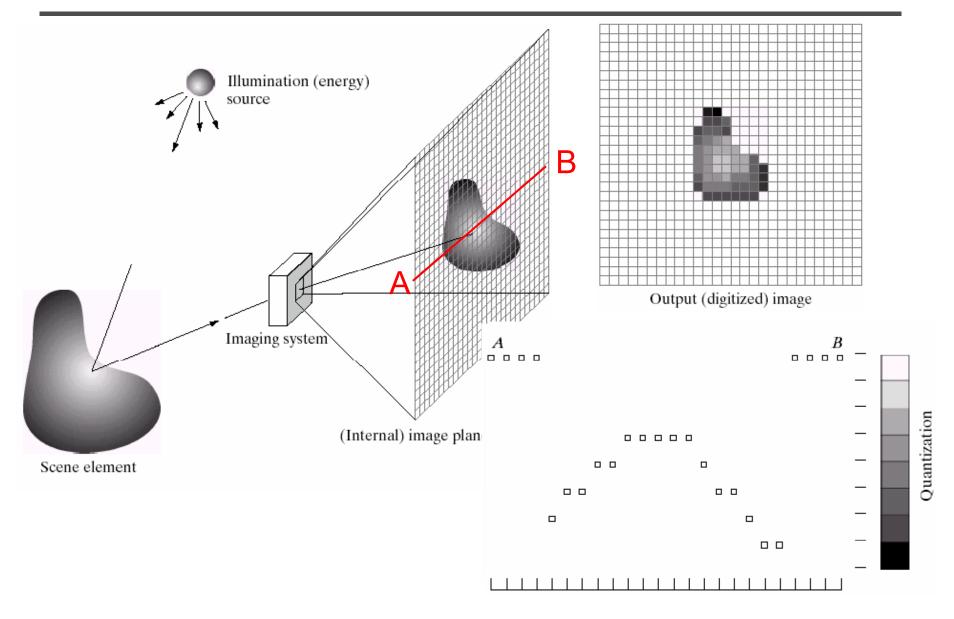
Image warping/morphing

Digital Visual Effects Yung-Yu Chuang

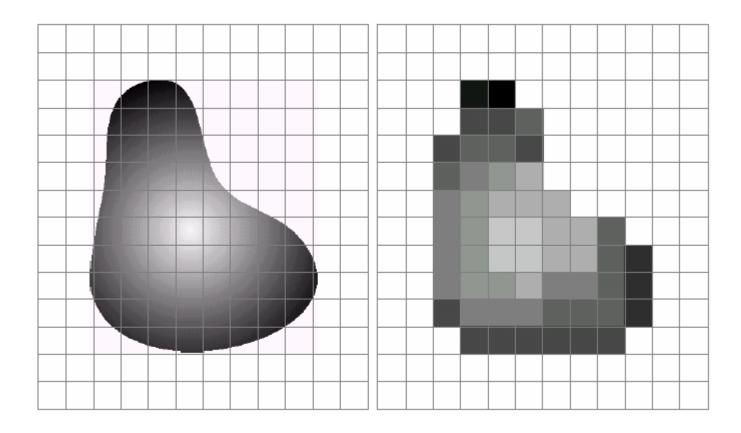
with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros

Image warping

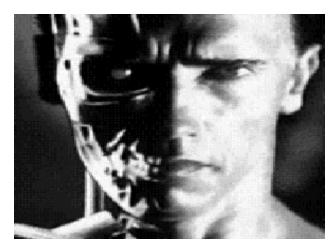
Image formation

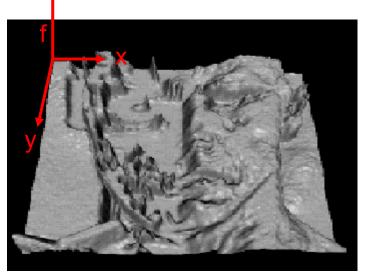


Sampling and quantization



- We can think of an image as a function, $f: \mathbb{R}^2 \rightarrow \mathbb{R}$:
 - f(x, y) gives the intensity at position (x, y)
 - defined over a rectangle, with a finite range:
 - $f: [a, b] \times [c, d] \rightarrow [0, 1]$





• A color image $f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are D apart, we can write this as:
 f[i, j] = Quantize{ f(i D, j D) }
- The image can now be represented as a matrix of integer values

	<i>j</i> —							
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

X

Image warping

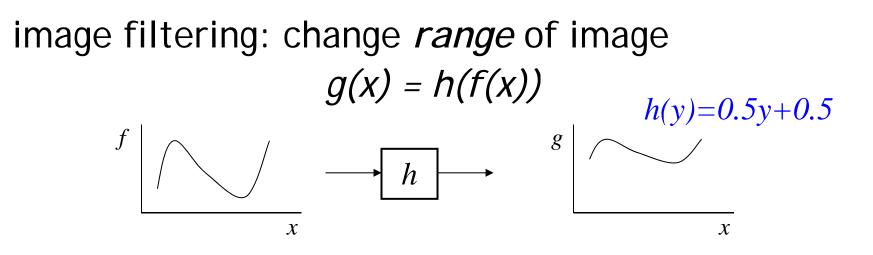


image warping: change *domain* of image g(x) = f(h(x)) h(y)=2y $f \mid \bigwedge \bigwedge \bigwedge h \mapsto \int_{g}^{g} \mid \bigwedge \bigwedge$

х

image filtering: change *range* of image g(x) = h(f(x))h(y)=0.5y+0.5

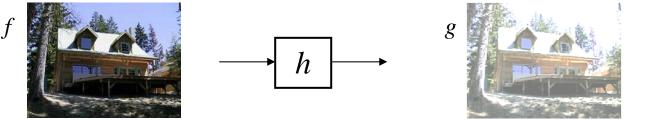
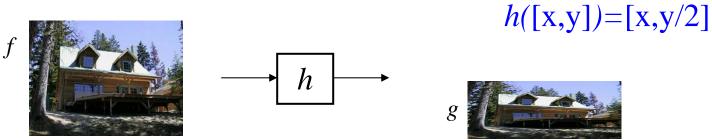


image warping: change *domain* of image g(x) = f(h(x))



Examples of parametric warps:

translation

rotation

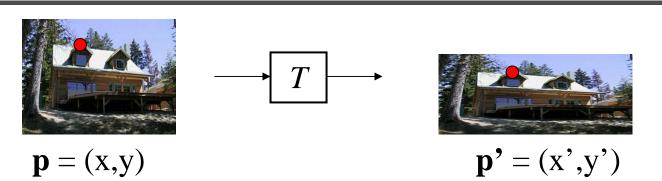
aspect

affine

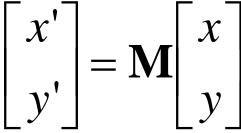
perspective

cylindrical

Parametric (global) warping

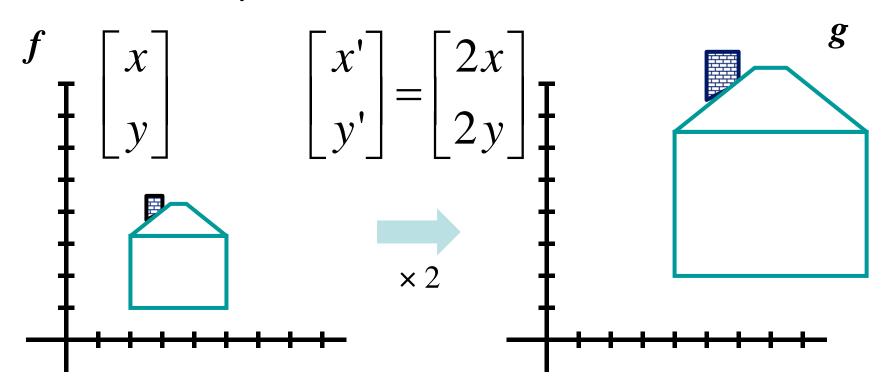


- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Represent 7 as a matrix: $p' = M^* p [\gamma']$



Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

• Non-uniform scaling: different scalars per component: x' | $\left| X \right|$ = g $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{bmatrix} 2x \\ 0.5v \end{bmatrix}$ $x \times 2$, $y \times 0.5$

Scaling

• Scaling operation: x' = ax

$$y' = by$$

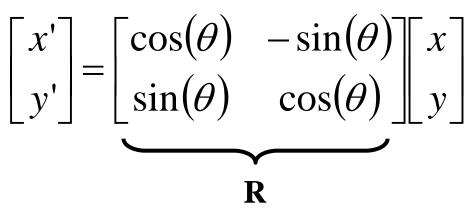
• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's inverse of S?

• This is easy to capture in matrix form:



- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by $-\theta$
 - For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

 $\begin{array}{c} x' = x \\ y' = y \end{array} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

2D Scale around (0,0)? $x' = s_x * x$ $y' = s_y * y$ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos\theta * x - \sin\theta * y$$

$$y' = \sin\theta * x + \cos\theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear? $x' = x + sh_x * y$ $y' = sh_y * x + y$ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

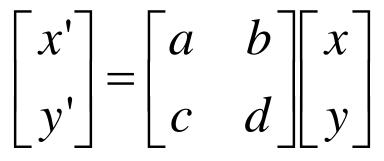
$$\begin{array}{c} x' = -x \\ y' = y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$\begin{array}{c} x' = -x \\ y' = -y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

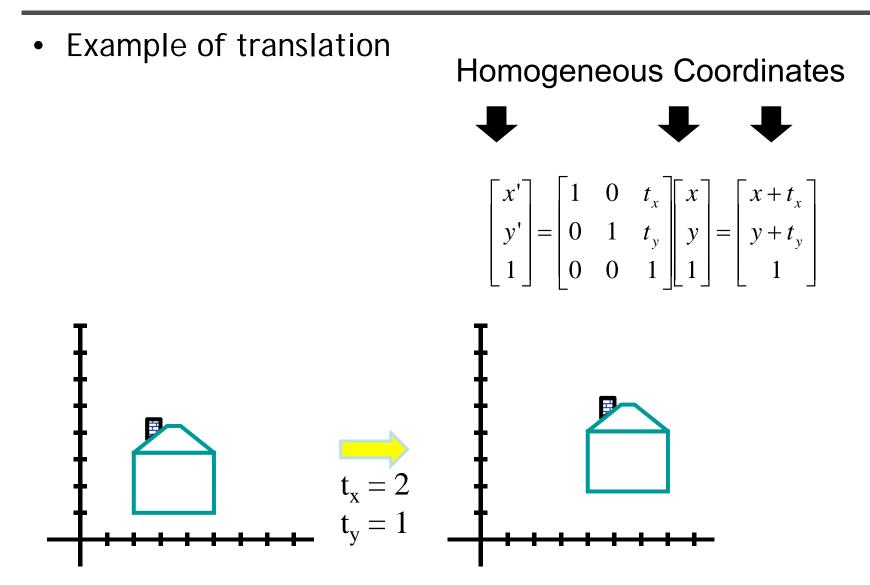


• What types of transformations can not be represented with a 2x2 matrix?

2D Translation? $x' = x + t_x$ NO! $y' = y + t_y$

Only linear 2D transformations can be represented with a 2x2 matrix

Translation



- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition
 - Models change of basis

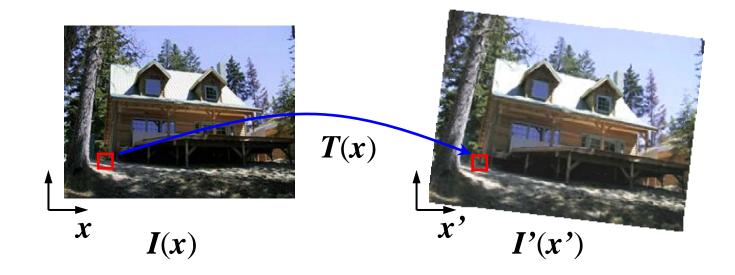
$$\begin{bmatrix} x'\\y'\\w\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

Projective Transformations

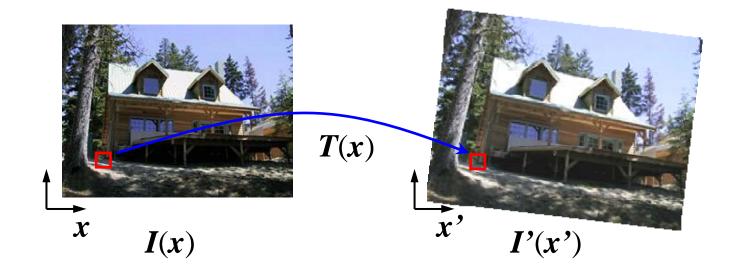
- Projective transformations ...
 - Affine transformations, and
 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
 - Models change of basis

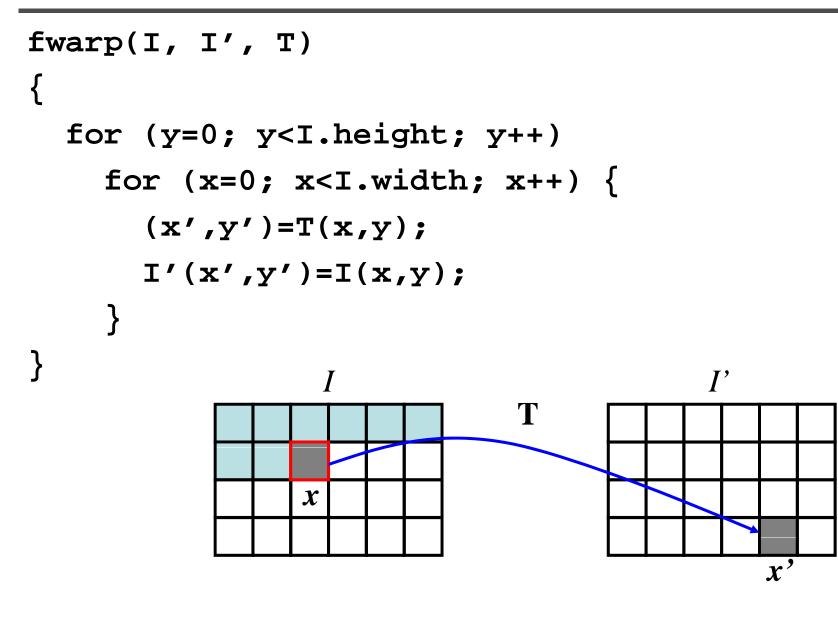
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

