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Camera is an imperfect device

• Camera is an imperfect device for measuring 
the radiance distribution of a scene because it 
cannot capture the full spectral content and 
dynamic range.

• Limitations in sensor design prevent cameras 
from capturing all information passed by lens.

Camera pipeline

lens sensor shutter
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Assume a static 
scene, Thus, L 
is not a function 
of time.

Camera pipeline

12 bits 8 bits



Real-world response functions

In general, the response function is not provided
by camera makers who consider it part of their
proprietary product differentiation. In addition,
they are beyond the standard gamma curves.

The world is high dynamic range
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The world is high dynamic range Real world dynamic range
• Eye can adapt from ~ 10-6 to 106 cd/m2

• Often 1  :  100,000 in a scene
• Typical 1:50, max 1:500 for pictures
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Real world

High dynamic range

spotmeter
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Camera is not a photometer

• Limited dynamic range
 Perhaps use multiple exposures?

• Unknown, nonlinear response 
 Not possible to convert pixel values to radiance

• Solution:
– Recover response curve from multiple exposures, 

then reconstruct the radiance map

Varying exposure

• Ways to change exposure
– Shutter speed
– Aperture
– Neutral density filters



Shutter speed

• Note: shutter times usually obey a power 
series – each “stop” is a factor of 2

• ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 
1/1000 sec

Usually really is:

¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 
1/1024 sec

Varying shutter speeds

HDRI capturing from multiple exposures 

• Capture images with multiple exposures
• Image alignment (even if you use tripod, it is 

suggested to run alignment)
• Response curve recovery
• Ghost/flare removal

Image alignment

• We will introduce a fast and easy-to-implement 
method for this task, called Median Threshold 
Bitmap (MTB) alignment technique.

• Consider only integral translations. It is enough 
empirically. 

• The inputs are N grayscale images. (You can 
either use the green channel or convert into 
grayscale by Y=(54R+183G+19B)/256)

• MTB is a binary image formed by thresholding 
the input image using the median of intensities.



Why is MTB better than gradient?

• Edge-detection filters are dependent on image 
exposures

• Taking the difference of two edge bitmaps 
would not give a good indication of where the 
edges are misaligned.

Search for the optimal offset

• Try all possible 
offsets.

• Gradient descent
• Multiscale technique

• log(max_offset) levels
• Try 9 possibilities for 

the top level
• Scale by 2 when 

passing down; try its 9 
neighbors

Threshold noise
ignore pixels that are 
close to the threshold

exclusion bitmap



Efficiency considerations

• XOR for taking difference
• AND with exclusion maps
• Bit counting by table lookup

Results

Success rate = 84%. 10% failure due to rotation. 
3% for excessive motion and 3% for too much 
high-frequency content.

Recovering response curve

12 bits 8 bits

Recovering response curve

• We want to obtain the inverse of the response 
curve
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Recovering response curve
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Recovering response curve
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Xij =
ln Xij

Idea behind the math

ln2

Idea behind the math

Each line for a scene point.
The offset is essentially 
determined by the 
unknown Ei



Idea behind the math

Note that there is a shift 
that we can’t recover

Basic idea 
• Design an objective function 
• Optimize it

Math for recovering response curve Recovering response curve

• The solution can be only up to a scale, add a 
constraint 

• Add a hat weighting function



Recovering response curve

• We want 
If P=11, N~25 (typically 50 is used)

• We prefer that selected pixels are well 
distributed and sampled from constant regions. 
They picked points by hand.

• It is an overdetermined system of linear 
equations and can be solved using SVD

How to optimize?

1. Set partial derivatives to zero How to optimize?

1. Set partial derivatives to zero
2.
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Sparse linear system
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Questions

• Will g(127)=0 always be satisfied? Why or why 
not?

• How to find the least-square solution for an 
over-determined system?

Least-square solution for a linear system

bAx 
nm n m
nm 

They are often mutually incompatible. We instead find x to 
minimize the norm              of the residual vector           .
If there are multiple solutions, we prefer the one with the
minimal length     .

bAx bAx 

x

Least-square solution for a linear system

If we perform SVD on A and rewrite it as 

then                     is the least-square solution.

TUΣA V
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pseudo inverse
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Proof Proof

Libraries for SVD

• Matlab
• GSL
• Boost
• LAPACK
• ATLAS

Matlab code



Matlab code
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1;              %% Include the data-fitting equations
for i=1:size(Z,1)
for j=1:size(Z,2)

wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end
A(k,129) = 1;       %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2         %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end
x = A\b;            %% Solve the system using SVD
g = x(1:n);
lE = x(n+1:size(x,1));

Recovered response function

Constructing HDR radiance map

combine pixels to reduce noise and obtain a more 
reliable estimation

Reconstructed radiance map



What is this for?

• Human perception
• Vision/graphics applications

Automatic ghost removal

before after

Weighted variance

Moving objects and high-contrast edges render high variance.

Region masking

Thresholding; dilation; identify regions;   



Best exposure in each region Lens flare removal

before after

Easier HDR reconstruction

raw image = 
12-bit CCD snapshot

Easier HDR reconstruction

Xij=Ei* Δtj

Exposure (X)

Δt



• 12 bytes per pixel, 4 for each channel

sign exponent mantissa

PF
768 512
1
<binary image data>

Floating Point TIFF similar

Text header similar to Jeff Poskanzer’s .ppm
image format:

Portable floatMap (.pfm)

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Radiance format (.pic, .hdr, .rad)

Red Green Blue Exponent

32 bits/pixel

ILM’s OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

• Several lossless compression options, 2:1 typical
• Compatible with the “half” datatype in NVidia's Cg
• Supported natively on GeForce FX and Quadro FX

• Available at http://www.openexr.net/

Radiometric self calibration

• Assume that any 
response function 
can be modeled 
as a high-order 
polynomial

• No need to know 
exposure time in 
advance. Useful 
for cheap 
cameras
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Mitsunaga and Nayar 

• To find the coefficients cm to minimize the 
following
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Mitsunaga and Nayar

• Again, we can only solve up to a scale. Thus, 
add a constraint f(1)=1. It reduces to M-1 
variables.

• How to solve it?

Mitsunaga and Nayar

• We solve the above iteratively and update the 
exposure ratio accordingly

• How to determine M? Solve up to M=10 and pick 
up the one with the minimal error. Notice that 
you prefer to have the same order for all 
channels. Use the combined error.
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Robertson et. al.
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Robertson et. al.

repeat
assuming           is known, optimize for 
assuming      is known, optimize for

until converge

)( ijZg iE

iE )( ijZg

  
ij

jiijijEgi tEZgZwEg
i

2

,
)()(minargˆ,ˆ

Robertson et. al.

repeat
assuming           is known, optimize for 
assuming      is known, optimize for

until converge

)( ijZg iE

iE )( ijZg

  
ij

jiijijEgi tEZgZwEg
i

2

,
)()(minargˆ,ˆ

Robertson et. al.

repeat
assuming           is known, optimize for 
assuming      is known, optimize for

until converge
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Space of response curves Space of response curves

Patch-Based HDR HDR Video
• High Dynamic Range Video

Sing Bing Kang, Matthew Uyttendaele, Simon 
Winder, Richard Szeliski
SIGGRAPH 2003

video



Assorted pixel Assorted pixel 

Assorted pixel A Versatile HDR Video System

video



A Versatile HDR Video System HDR becomes common practice
• Many cameras has bracket exposure modes
• iPhone 4 has HDR option, but it is more 

exposure blending rather than true HDR.
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