \mathbf{q}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{\Pi}_1 \\ \mathbf{\Pi}_2 \\ \vdots \\ \mathbf{\Pi}_m \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} \\ 3 \times n & 3 \times n \\ \mathbf{W} \text{ measurement } \mathbf{M} \text{ motion } \mathbf{S} \text{ shape} \\ \text{Key Observation: } rank(\mathbf{W}) <= 3 \end{bmatrix}$

- Factorization Technique
 - W is at most rank 3 (assuming no noise)
 - We can use *singular value decomposition* to factor W:

 $\mathbf{W}_{2m\times n} = \mathbf{M'}_{2m\times 3} \mathbf{S'}_{3\times n}$

- S' differs from S by a linear transformation A:

$\mathbf{W} = \mathbf{M'S'} = (\mathbf{MA}^{-1})(\mathbf{AS})$

- Solve for A by enforcing *metric* constraints on M

Results

Extensions to factorization methods

- Projective projection
- With missing data
- Projective projection with missing data

Bundle adjustment

- *n* 3D points are seen in *m* views
- x_{ij} is the projection of the *i*-th point on image *j*
- a_i is the parameters for the *j*-th camera
- *b_i* is the parameters for the *i*-th point
- BA attempts to minimize the projection error

$$\min_{\mathbf{a}_{j},\mathbf{b}_{i}} \sum_{i=1}^{n} \sum_{j=1}^{m} d(\mathbf{Q}(\mathbf{a}_{j},\mathbf{b}_{i}), \mathbf{x}_{ij})^{2}$$

Euclidean distance

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Bundle adjustment

MatchMove

The Structure from Motion Pipeline

Applications of matchmove

Jurassic park

Enemy at the Gate, Double Negative

Enemy at the Gate, Double Negative

Photo Tourism

VideoTrace

Video stabilization

References

- Richard Hartley, <u>In Defense of the 8-point Algorithm</u>, ICCV, 1995.
- Carlo Tomasi and Takeo Kanade, <u>Shape and Motion from Image</u> <u>Streams: A Factorization Method</u>, Proceedings of Natl. Acad. Sci., 1993.
- Manolis Lourakis and Antonis Argyros, <u>The Design and</u> <u>Implementation of a Generic Sparse Bundle Adjustment Software</u> <u>Package Based on the Levenberg-Marquardt Algorithm</u>, FORTH-ICS/TR-320 2004.
- N. Snavely, S. Seitz, R. Szeliski, <u>Photo Tourism: Exploring Photo</u> <u>Collections in 3D</u>, SIGGRAPH 2006.
- A. Hengel et. al., <u>VideoTrace: Rapid Interactive Scene Modelling</u> <u>from Video</u>, SIGGRAPH 2007.

- It is more about using tools in this project
- You can choose either calibration or structure from motion to achieve the goal
- Calibration
- Voodoo/Icarus
- Examples from previous classes, <u>#1</u>, <u>#2</u>
- https://www.youtube.com/user/theActionMovieKid/videos