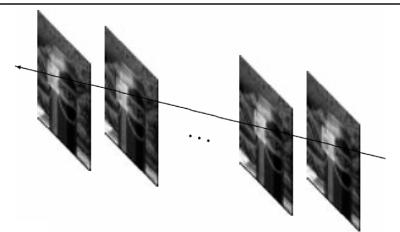


Optical flow	DigjVFX	Three assumptions	DigiVFX
		 Brightness consistency Spatial coherence Temporal persistence 	
Brightness consistency	DigjVFX	Spatial coherence	DigiVFX
		Surface	mage Plane
Image measurement (e.g. brightness) in a s remain the same although their location ma		 Neighboring points in the scene typical same surface and hence typically have Since they also project to nearby pixed we expect spatial coherence in image 	ally belong to the e similar motions. els in the image,

Temporal persistence



The image motion of a surface patch changes gradually over time.

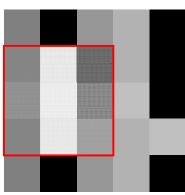
Simple approach (for translation)

Digi<mark>VFX</mark>

DigiVFX

• Minimize brightness difference

$$E(u,v) = \sum (I(x+u, y+v) - T(x, y))^{2}$$



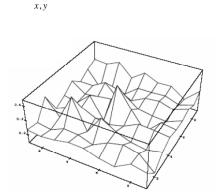
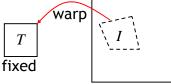


Image registration

Goal: register a template image T(x) and an input image I(x), where $x=(x,y)^T$. (warp I so that it matches T)

Image alignment: I(x) and T(x) are two images Tracking: T(x) is a small patch around a point p in the image at t. I(x) is the image at time t+1.

Optical flow: T(x) and I(x) are patches of images at t and t+1.



Simple SSD algorithm

Digi<mark>VFX</mark>

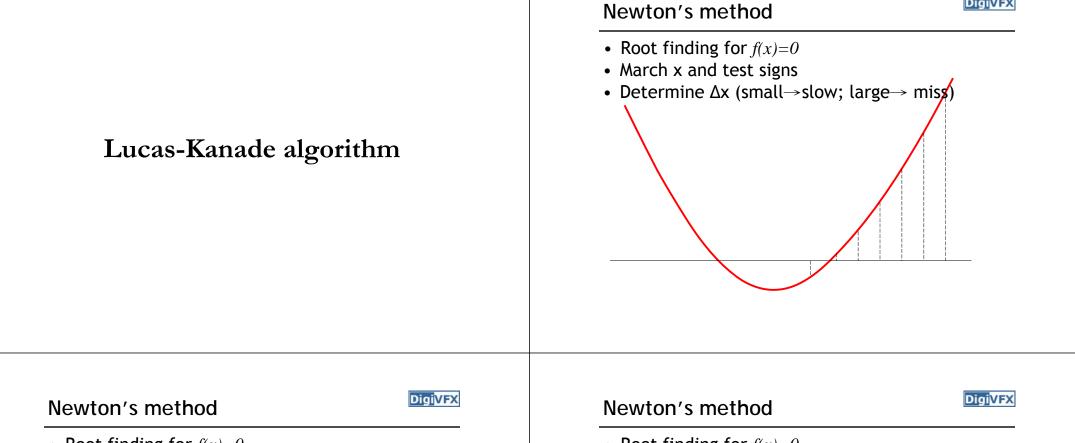
For each offset (*u*, *v*)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

Problems:

