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• Applications



Epipolar geometry & 
fundamental matrix



The epipolar geometry

C,C’,x,x’ and X are coplanar

epipolar geometry demo



The epipolar geometry

What if only C,C’,x are known?



The epipolar geometry

All points on  project on l and l’



The epipolar geometry

Family of planes  and lines l and l’ intersect at e
and e’



The epipolar geometry

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image

epipolar pole
= intersection of baseline with image plane 
= projection of projection center in the other image

epipolar geometry demo



The fundamental matrix F

C C’
T=C’-C

Rp p’

TRp'p 
Two reference frames are related via the extrinsic parameters



The fundamental matrix F

0'Epp essential matrix

TRp'p 
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The fundamental matrix F

0'Epp

Let M and M’ be the intrinsic matrices, then

xMp 1 ''' 1 xMp 

0)''()( 11  xMExM
0'' 1  xEMMx

0'Fxx fundamental matrix



The fundamental matrix F

• The fundamental matrix is the algebraic 
representation of epipolar geometry

• The fundamental matrix satisfies the condition 
that for any pair of corresponding points x↔x’ 
in the two images

0Fx'xT   0lxT 



F is the unique 3x3 rank 2 matrix that satisfies xTFx’=0 
for all x↔x’ 

1. Transpose: if F is fundamental matrix for (x,x’), then FT

is fundamental matrix for (x’,x)
2. Epipolar lines: l=Fx’ & l’=FTx
3. Epipoles: on all epipolar lines, thus eTFx’=0, x’ 

eTF=0, similarly Fe’=0
4. F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
5. F is a correlation, projective mapping from a point x to 

a line l=Fx’ (not a proper correlation, i.e. not invertible)

The fundamental matrix F



The fundamental matrix F

• It can be used for 
– Simplifies matching
– Allows to detect wrong matches



Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

0'Fxx
for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,
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each match gives a linear equation
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8-point algorithm
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• In reality, instead of solving            , we seek f
to minimize          subj.           . Find the vector 
corresponding to the least singular value.

0Af
Af 1f



8-point algorithm

• To enforce that F is of rank 2, F is replaced by F’ 
that minimizes              subject to                . 'FF  0'det F

• It is achieved by SVD. Let                , where 

, let 

then                    is the solution. 
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8-point algorithm
% Build the constraint matrix

A = [x2(1,:)'.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.

F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm

• Pros: it is linear, easy to implement and fast
• Cons: susceptible to noise



Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!
Orders of magnitude difference
between column of data matrix
 least-squares yields poor results
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Normalized 8-point algorithm

1. Transform input by                ,
2. Call 8-point on           to obtain
3.

ii Txx ˆ '
i

'
i xTx 'ˆ 

'
ii xx ˆ,ˆ

TFTF ˆΤ'
F̂

0Fxx'

0ˆ'ˆ 1  xFTTx'

F̂



Normalized 8-point algorithm
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normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);



Normalization
function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')';   % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

T = [scale      0    -scale*c(1)
0     scale  -scale*c(2)
0         0            1      ];

newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until (#inliers,#samples)>95% or too many times 

compute F based on all inliers



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



Structure from motion



Structure from motion

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self 
calibration technique and called automatic camera tracking
or matchmoving.

Unknown
camera

viewpoints



Applications

• For computer vision, multiple-view shape 
reconstruction, novel view synthesis and 
autonomous vehicle navigation.

• For film production, seamless insertion of CGI 
into live-action backgrounds



Matchmove

example #1 example #2 example #3



Structure from motion

2D feature
tracking 3D estimation optimization

(bundle adjust)
geometry 

fitting

SFM pipeline



Structure from motion

• Step 1:  Track Features
– Detect good features, Shi & Tomasi, SIFT
– Find correspondences between frames

• Lucas & Kanade-style motion estimation
• window-based correlation
• SIFT matching



KLT tracking

http://www.ces.clemson.edu/~stb/klt/



Structure from Motion
• Step 2:  Estimate Motion and Structure

– Simplified projection model, e.g.,  [Tomasi 92]
– 2 or 3 views at a time  [Hartley 00]



Structure from Motion
• Step 3:  Refine estimates

– “Bundle adjustment” in photogrammetry
– Other iterative methods



Structure from Motion
• Step 4:  Recover surfaces (image-based 

triangulation, silhouettes, stereo…)

Good mesh



Factorization methods



Problem statement



Notations

• n 3D points are seen in m views
• q=(u,v,1): 2D image point
• p=(x,y,z,1): 3D scene point
• : projection matrix
• : projection function
• qij is the projection of the i-th point on image j
• ij projective depth of qij

)( ijij pq  )/,/(),,( zyzxzyx 
zij 



Structure from motion

• Estimate      and     to minimize
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• Start from a simpler projection model



Orthographic projection
• Special case of perspective projection

– Distance from the COP to the PP is infinite

– Also called “parallel projection”:  (x, y, z) → (x, y)

Image World



SFM under orthographic projection

2D image 
point

Orthographic projection
incorporating 3D rotation 3D scene

point

image
offset

tΠpq 
12 32 13 12

• Trick
– Choose scene origin to be centroid of 3D points
– Choose image origins to be centroid of 2D points
– Allows us to drop the camera translation:

Πpq 



factorization (Tomasi & Kanade)
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Key Observation:  rank(W) <= 3



n33m2n2m
''


 SMW

• Factorization Technique
– W is at most rank 3 (assuming no noise)
– We can use singular value decomposition to factor W:

Factorization

– S’ differs from S by a linear transformation A:

– Solve for A by enforcing metric constraints on M

))(('' ASMASMW 1

n33m2n2m 
 SMWknown solve for



Results



Extensions to factorization methods

• Projective projection
• With missing data
• Projective projection with missing data



Bundle adjustment



Bundle adjustment

• n 3D points are seen in m views
• xij is the projection of the i-th point on image j
• aj is the parameters for the j-th camera
• bi is the parameters for the i-th point
• BA attempts to minimize the projection error

Euclidean distance

predicted projection



Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method. 
When the current solution is far from the 
correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
method.



Bundle adjustment



MatchMove



Applications of matchmove



Jurassic park



2d3 boujou

Enemy at the Gate, Double Negative 



2d3 boujou

Enemy at the Gate, Double Negative 



Photo Tourism



VideoTrace

http://www.acvt.com.au/research/videotrace/



Video stabilization
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Project #3 MatchMove

• It is more about using tools in this project
• You can choose either calibration or structure 

from motion to achieve the goal
• Calibration 
• Voodoo/Icarus

• Examples from previous classes, #1, #2
• https://www.youtube.com/user/theActionMovieKid/videos


