Motion estimation

Digital Visual Effects

Yung-Yu Cbuang
with slides by Michael Black and P. Anandan

Motion estimation

- Parametric motion (image alignment)
- Tracking
- Optical flow

Parametric motion

direct method for image stitching

Tracking

Optical flow

Three assumptions

- Brightness consistency
- Spatial coherence
- Temporal persistence

Brightness consistency

Image measurement (e.g. brightness) in a small region remain the same although their location may change.

Spatial coherence

- Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- Since they also project to nearby pixels in the image, we expect spatial coherence in image flow.

Temporal persistence

The image motion of a surface patch changes gradually over time.

Image registration

Goal: register a template image $T(x)$ and an input image $I(x)$, where $x=(x, y)^{T}$. (warp I so that it matches T)

Image alignment: $I(x)$ and $T(x)$ are two images
Tracking: $T(x)$ is a small patch around a point p in the image at $t . I(x)$ is the image at time $t+1$.
Optical flow: $T(x)$ and $I(x)$ are patches of images at t and $t+1$.

Simple approach (for translation)

- Minimize brightness difference

$$
E(u, v)=\sum_{x, y}(I(x+u, y+v)-T(x, y))^{2}
$$

Simple SSD algorithm

For each offset (u, v) compute $E(u, v)$;
Choose (u, v) which minimizes $E(u, v)$;

Problems:

- Not efficient
- No sub-pixel accuracy

Lucas-Kanade algorithm

Newton's method

- Root finding for $f(x)=0$
- March x and test signs
- Determine $\Delta x($ small \rightarrow slow; large \rightarrow miss $)$

Newton's method

- Root finding for $f(x)=0$

Newton's method

- Root finding for $f(x)=0$

Taylor's expansion:

$$
\begin{aligned}
& f\left(x_{0}+\varepsilon\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varepsilon+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \varepsilon^{2}+\ldots \\
& f\left(x_{0}+\varepsilon\right) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varepsilon \\
& \varepsilon_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Newton's method

- Root finding for $f(x)=0$

$$
\varepsilon_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's method

pick up $\mathbf{x}=\mathbf{x}_{\mathbf{0}}$
iterate
compute $\Delta x=-\frac{f(x)}{f^{\prime}(x)}$
update \mathbf{x} by $\mathbf{x}+\Delta \mathbf{x}$
until converge

Finding root is useful for optimization because Minimize $g(x) \rightarrow$ find root for $f(x)=g^{\prime}(x)=0$

Lucas-Kanade algorithm

$$
\begin{aligned}
& \begin{aligned}
& E(u, v)= \sum_{x, y}(I(x+u, y+v)-T(x, y))^{2} \\
&= \sum_{x, y}\left(I(x+u, y+v) \approx I(x, y)+u I_{x}+v I_{y}\right. \\
& 0=\frac{\partial E}{\partial u}= \sum_{x, y} 2 I_{x}\left(I(x, y)-T(x, y)+u I_{x}+v I_{y}\right) \\
& 0=\frac{\partial E}{\partial v}=\sum_{x, y} 2 I_{y}\left(I(x, y)-T(x, y)+u I_{x}+v I_{y}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
0= & \frac{\partial E}{\partial u}=\sum_{x, y} 2 I_{x}\left(I(x, y)-T(x, y)+u I_{x}+v I_{y}\right) \\
0= & \frac{\partial E}{\partial v}=\sum_{x, y} 2 I_{y}\left(I(x, y)-T(x, y)+u I_{x}+v I_{y}\right) \\
& \Rightarrow \begin{cases}\sum_{x, y} I_{x}^{2} u & +\sum_{x, y} I_{x} I_{y} v=\sum_{x, y} I_{x}(T(x, y)-I(x, y)) \\
\sum_{x, y} I_{x} I_{y} u & +\sum_{x, y} I_{y}^{2} v=\sum_{x, y} I_{y}(T(x, y)-I(x, y))\end{cases} \\
& {\left[\begin{array}{ll}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\sum_{x, y} I_{x}(T(x, y)-I(x, y)) \\
\sum_{x, y} I_{y}(T(x, y)-I(x, y))
\end{array}\right] }
\end{aligned}
$$