- Not efficient
- No sub-pixel accuracy

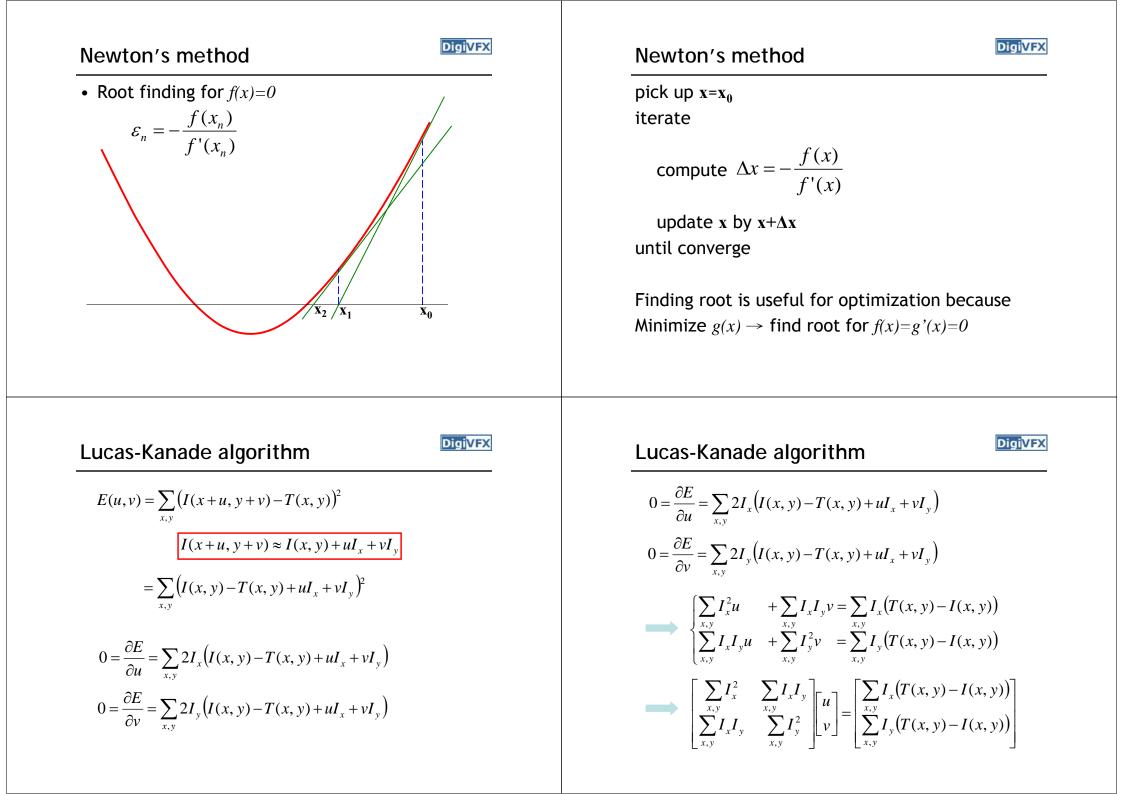


• Root finding for f(x)=0

• Root finding for f(x)=0Taylor's expansion:

$$f(x_0 + \varepsilon) = f(x_0) + f'(x_0)\varepsilon + \frac{1}{2}f''(x_0)\varepsilon^2 + \dots$$
$$f(x_0 + \varepsilon) \approx f(x_0) + f'(x_0)\varepsilon$$

$$\varepsilon_n = -\frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$



Lucas-Kanade algorithm

DigiVFX

iterate

shift I(x,y) with (u,v) compute gradient image I_x, I_y compute error image T(x,y)-I(x,y) compute Hessian matrix solve the linear system $(u,v)=(u,v)+(\Delta u,\Delta v)$

until converge

$$\begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_{x,y} I_x (T(x,y) - I(x,y)) \\ \sum_{x,y} I_y (T(x,y) - I(x,y)) \end{bmatrix}$$

Parametric model

Digi<mark>VFX</mark>

minimize $\sum_{\mathbf{x}} (I(\mathbf{W}(\mathbf{x};\mathbf{p}+\Delta\mathbf{p})) - T(\mathbf{x}))^2$ with respect to $\Delta\mathbf{p}$

$$W(\mathbf{x};\mathbf{p} + \Delta \mathbf{p}) \approx W(\mathbf{x};\mathbf{p}) + \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}$$

$$I(W(\mathbf{x};\mathbf{p} + \Delta \mathbf{p})) \approx I(W(\mathbf{x};\mathbf{p}) + \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p})$$

$$\approx I(W(\mathbf{x};\mathbf{p})) + \frac{\partial I}{\partial \mathbf{x}} \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}$$

$$\implies \text{minimize } \sum_{\mathbf{x}} \left(I(W(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right)$$

Parametric model

$$E(u,v) = \sum_{x,y} (I(x+u, y+v) - T(x,y))^{2}$$

$$\Rightarrow E(\mathbf{p}) = \sum_{x} (I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x}))^{2} \leftarrow \bigcup_{\mathbf{p} \text{ to minimize } E(\mathbf{p})}^{\text{Our goal is to find}} \mathbf{p} \text{ to minimize } E(\mathbf{p})$$
for all x in T's domain
translation $\mathbf{W}(\mathbf{x};\mathbf{p}) = \begin{pmatrix} x+d_{x} \\ y+d_{y} \end{pmatrix}, p = (d_{x}, d_{y})^{T}$
affine $\mathbf{W}(\mathbf{x};\mathbf{p}) = \mathbf{A}\mathbf{x} + \mathbf{d} = \begin{pmatrix} 1+d_{xx} & d_{xy} & d_{x} \\ d_{yx} & 1+d_{yy} & d_{y} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$

$$p = (d_{xx}, d_{xy}, d_{yy}, d_{x}, d_{y})^{T}$$
Parametric model
$$\boxed{\text{Warped image target image}} \text{ target image}$$

$$\boxed{\sum_{x} \begin{pmatrix} I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I & \partial \mathbf{W} \\ \partial \mathbf{p} & - I(\mathbf{x}) \end{pmatrix}^{2}}_{Jacobian \text{ of the warp}}$$

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}} \\ \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{n}} \\ \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}} \\ \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{W}_{x}}{\partial \mathbf{p}_{1}} & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{2}} & \cdots & \frac{\partial \mathbf{W}_{y}}{\partial \mathbf{p}_{n}} \end{pmatrix}$$

Jacobian matrix

• The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.

DigiVFX

 $F(x_1, x_2, \dots, x_n) \qquad F: \mathbf{R}^n \to \mathbf{R}^m$ = $(f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n))$

$$J_F(x_1, x_2, \dots, x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial (f_1, f_2, \dots, f_m)}{\partial (x_1, x_2, \dots, x_n)} & \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$F(\mathbf{x} + \Delta \mathbf{x}) \approx F(\mathbf{x}) + J_F(\mathbf{x})\Delta \mathbf{x}$$

District modelWarped imagetarget imageimage gradient $\int I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})^2$ Jacobian of the warp $\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}} \\ \frac{\partial \mathbf{W}_y}{\partial \mathbf{p}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_1} & \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_2} & \cdots & \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_n} \\ \frac{\partial \mathbf{W}_y}{\partial \mathbf{p}_1} & \frac{\partial \mathbf{W}_y}{\partial \mathbf{p}_2} & \cdots & \frac{\partial \mathbf{W}_y}{\partial \mathbf{p}_n} \end{pmatrix}$