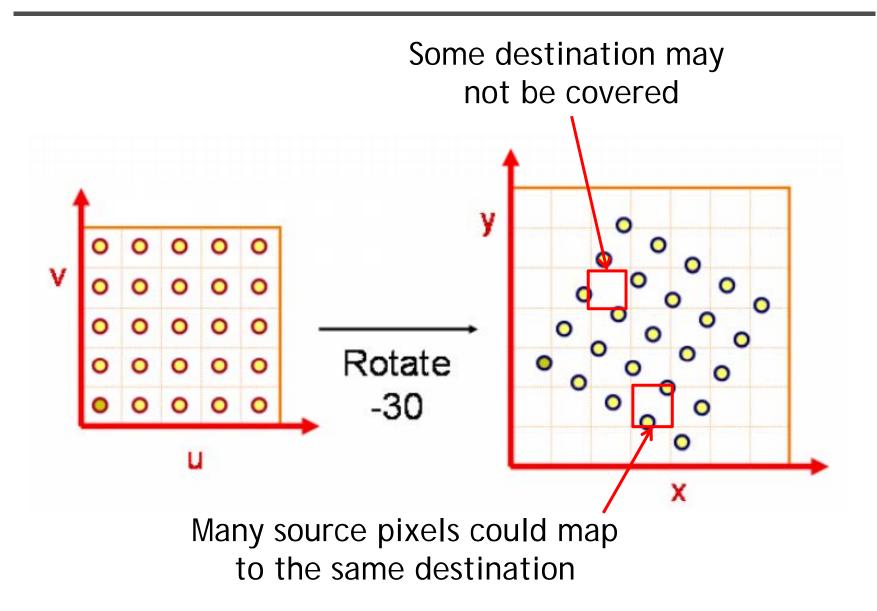
Given a coordinate transform x' = T(x) and a source image I(x), how do we compute a transformed image I'(x') = I(T(x))?



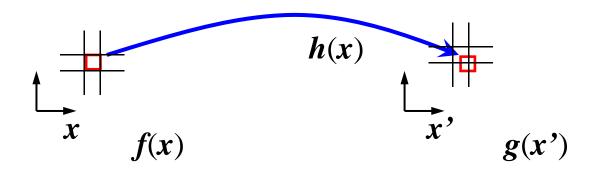
Send each pixel *I(x)* to its corresponding location *x'* = *T(x)* in *I'(x')*

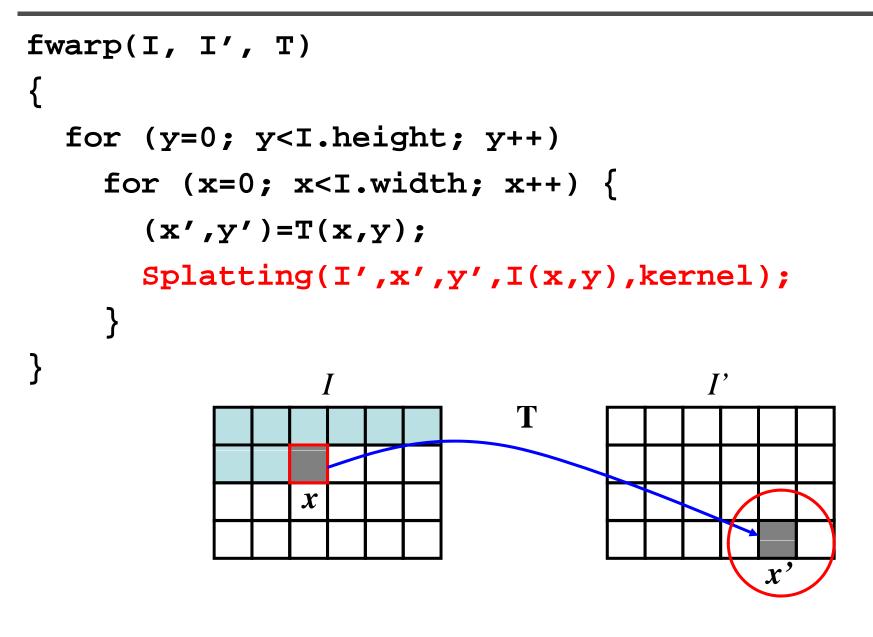




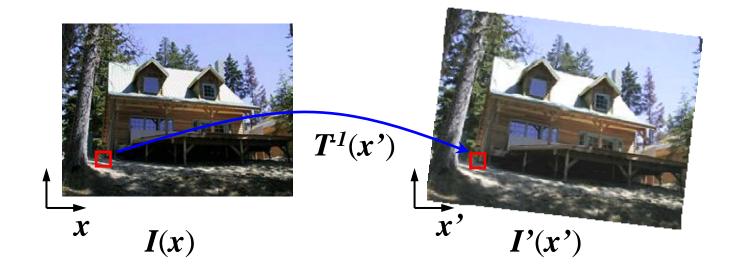


- Send each pixel *I(x)* to its corresponding location *x'* = *T(x)* in *I'(x')*
 - What if pixel lands "between" two pixels?
 - Will be there holes?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)

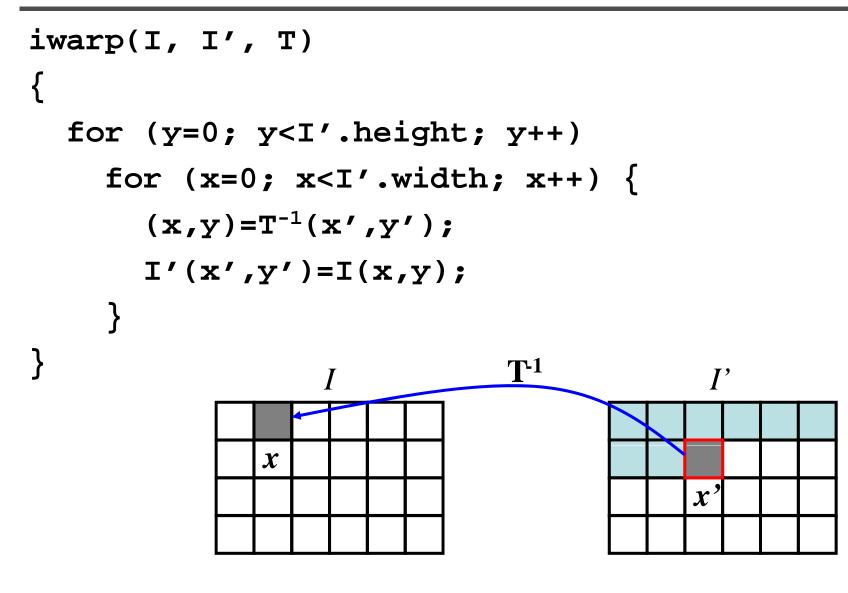




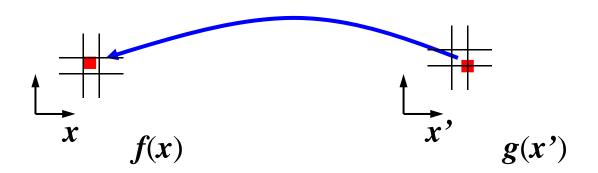
• Get each pixel I'(x') from its corresponding location $x = T^{-1}(x')$ in I(x)