Lucas-Kanade algorithm

iterate
shift $\mathrm{I}(\mathrm{x}, \mathrm{y})$ with (u, v)
compute gradient image I_{x}, I_{y}
compute error image $T(x, y)-I(x, y)$
compute Hessian matrix
solve the linear system

$$
(u, v)=(u, v)+(\Delta u, \Delta v)
$$

until converge

$$
\left[\begin{array}{cc}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\sum_{x, y} I_{x}(T(x, y)-I(x, y)) \\
\sum_{x, y} I_{y}(T(x, y)-I(x, y))
\end{array}\right]
$$

Parametric model

$$
E(u, v)=\sum_{x, y}(I(x+u, y+v)-T(x, y))^{2}
$$

$$
E(\mathbf{p})=\sum_{\mathbf{x}}(I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))^{2} \longleftarrow \quad \begin{aligned}
& \text { Our goal is to find } \\
& \mathbf{p} \text { to minimize } \mathbf{E}(\mathbf{p})
\end{aligned}
$$

for all \mathbf{x} in T 's domain
translation $\mathbf{W}(\mathbf{x} ; \mathbf{p})=\binom{x+d_{x}}{y+d_{y}}, p=\left(d_{x}, d_{y}\right)^{T}$
affine

$$
\begin{aligned}
& \mathbf{W}(\mathbf{x} ; \mathbf{p})=\mathbf{A} \mathbf{x}+\mathbf{d}=\left(\begin{array}{ccc}
1+d_{x x} & d_{x y} & d_{x} \\
d_{y x} & 1+d_{y y} & d_{y}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right), \\
& p=\left(d_{x x}, d_{x y}, d_{y x}, d_{y y}, d_{x}, d_{y}\right)^{T}
\end{aligned}
$$

Parametric model

minimize $\sum_{\mathbf{x}}(I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x}))^{2}$
with respect to $\Delta \mathrm{p}$

$$
\begin{aligned}
\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}) & \approx \mathbf{W}(\mathbf{x} ; \mathbf{p})+\frac{\partial \mathbf{W}}{\partial \mathbf{p}} \boldsymbol{\Delta} \mathbf{p} \\
I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p})) & \approx I\left(\mathbf{W}(\mathbf{x} ; \mathbf{p})+\frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}\right) \\
& \approx I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\frac{\partial I}{\partial \mathbf{x}} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} \\
\Longrightarrow \text { minimize } & \sum_{x}\left(I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right)^{2}
\end{aligned}
$$

Parametric model

warped image
target image

J acobian of the warp

$$
\frac{\partial \mathbf{W}}{\partial \mathbf{p}}=\binom{\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}}}{\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}}}=\left(\begin{array}{cccc}
\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{n}} \\
\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{n}}
\end{array}\right)
$$

J acobian matrix

- The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.

$$
\begin{aligned}
& F\left(x_{1}, x_{2}, \ldots x_{n}\right) \quad F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \\
& =\left(f_{1}\left(x_{1}, x_{2}, \ldots x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots x_{n}\right), \ldots f_{m}\left(x_{1}, x_{2}, \ldots x_{n}\right)\right) \\
& J_{F}\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& \text { or }=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial\left(f_{1}, f_{2}, \ldots f_{m}\right)}{\partial\left(x_{1}, x_{2}, \ldots x_{n}\right)} \\
\frac{\partial x_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \\
& F(\mathbf{x}+\Delta \mathbf{x}) \approx F(\mathbf{x})+J_{F}(\mathbf{x}) \Delta \mathbf{x}
\end{aligned}
$$

J acobian matrix

$$
\begin{array}{ll}
F: \mathbf{R} \times[0, \pi] \times[0,2 \pi] \rightarrow \mathbf{R}^{3} & \\
t=r \sin \phi \cos \theta \\
F(r, \phi, \theta)=(t, u, v) & \\
u=r \sin \phi \sin \theta
\end{array}
$$

$$
J_{F}(r, \phi, \theta)=\left[\begin{array}{lll}
\frac{\partial t}{\partial r} & \frac{\partial t}{\partial \phi} & \frac{\partial t}{\partial \theta} \\
\frac{\partial u}{\partial r} & \frac{\partial u}{\partial \phi} & \frac{\partial u}{\partial \theta} \\
\frac{\partial v}{\partial r} & \frac{\partial v}{\partial \phi} & \frac{\partial v}{\partial \theta}
\end{array}\right] \quad v=r \cos \phi
$$

$$
=\left[\begin{array}{ccc}
\sin \phi \cos \theta & r \cos \phi \cos \theta & -r \sin \phi \sin \theta \\
\sin \phi \sin \theta & r \cos \phi \sin \theta & r \sin \phi \cos \theta \\
\cos \phi & -r \sin \phi & 0
\end{array}\right]
$$