DigiVFX Jacobian matrix $t = r \sin \phi \cos \theta$ $F: \mathbf{R} \times [0, \pi] \times [0, 2\pi] \to \mathbf{R}^3$ $u = r \sin \phi \sin \theta$ $F(r,\phi,\theta) = (t,u,v)$ $J_{F}(r,\phi,\theta) = \begin{bmatrix} \frac{\partial t}{\partial r} & \frac{\partial t}{\partial \phi} & \frac{\partial t}{\partial \theta} \\ \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \phi} & \frac{\partial u}{\partial \theta} \\ \frac{\partial v}{\partial r} & \frac{\partial v}{\partial \phi} & \frac{\partial v}{\partial \theta} \end{bmatrix} \qquad v = r\cos\phi$ $\int \sin\phi\cos\theta \quad r\cos\phi\cos\theta \quad -r\sin\phi\sin\theta$ $= \sin\phi\sin\theta \quad r\cos\phi\sin\theta \quad r\sin\phi\cos\theta$ $\cos\phi - r\sin\phi$ 0 DigiVFX Jacobian of the warp $\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}} \\ \frac{\partial \mathbf{W}_y}{\partial \mathbf{p}_y} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_1} & \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_2} & \dots & \frac{\partial \mathbf{W}_x}{\partial \mathbf{p}_n} \\ \frac{\partial \mathbf{W}_y}{\partial \mathbf{W}_y} & \frac{\partial \mathbf{W}_y}{\partial \mathbf{W}_y} & \dots & \frac{\partial \mathbf{W}_y}{\partial \mathbf{W}_y} \end{pmatrix}$ For example, for affine $\mathbf{W}(\mathbf{x};\mathbf{p}) = \begin{pmatrix} 1 + d_{xx} & d_{xy} & d_{x} \\ d_{yx} & 1 + d_{yy} & d_{y} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} (1 + d_{xx})x + d_{xy}y + d_{x} \\ d_{yx}x + (1 + d_{yy})y + d_{y} \end{pmatrix}$ $\longrightarrow \frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{pmatrix} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{pmatrix}$

 $d_{rr} d_{rr} d_{rr} d_{rr} d_{rr}$

Parametric model

DigiVFX

$$\arg\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left(I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right)^{2}$$
$$\longrightarrow 0 = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]$$
$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x};\mathbf{p})) \right]$$

(Approximated) Hessian
$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

Lucas-Kanade algorithm

iterate

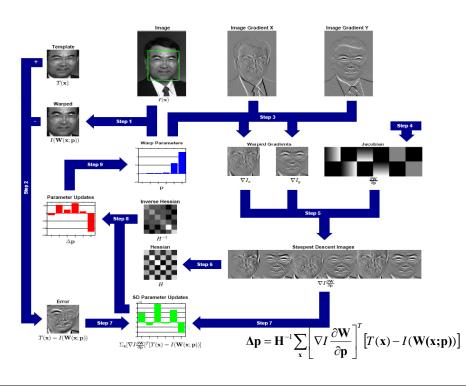
- 1) warp I with W(x;p)
- 2) compute error image T(x,y)-I(W(x,p))
- 3) compute gradient image ∇I with W(x,p)
- evaluate Jacobian $\frac{\partial W}{\partial p}$ at (x;p) compute $\nabla I \frac{\partial W}{\partial p}$ 4)
- 5)
- compute Hessian 6)

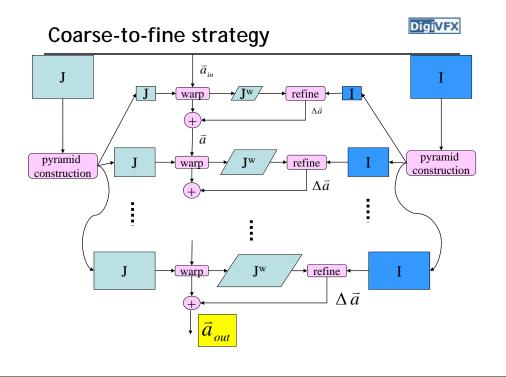
7) compute
$$\sum_{i} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{i} [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x};\mathbf{p}))]$$

- 8) solve Δp
- update p by $p+\Delta p$ 9)

until converge

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x};\mathbf{p})) \right]$$





Application of image alignment

Direct vs feature-based

- Direct methods use all information and can be very accurate, but they depend on the fragile "brightness constancy" assumption.
- Iterative approaches require initialization.
- Not robust to illumination change and noise images.
- In early days, direct method is better.
- Feature based methods are now more robust and potentially faster.
- Even better, it can recognize panorama without initialization.