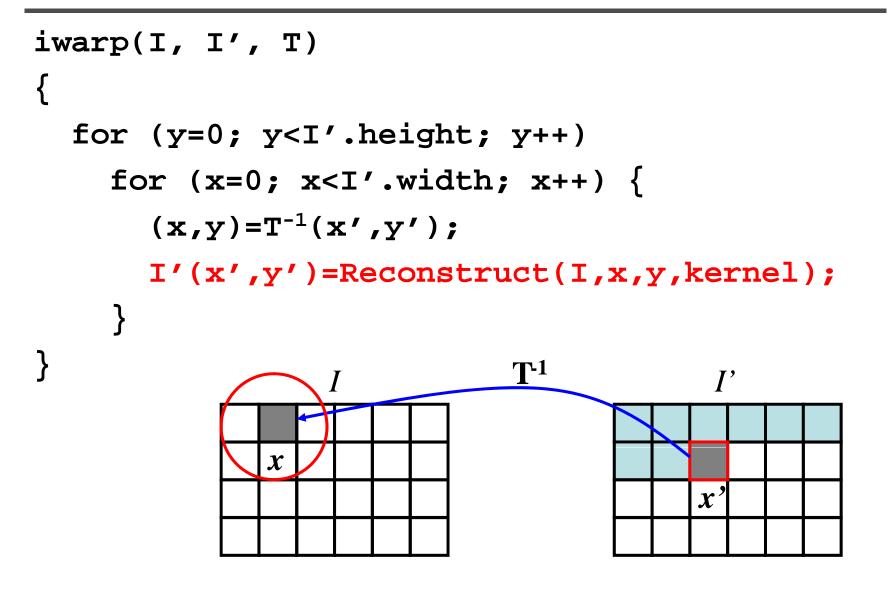
Inverse warping



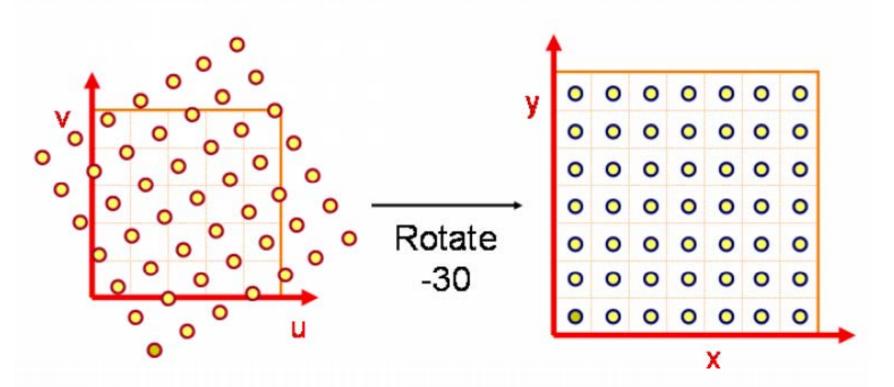
- Get each pixel I'(x') from its corresponding location x = T⁻¹(x') in I(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated (prefiltered) source image



Inverse warping

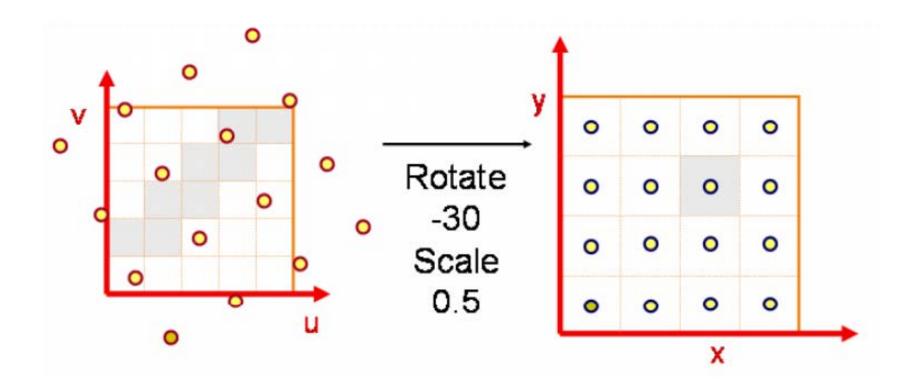


- No hole, but must resample
- What value should you take for non-integer coordinate? Closest one?

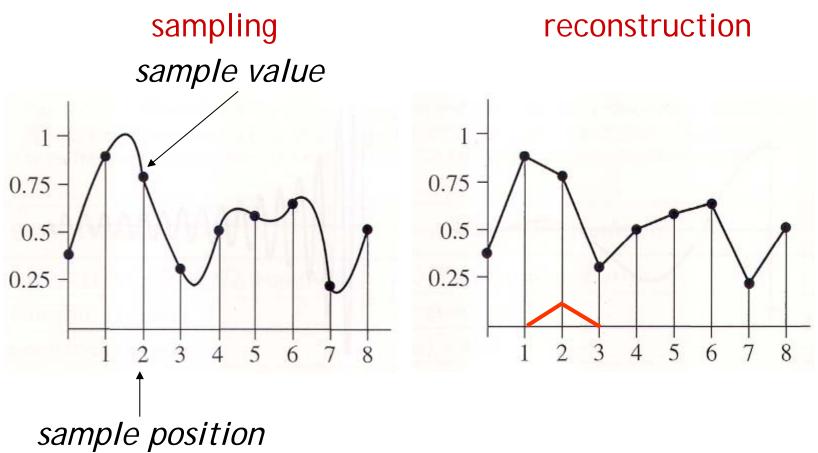


Inverse warping

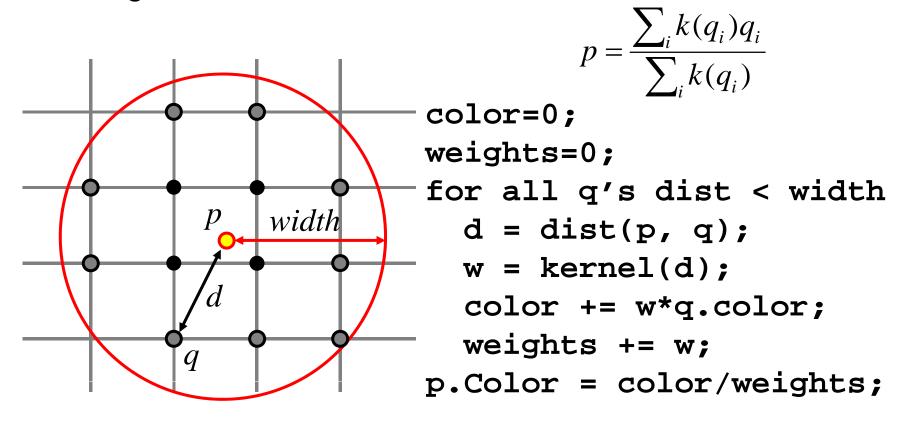
• It could cause aliasing



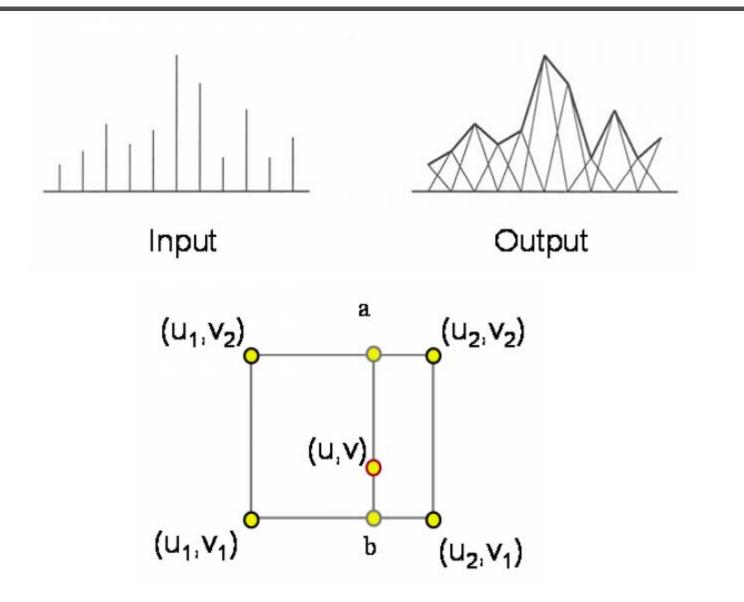
• Reconstruction generates an approximation to the original function. Error is called aliasing.