Parametric model

warped image
target image

J acobian of the warp

$$
\frac{\partial \mathbf{W}}{\partial \mathbf{p}}=\binom{\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}}}{\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}}}=\left(\begin{array}{cccc}
\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{n}} \\
\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{n}}
\end{array}\right)
$$

J acobian of the warp

$$
\frac{\partial \mathbf{W}}{\partial \mathbf{p}}=\binom{\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}}}{\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}}}=\left(\begin{array}{cccc}
\frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{n}} \\
\frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{n}}
\end{array}\right)
$$

For example, for affine

$$
\begin{aligned}
& \mathbf{W}(\mathbf{x} ; \mathbf{p})=\left(\begin{array}{ccc}
1+d_{x x} & d_{x y} & d_{x} \\
d_{y x} & 1+d_{y y} & d_{y}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\binom{\left(1+d_{x x}\right) x+d_{x y} y+d_{x}}{d_{y x} x+\left(1+d_{y y}\right) y+d_{y}} \\
& \Rightarrow \frac{\partial \mathbf{W}}{\partial \mathbf{p}}=\left(\begin{array}{cccccc}
x & 0 & y & 0 & 1 & 0 \\
0 & x & 0 & y & 0 & 1
\end{array}\right) \\
& d_{x x} d_{y x} \\
& d_{x y} d_{y y} \\
& d_{x} d_{y}
\end{aligned}
$$

Parametric model

$$
\begin{aligned}
& \arg \min _{\Delta \mathbf{p}} \sum_{\mathbf{x}}\left(I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right)^{2} \\
& 0=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right] \\
& \Delta \mathbf{p}=\mathbf{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
\end{aligned}
$$

(Approximated) Hessian $\quad \mathbf{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]$

Lucas-Kanade algorithm

iterate

1) warp I with $\mathrm{W}(\mathrm{x} ; \mathrm{p})$
2) compute error image $T(x, y)-l(W(x, p))$
3) compute gradient image ∇I with $W(x, p)$
4) evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at ($x ; p$)
5) compute $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
6) compute Hessian
7) compute $\sum_{x}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{r}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]$
8) solve Δp
9) update p by $\mathrm{p}+\Delta \mathrm{p}$
until converge

$$
\Delta \mathbf{p}=\mathbf{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{T}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
$$

Coarse-to-fine strategy

Application of image alignment

Direct vs feature-based

- Direct methods use all information and can be very accurate, but they depend on the fragile "brightness constancy" assumption.
- Iterative approaches require initialization.
- Not robust to illumination change and noise images.
- In early days, direct method is better.
- Feature based methods are now more robust and potentially faster.
- Even better, it can recognize panorama without initialization.

Tracking

Tracking

$$
\mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{t}) \xrightarrow{(\mathbf{u}, \mathbf{v})} \mathbf{I}(\mathbf{x}+\mathbf{u}, \mathbf{y}+\mathbf{v}, \mathbf{t}+\mathbf{1})
$$

Tracking

brightness constancy $I(x+u, y+v, t+1)-I(x, y, t)=0$

$$
\begin{aligned}
& I(x, y, t)+u I_{x}(x, y, t)+v I_{y}(x, y, t)+I_{t}(x, y, t)-I(x, y, t) \approx 0 \\
& u I_{x}(x, y, t)+v I_{y}(x, y, t)+I_{t}(x, y, t)=0
\end{aligned}
$$

$I_{x} u+I_{y} v+I_{t}=0 \quad$ optical flow constraint equation

Optical flow constraint equation

At a single image pixel, we get a line:

Multiple constraints

Combine constraints to get an estimate of velocity.