Tracking

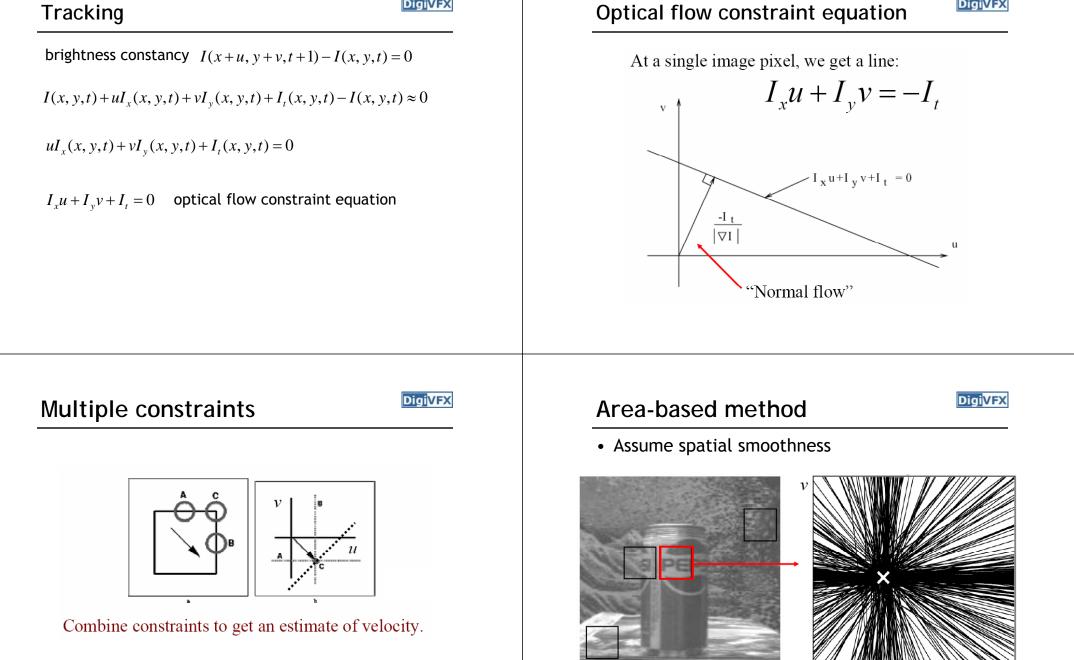
DigiVFX

$$I(x,y,t) \xrightarrow{(u, v)} I(x+u,y+v,t+1)$$

Tracking

Tracking

DigiVFX



U

Area-based method

DigiVFX

• Assume spatial smoothness

$$E(u, v) = \sum_{x, y} (I_{x}u + I_{y}v + I_{t})^{2}$$

$$\frac{\partial E}{\partial u} = \sum_{R} (I_x u + I_y v + I_t) I_x = 0$$
$$\frac{\partial E}{\partial v} = \sum_{R} (I_x u + I_y v + I_t) I_y = 0$$

Area-based method

 $\begin{bmatrix} \sum_{R} I_{x}^{2} \end{bmatrix} u + \begin{bmatrix} \sum_{R} I_{x} I_{y} \end{bmatrix} v = -\sum_{R} I_{x} I_{t}$ $\begin{bmatrix} \sum_{R} I_{x} I_{y} \end{bmatrix} u + \begin{bmatrix} \sum_{R} I_{y}^{2} \end{bmatrix} v = -\sum_{R} I_{y} I_{t}$

 $\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

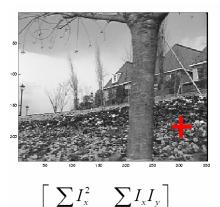
must be invertible

Area-based method

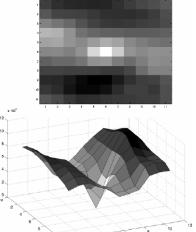
DigiVFX

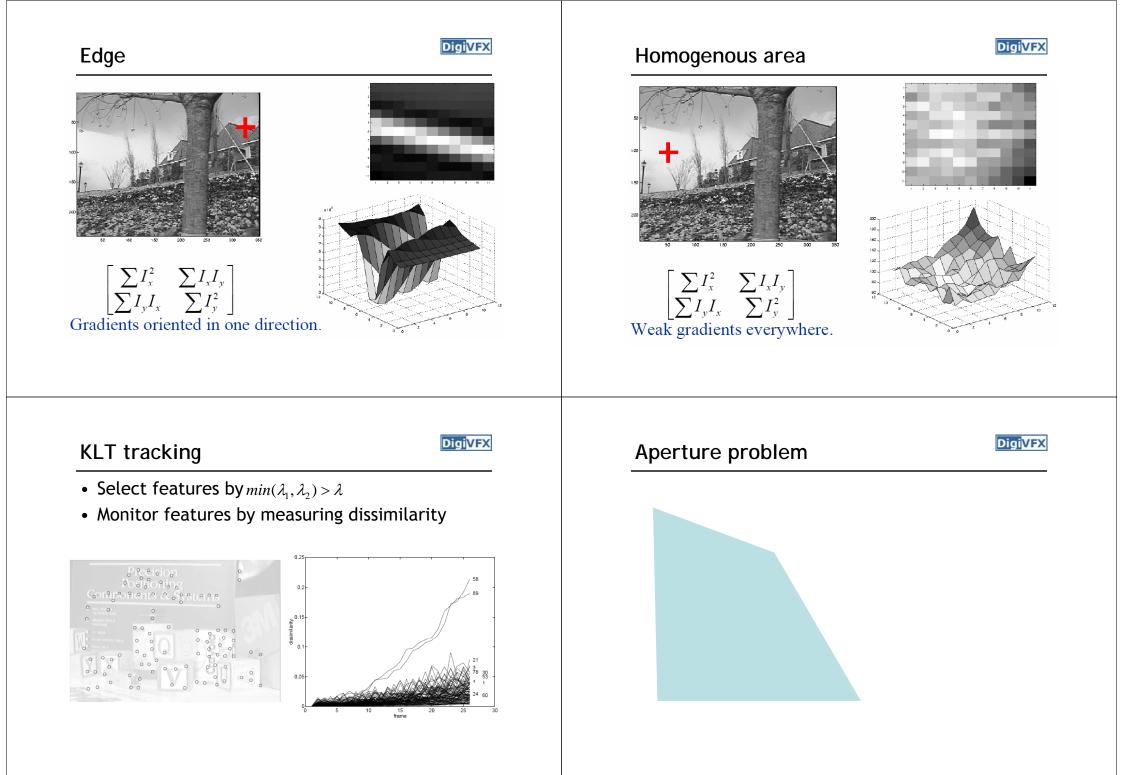
- The eigenvalues tell us about the local image structure.
- They also tell us how well we can estimate the flow in both directions.
- Link to Harris corner detector.