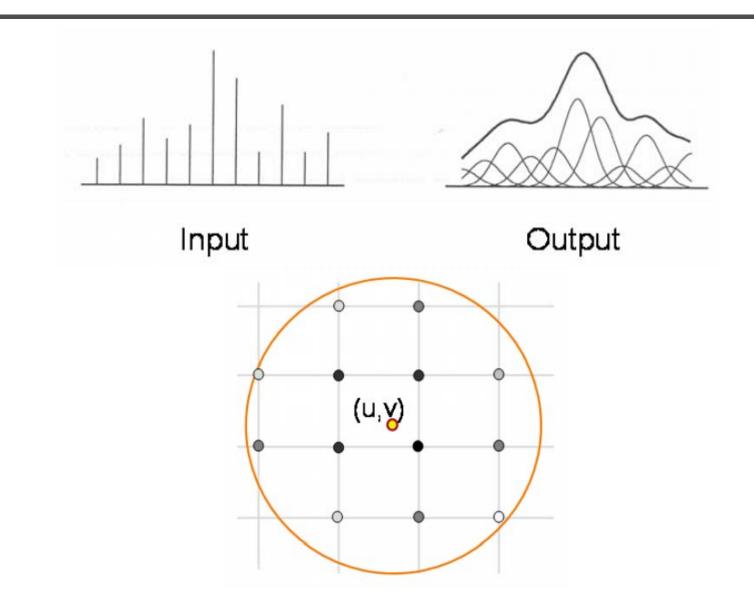
 Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k



Triangle filter

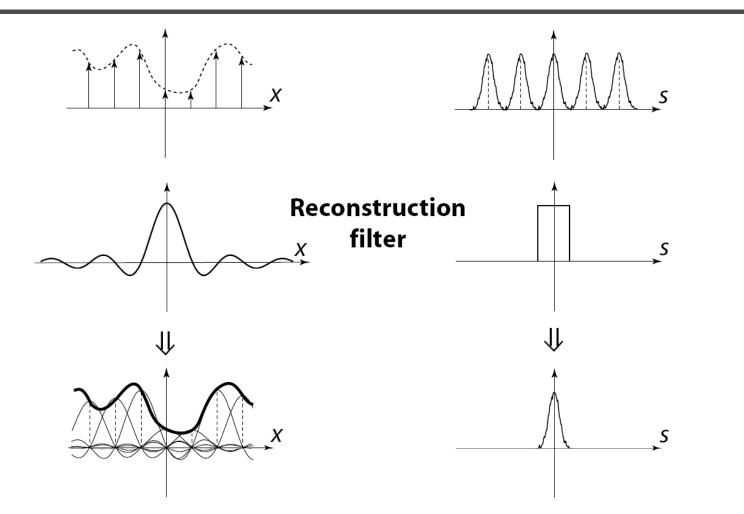


Gaussian filter



Sampling band limited X S * Х III(x) III(s) × S Τ s_o ∜ ₩ X S

Reconstruction



The reconstructed function is obtained by interpolating among the samples in some manner

Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc (optimal reconstruction)

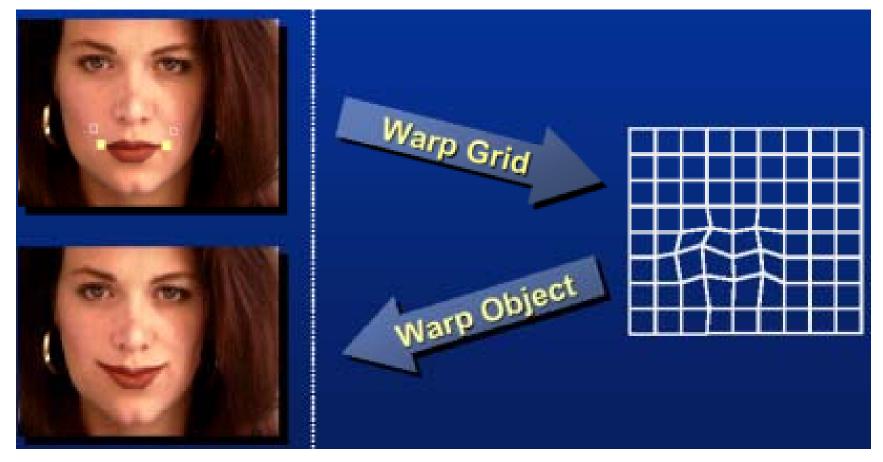
• A simple method for resampling images

$$(i, j + 1)$$
 $(i + 1, j + 1)$
 (x, y)
 (i, j) $(i + 1, j)$

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

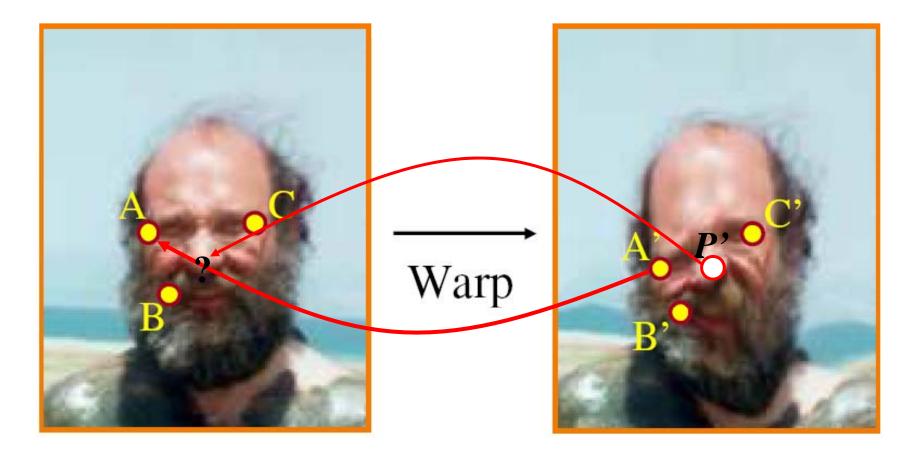
Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)



Non-parametric image warping

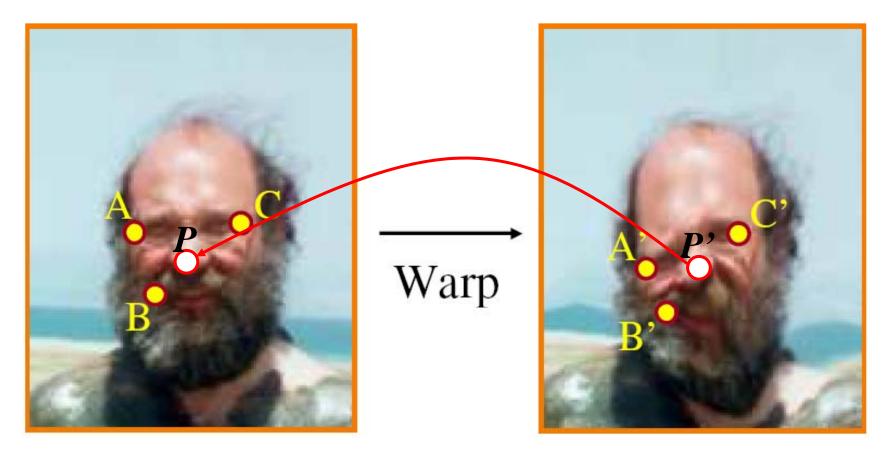
- Mappings implied by correspondences
- Inverse warping