Area-based method

DigivFX

- Assume spatial smoothness

Area-based method

- Assume spatial smoothness

$$
\begin{aligned}
& E(u, v)=\sum_{x, y}\left(I_{x} u+I_{y} v+I_{t}\right)^{2} \\
& \frac{\partial E}{\partial u}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}=0 \\
& \frac{\partial E}{\partial v}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}=0
\end{aligned}
$$

Area-based method

$$
\begin{aligned}
& {\left[\sum_{R} I_{x}^{2}\right] u+\left[\sum_{R} I_{x} I_{y}\right] v=-\sum_{R} I_{x} I_{t}} \\
& {\left[\sum_{R} I_{x} I_{y}\right] u+\left[\sum_{R} I_{y}^{2}\right] v=-\sum_{R} I_{y} I_{t}} \\
& {\left[\begin{array}{ll}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
-\sum I_{x} I_{t} \\
-\sum I_{y} I_{t}
\end{array}\right]}
\end{aligned}
$$

must be invertible

Area-based method

- The eigenvalues tell us about the local image structure.
- They also tell us how well we can estimate the flow in both directions.
- Link to Harris corner detector.

Textured area

$$
\left[\begin{array}{cc}
\sum_{\text {Gradients }} I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y}^{2}
\end{array}\right]
$$

Edge

$$
\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y}^{2}
\end{array}\right]
$$

Gradients oriented in one direction.

Homogenous area

Weak gradients everywhere.

KLT tracking

- Select features by $\min \left(\lambda_{1}, \lambda_{2}\right)>\lambda$
- Monitor features by measuring dissimilarity

Aperture problem

Aperture problem

Aperture problem

Demo for aperture problem

- http://www.sandlotscience.com/Distortions/Br eathing_Square.htm
- http://www.sandlotscience.com/Ambiguous/Ba rberpole_Illusion.htm

Aperture problem

- Larger window reduces ambiguity, but easily violates spatial smoothness assumption

Affine Flow

$$
\begin{gathered}
E(\mathbf{a})=\sum_{x, y \in R}\left(\nabla I^{T} \mathbf{u}(\mathbf{x} ; \mathbf{a})+I_{t}\right)^{2} \\
\mathbf{u}(\mathbf{x} ; \mathbf{a})=\left[\begin{array}{l}
u(\mathbf{x} ; \mathbf{a}) \\
v(\mathbf{x} ; \mathbf{a})
\end{array}\right]=\left[\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right]
\end{gathered}
$$

Divergence

Optimization

$$
E(\mathbf{a})=\sum_{x, y \in R}\left(I_{x} a_{1}+I_{x} a_{2} x+I_{x} a_{3} y+I_{y} a_{4}+I_{y} a_{5} x+I_{y} a_{6} y+I_{t}\right)^{2}
$$

Differentiate wrt the a_{i} and set equal to zero.

$$
\left[\begin{array}{cccccc}
\Sigma I_{x}^{2} & \Sigma I_{x}^{2} x & \Sigma I_{x}^{2} y & \Sigma I_{x} I_{y} & \Sigma I_{x} I_{y} x & \Sigma I_{x} I_{y} y \\
\Sigma I_{x}^{2} x & \Sigma I_{x}^{2} x^{2} & \Sigma I_{x}^{2} x y & \Sigma I_{x} I_{y} x & \Sigma I_{x} I_{y} x^{2} & \Sigma I_{x} I_{y} x y \\
& & & \vdots & &
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right]=\left[\begin{array}{c}
-\Sigma I_{x} I_{t} \\
-\Sigma I_{x} I_{t} x \\
-\Sigma I_{x} I_{t} y \\
-\Sigma I_{y} I_{t} \\
-\Sigma I_{y} I_{t} x \\
-\Sigma I_{y} I_{t} y
\end{array}\right]
$$

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

SIFT tracking (matching actually)

SIFT tracking

Frame 0
\rightarrow
Frame 100

SIFT tracking

Frame $0 \quad \rightarrow \quad$ Frame 200

KLT vs SIFT tracking

- KLT has larger accumulating error; partly because our KLT implementation doesn't have affine transformation?
- SIFT is surprisingly robust
- Combination of SIFT and KLT (example) http://www.frc.ri.cmu.edu/projects/buzzard/smalls/

Rotoscoping (Max Fleischer 1914)

Tracking for rotoscoping

Tracking for rotoscoping

Waking life (2001)

DigivFX

A Scanner Darkly (2006)

- Rotoshop, a proprietary software. Each minute of animation required 500 hours of work.

Optical flow

Single-motion assumption

Violated by

- Motion discontinuity
- Shadows
- Transparency
- Specular reflection

Multiple motion

What is the "best" fitting translational motion?

Multiple motion

Simple problem: fit a line

Least-square fit

Least-square fit

Robust statistics

- Recover the best fit for the majority of the data
- Detect and reject outliers

Approach

Influence is proportional to the derivative of the ρ function.