Textured area

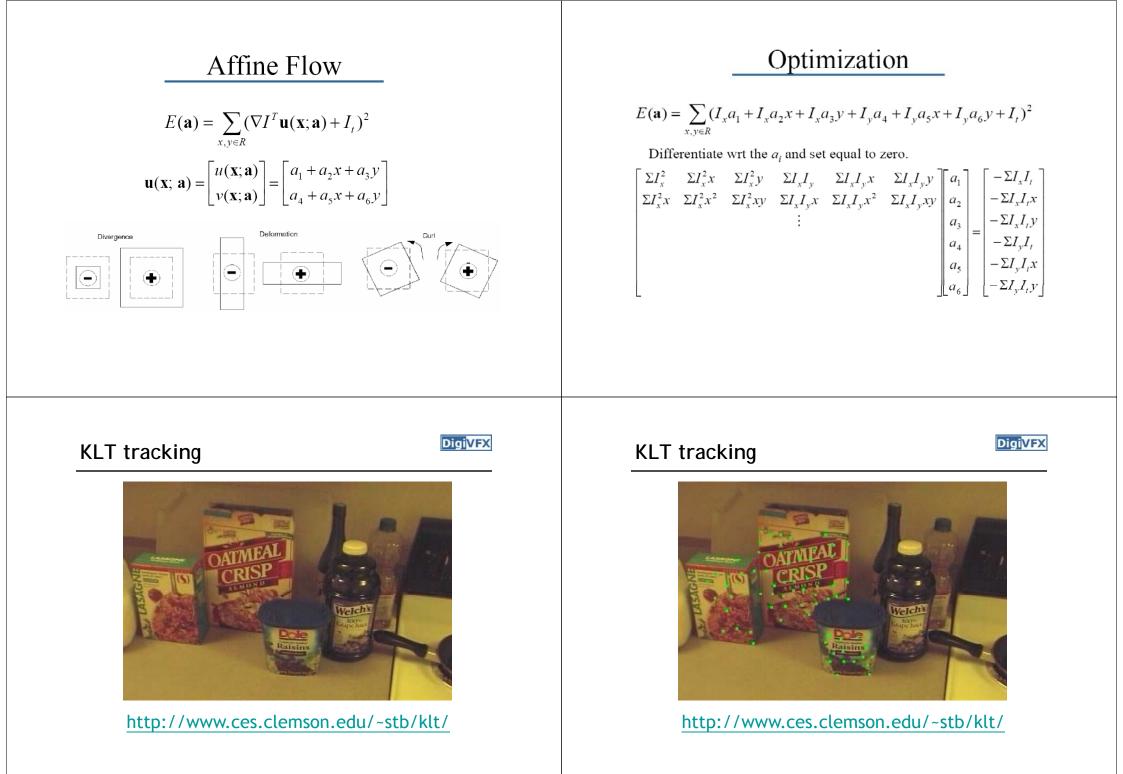


Gradients in x and y.

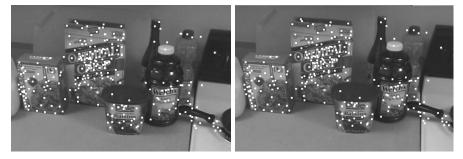




Aperture problem	Aperture problem	DigiVFX
Demo for aperture problem • http://www.sandlotscience.com/Distortions/Br • http://www.sandlotscience.com/Ambiguous/Ba • http://www.sandlotscience.com/Ambiguous/Ba • http://www.sandlotscience.com/Ambiguous/Ba • http://www.sandlotscience.com/Ambiguous/Ba	Aperture problem • Larger window reduces ambiguit violates spatial smoothness assur	



SIFT tracking (matching actually)



Frame 0 \rightarrow Frame 10

SIFT tracking

 \rightarrow

Frame 0

Frame 100

SIFT tracking

DigiVFX

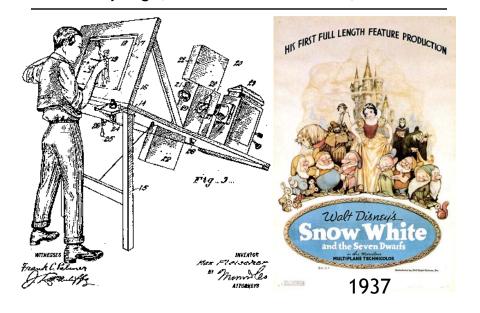
Frame 0 \rightarrow

Frame 200

KLT vs SIFT tracking

- KLT has larger accumulating error; partly because our KLT implementation doesn't have affine transformation?
- SIFT is surprisingly robust
- Combination of SIFT and KLT (<u>example</u>) <u>http://www.frc.ri.cmu.edu/projects/buzzard/smalls/</u>

Rotoscoping (Max Fleischer 1914)

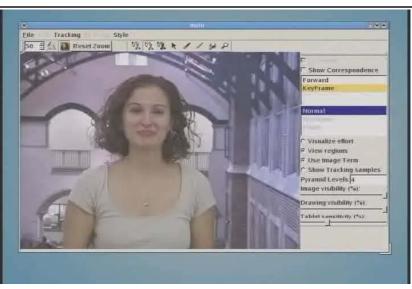


DigiVFX

DigiVFX

Tracking for rotoscoping

Tracking for rotoscoping



 Waking life (2001)

A Scanner Darkly (2006)

• Rotoshop, a proprietary software. Each minute of animation required 500 hours of work.