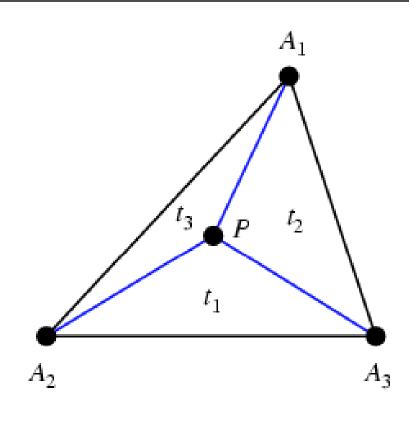


$$P = w_A A + w_B B + w_C C$$

 $P' = w_A A' + w_B B' + w_C C'$

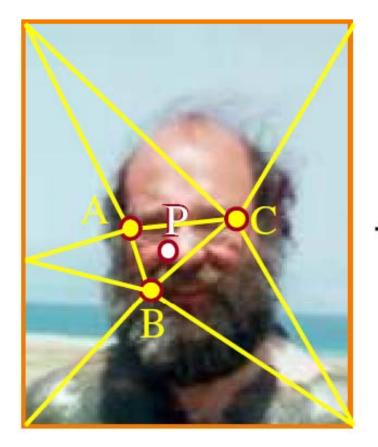
Barycentric coordinate





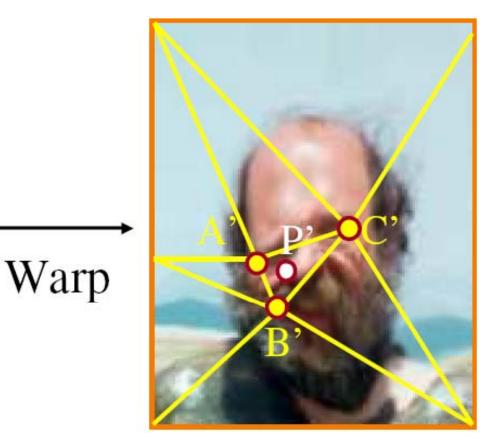
$$P = t_1 A_1 + t_2 A_2 + t_3 A_3$$
$$t_1 + t_2 + t_3 = 1$$

$$P = w_A A + w_B B + w_C C$$

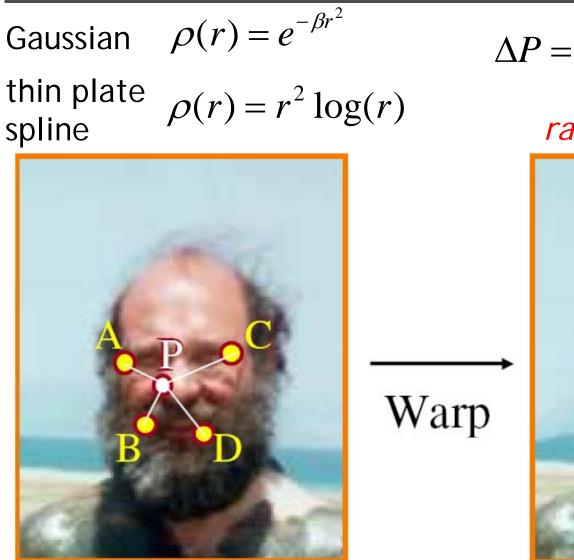


$$P' = w_A A' + w_B B' + w_C C'$$

Barycentric coordinate

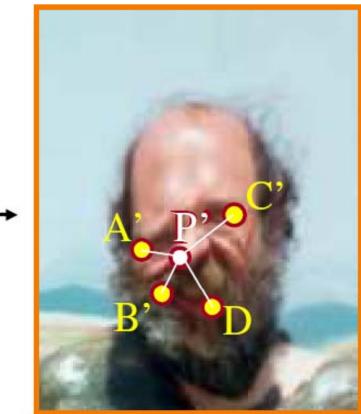


Non-parametric image warping





radial basis function

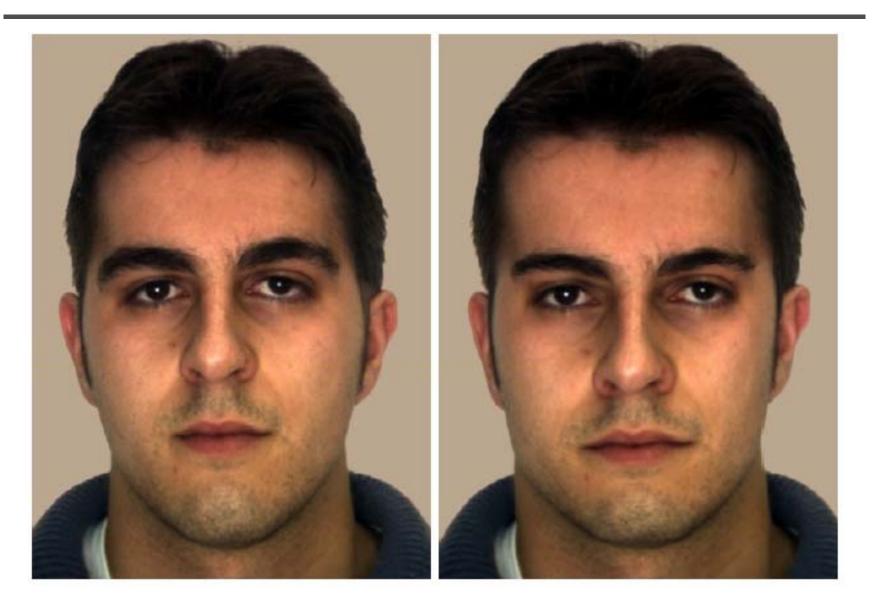


• Warping is a useful operation for mosaics, video matching, view interpolation and so on.

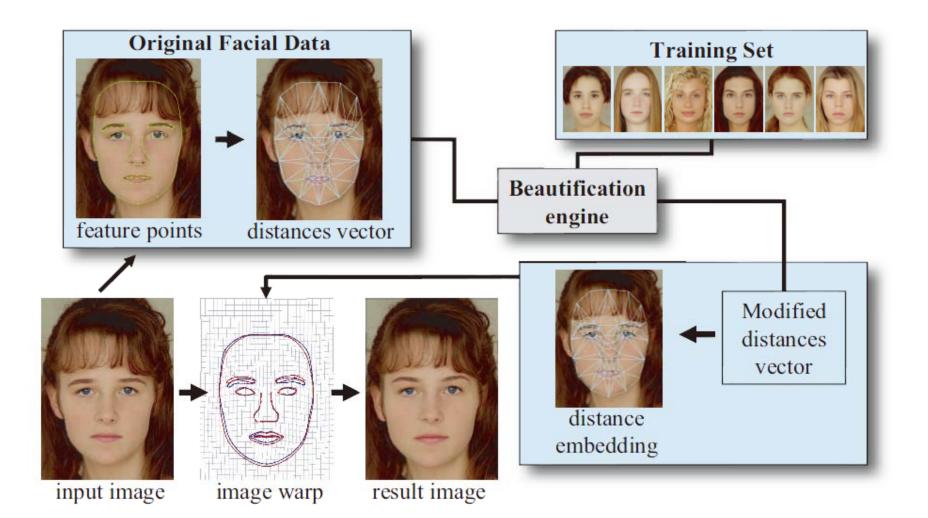
An application of image warping: face beautification