Want to give less influence to points beyond some value.

Robust weighting

Truncated quadratic

Robust weighting

$$
\rho(x, \sigma)=\frac{x^{2}}{\sigma+x^{2}}
$$

$$
\psi(x, \sigma)=\frac{2 x \sigma}{\left(\sigma+x^{2}\right)^{2}}
$$

Geman \& McClure

Robust estimation

$$
E(\mathbf{a})=\sum_{x, y \in R} \rho\left(I_{x} u+I_{y} v+I_{t}, \sigma\right)
$$

Minimize: differentiate and set equal to zero:

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=\sum_{x, y \in R} \psi\left(I_{x} u+I_{y} v+I_{t}, \sigma\right) I_{x}=0 \\
& \frac{\partial E}{\partial v}=\sum_{x, y \in R} \psi\left(I_{x} u+I_{y} v+I_{t}, \sigma\right) I_{y}=0
\end{aligned}
$$

No closed form solution!

Fragmented occlusion
DigjvFX

Results

Results

Secondary Motion

Regularization and dense optical flow

- Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- Since they also project to nearby pixels in the image, we expect spatial coherence in image flow.

Formalize this Idea

Noisy 1D signal:

Noisy measurements $u(x)$

Regularization

Find the "best fitting" smoothed function $v(x)$

Noisy measurements $u(x)$

Regularization

Spatial smoothness
Minimize:
Faithful to the data assumption

$$
E(v)=\sum_{x=1}^{N}(v(x)-u(x))^{2}+\lambda \sum_{x=1}^{N-1}(v(x+1)-v(x))^{2}
$$

Discontinuities

What about this discontinuity?
What is happening here?
What can we do?

Robust Regularization

Treat large spatial derivatives as outliers.
Minimize:

$$
E(v)=\sum_{x=1}^{N} \rho\left(v(x)-u(x), \sigma_{1}\right)+\lambda \sum_{x=1}^{N-1} \rho\left(v(x+1)-v(x), \sigma_{2}\right)
$$

"Dense" Optical Flow

$$
\begin{gathered}
E_{D}(\mathbf{u}(\mathbf{x}))=\rho\left(I_{x}(\mathbf{x}) u(\mathbf{x})+I_{y}(\mathbf{x}) v(\mathbf{x})+I_{t}(\mathbf{x}), \sigma_{D}\right) \\
E_{S}(u, v)=\sum_{\mathbf{y} \in G(\mathbf{x})}\left[\rho\left(u(\mathbf{x})-u(\mathbf{y}), \sigma_{S}\right)+\rho\left(v(\mathbf{x})-v(\mathbf{y}), \sigma_{S}\right)\right]
\end{gathered}
$$

Objective function:

$$
E(\mathbf{u})=\sum_{\mathbf{x}} E_{D}(\mathbf{u}(\mathbf{x}))+\lambda E_{S}(\mathbf{u}(\mathbf{x}))
$$

When ρ is quadratic $=$ "Horn and Schunck"

Example

Input image
Horizontal motion

Vertical motion

Quadratic:

Robust:

Application of optical flow

Applications of Optical Flow

Whoner
$\operatorname{cocosin}, \mathrm{J}$.
Sourcin
Scokia
What
Dreamsmay COME

Impressionist effect.
Transfer motion of real world to a painting

Input for the NPR algorithm

Brushes

Edge clipping

Gradient

Smooth gradient

Textured brush

Edge clipping

Temporal artifacts

Frame-by-frame application of the NPR algorithm

Temporal coherence

References

- B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, Proceedings of the 1981 DARPA Image Understanding Workshop, 1981, pp121-130.
- Bergen, J. R. and Anandan, P. and Hanna, K. J. and Hingorani, R., Hierarchical Model-Based Motion Estimation, ECCV 1992, pp237-252.
- J. Shi and C. Tomasi, Good Features to Track, CVPR 1994, pp593-600.
- Michael Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding 1996, pp75-104.
- S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, 56(3), 2004, pp221 - 255.
- Peter Litwinowicz, Processing Images and Video for An Impressionist Effects, SIGGRAPH 1997.
- Aseem Agarwala, Aaron Hertzman, David Salesin and Steven Seitz, Keyframe-Based Tracking for Rotoscoping and Animation, SIGGRAPH 2004, pp584-591.