Optical flow

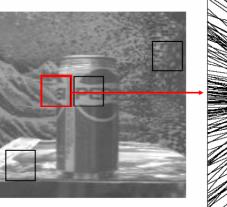
Single-motion assumption

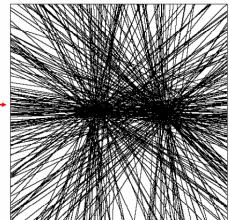
Digi<mark>VFX</mark>

Violated by

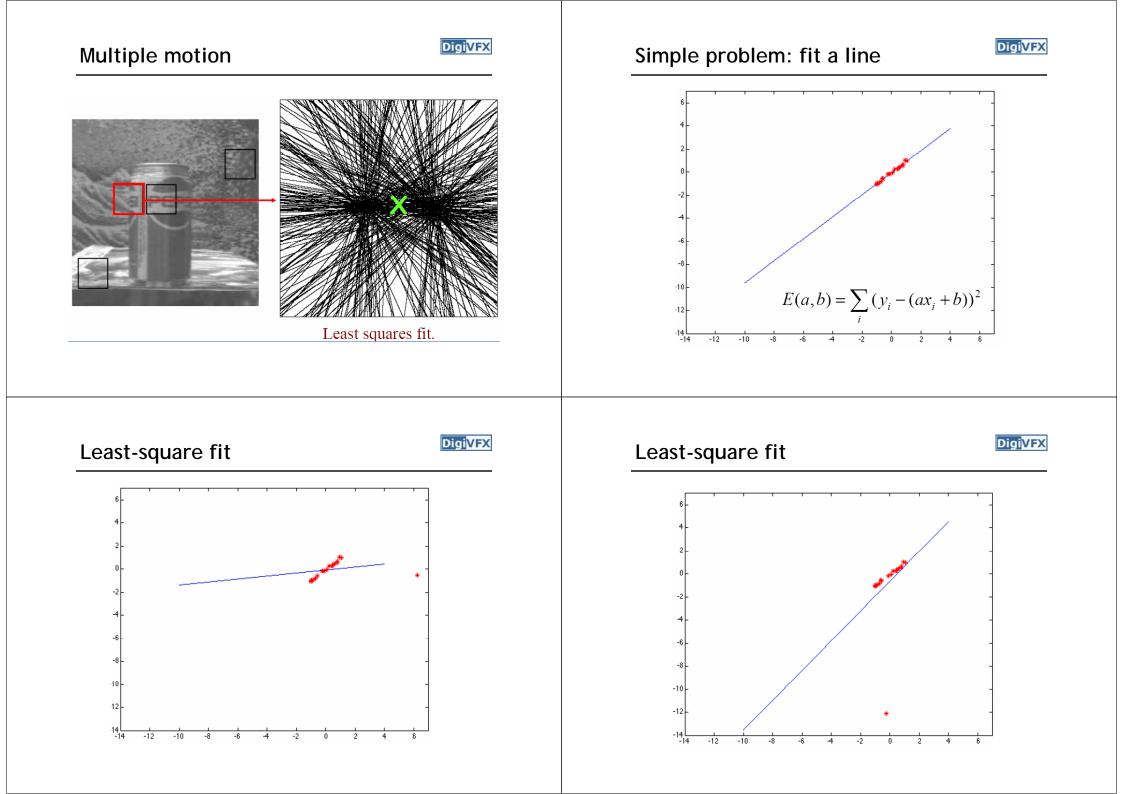
- Motion discontinuity
- Shadows
- Transparency
- Specular reflection
- ...

Multiple motion





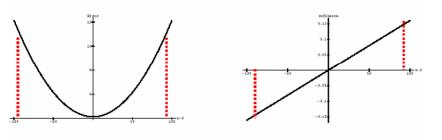
What is the "best" fitting translational motion?



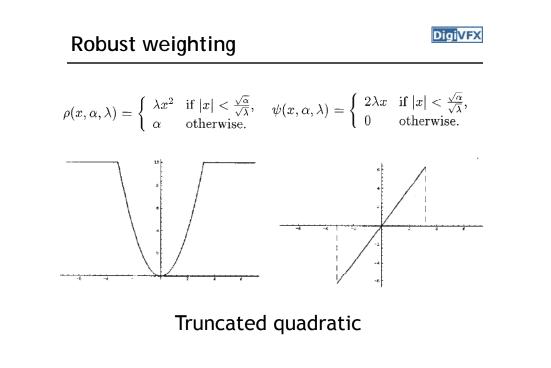
Robust statistics

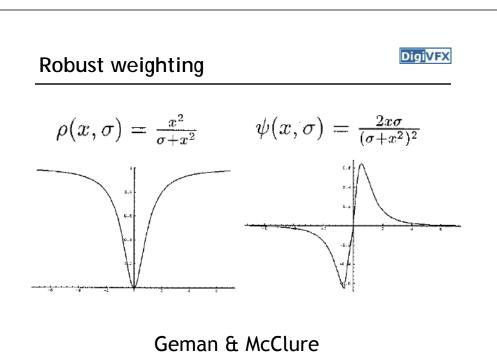
- DigiVFX
- Recover the best fit for the majority of the data
- Detect and reject outliers

Influence is proportional to the derivative of the ρ function.



Want to give less influence to points beyond some value.





Robust estimation

DigiVFX

$$E(\mathbf{a}) = \sum_{x,y \in R} \rho(I_x u + I_y v + I_t, \sigma)$$

Minimize: differentiate and set equal to zero:

$$\frac{\partial E}{\partial u} = \sum_{x,y \in R} \psi(I_x u + I_y v + I_t, \sigma)I_x = 0$$
$$\frac{\partial E}{\partial v} = \sum_{x,y \in R} \psi(I_x u + I_y v + I_t, \sigma)I_y = 0$$

No closed form solution!