Facial beautification

Facial beautification

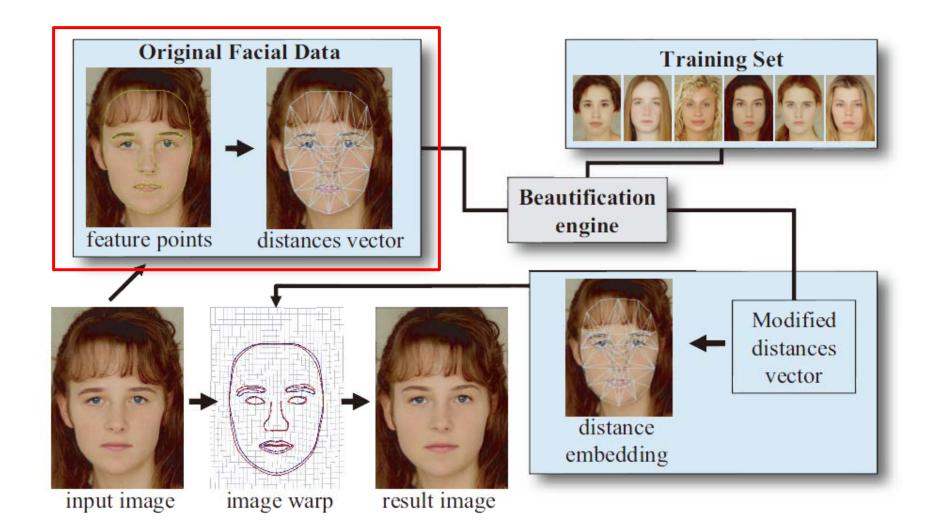


Facial beautification



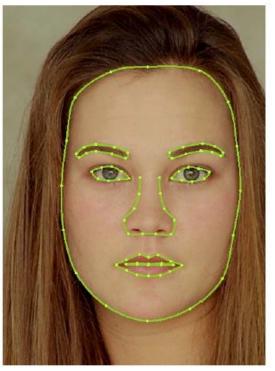
Training set

- Face images
 - 92 young Caucasian female
 - 33 young Caucasian male

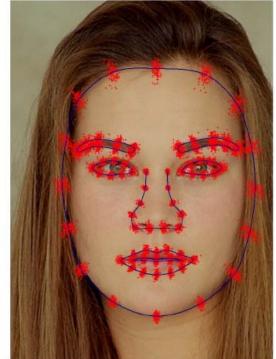


Feature extraction

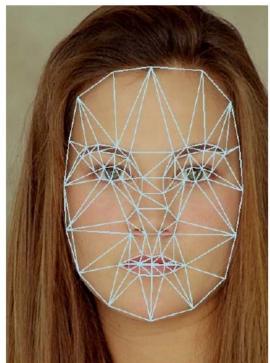
- Extract 84 feature points by BTSM
- Delaunay triangulation -> 234D distance vector (normalized by the square root of face area)



BTSM

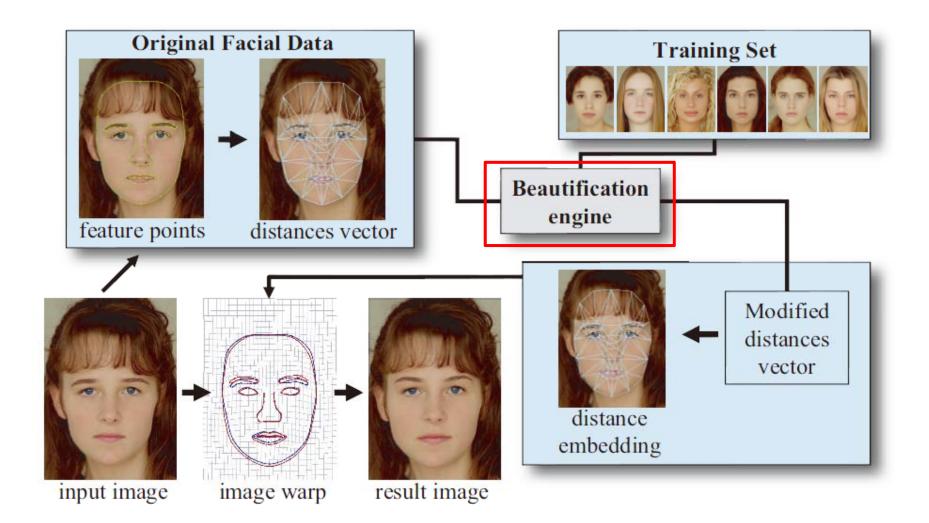


scatter plot for all training faces



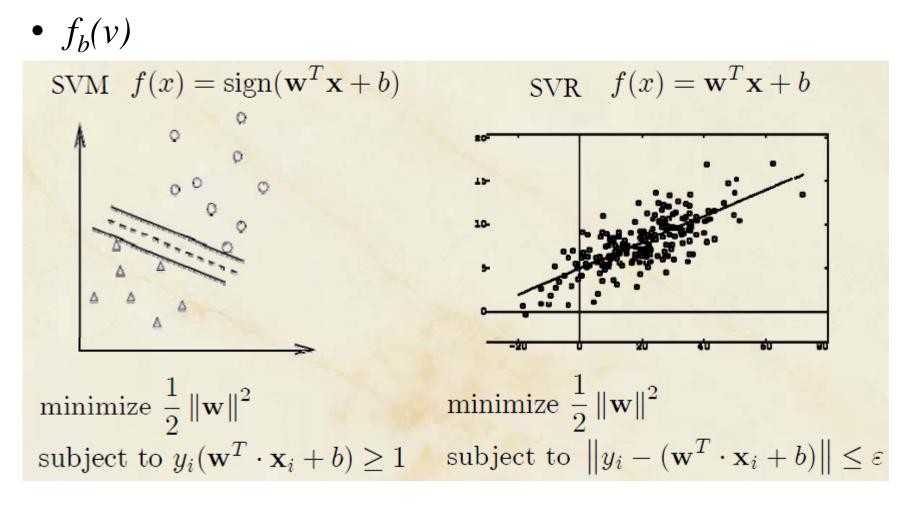
234D vector

Beautification engine



Support vector regression (SVR)