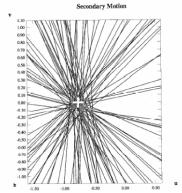
Fragmented occlusion

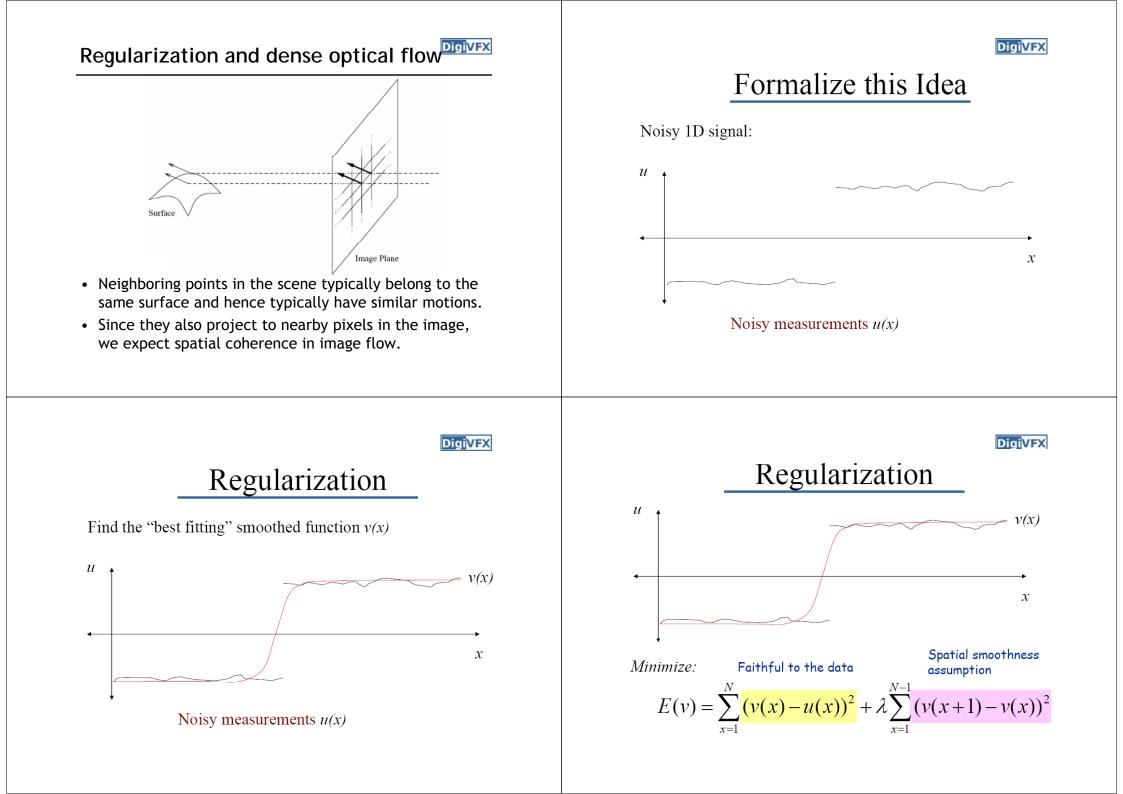


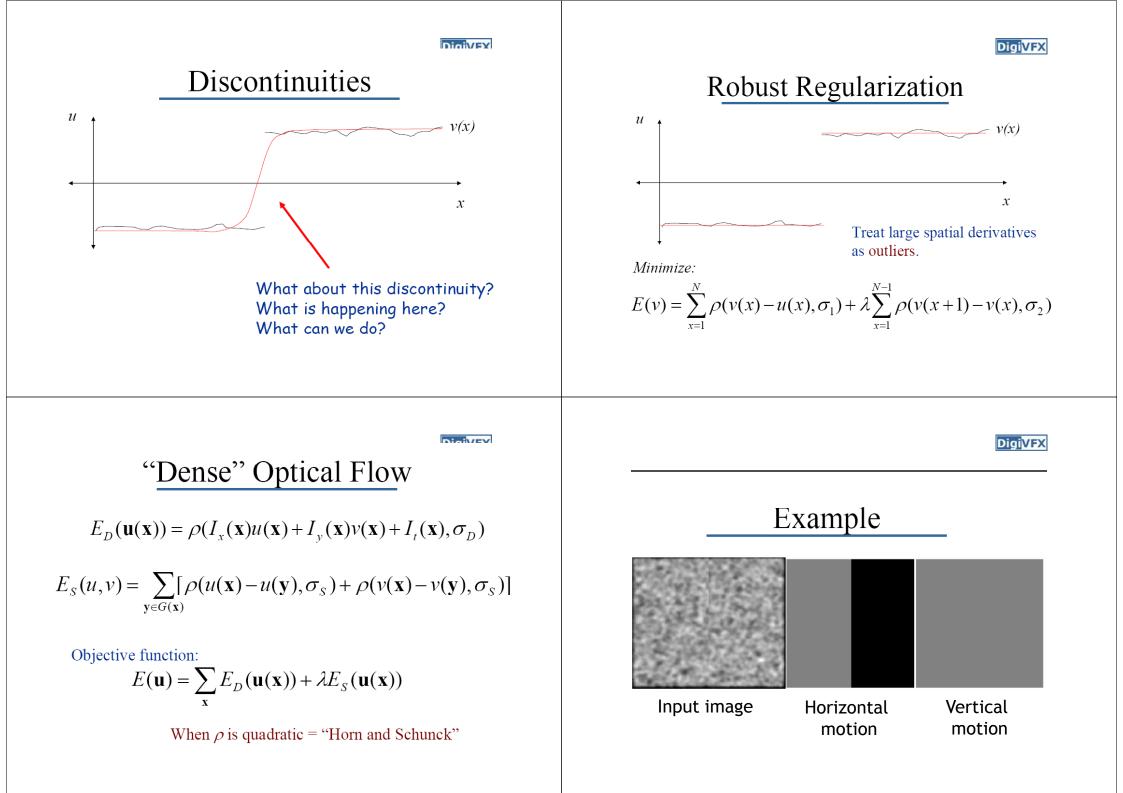
<section-header>

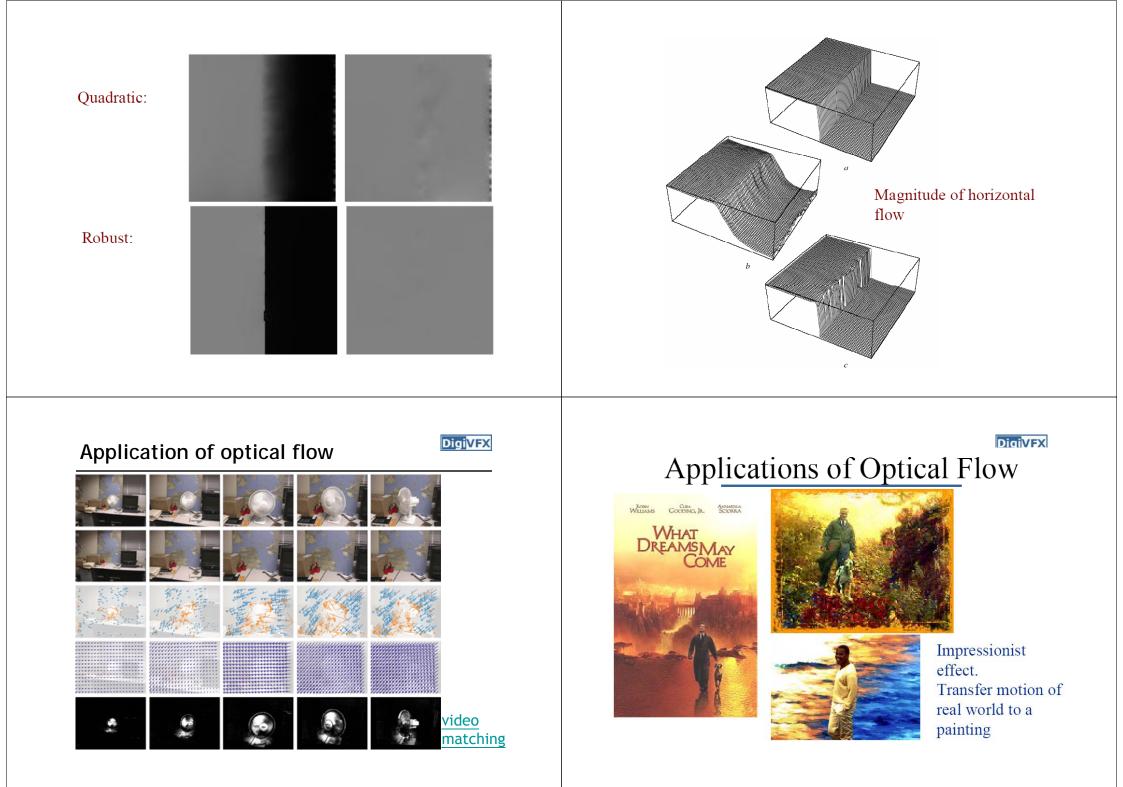
Digi<mark>VFX</mark>

Results









Input for the NPR algorithm

DigiVFX

DigiVFX

Edge clipping

Brushes

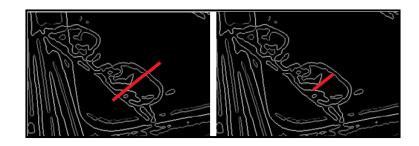
Gradient

Smooth gradient

Edge clipping

DigiVFX

DigiVFX



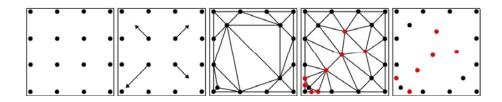
Textured brush

Temporal artifacts

DigiVFX

Frame-by-frame application of the NPR algorithm

Temporal coherence



References

- B.D. Lucas and T. Kanade, <u>An Iterative Image Registration Technique with</u> <u>an Application to Stereo Vision</u>, Proceedings of the 1981 DARPA Image Understanding Workshop, 1981, pp121-130.
- Bergen, J. R. and Anandan, P. and Hanna, K. J. and Hingorani, R., <u>Hierarchical Model-Based Motion Estimation</u>, ECCV 1992, pp237-252.
- J. Shi and C. Tomasi, <u>Good Features to Track</u>, CVPR 1994, pp593-600.
- Michael Black and P. Anandan, <u>The Robust Estimation of Multiple Motions:</u> <u>Parametric and Piecewise-Smooth Flow Fields</u>, Computer Vision and Image Understanding 1996, pp75-104.
- S. Baker and I. Matthews, <u>Lucas-Kanade 20 Years On: A Unifying</u> <u>Framework</u>, International Journal of Computer Vision, 56(3), 2004, pp221 - 255.
- Peter Litwinowicz, <u>Processing Images and Video for An Impressionist</u> <u>Effects</u>, SIGGRAPH 1997.
- Aseem Agarwala, Aaron Hertzman, David Salesin and Steven Seitz, <u>Keyframe-Based Tracking for Rotoscoping and Animation</u>, SIGGRAPH 2004, pp584-591.