- Similar concept to SVM, but for regression
- RBF kernels

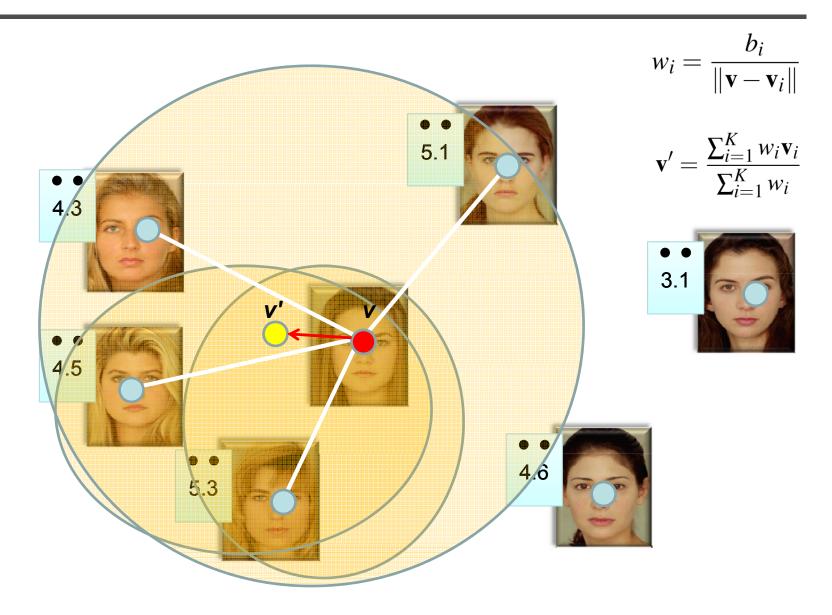


• Given the normalized distance vector v, generate a nearby vector v' so that

 $f_b(v') > f_b(v)$

- Two options
 - KNN-based
 - SVR-based

KNN-based beautification



• Directly use f_b to seek v'

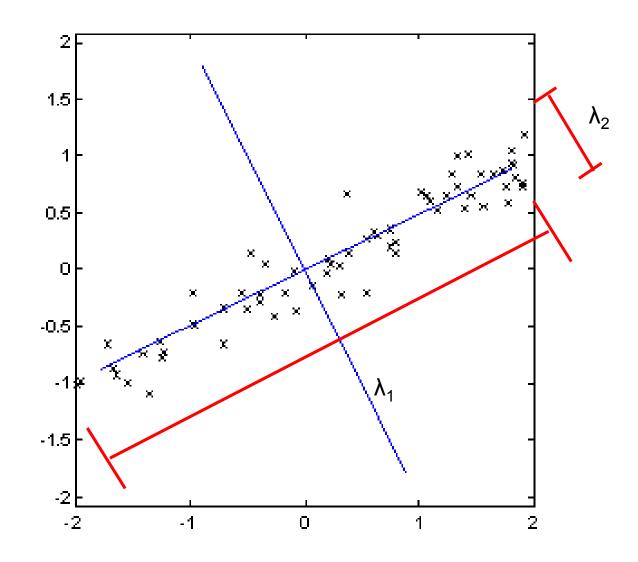
$$\mathbf{v}' = \underset{\mathbf{u}}{\operatorname{argmin}} E(\mathbf{u}), \text{ where } E(\mathbf{u}) = -f_b(\mathbf{u})$$

- Use standard no-derivative direction set method for minimization
- Features were reduced to 35D by PCA

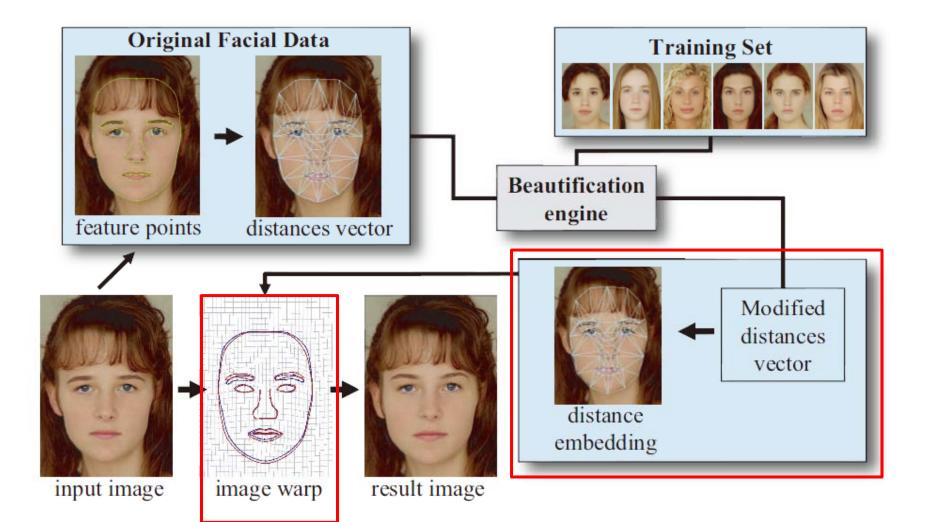
- Problems: it sometimes yields distance vectors corresponding to invalid human face
- Solution: add log-likelihood term (LP) $E(\mathbf{u}) = (\alpha - 1)f_b(\mathbf{u}) - \alpha LP(\mathbf{u})$
- LP is approximated by modeling face space as a multivariate Gaussian distribution *û*'s i-th component

$$P(\hat{\mathbf{u}}) = \frac{1}{(2\pi)^{N/2}\sqrt{\prod_i \lambda_i}} \prod_i \exp\left(\frac{-\beta_i^2}{2\lambda_i}\right)$$

a's projection
in PCA space $LP(\hat{\mathbf{u}}) = \sum_i \frac{-\beta_i^2}{2\lambda_i} + \text{const}$ i-th eigenvalue



Embedding and warping



Distance embedding

Convert modified distance vector v' to a new face landmark

$$E(q_1, \dots, q_N) = \sum_{e_{ij}} \alpha_{ij} \left(\|q_i - q_j\|^2 - d_{ij}^2 \right)^2$$

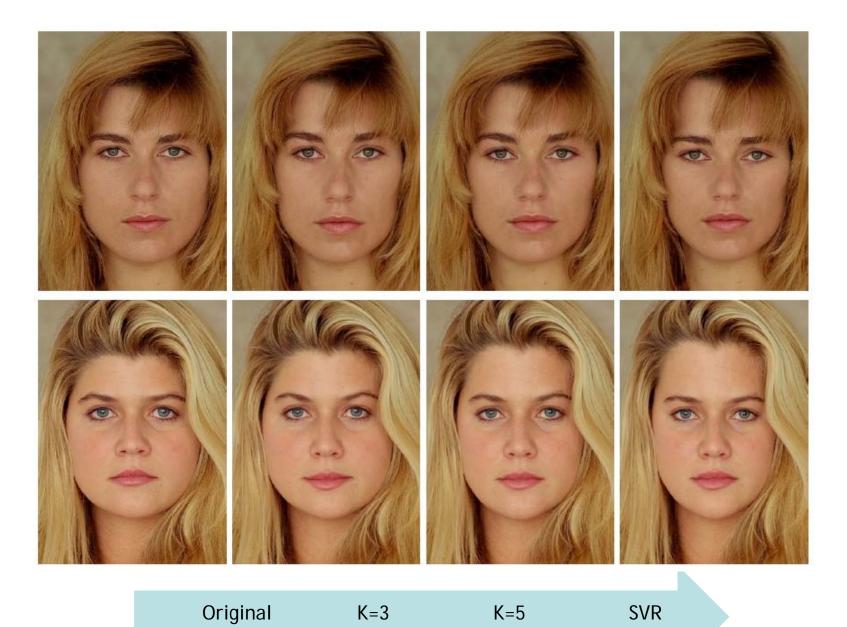
if i and j belong to different facial features
 otherwise

 A graph drawing problem referred to as a stress minimization problem, solved by LM algorithm for non-linear minimization

 Post processing to enforce similarity transform for features on eyes by minimizing

$$\sum \|Sp_i - q_i\|^2$$

$$S = \begin{pmatrix} a & b & t_x \\ -b & a & t_y \\ 0 & 0 & 1 \end{pmatrix}$$



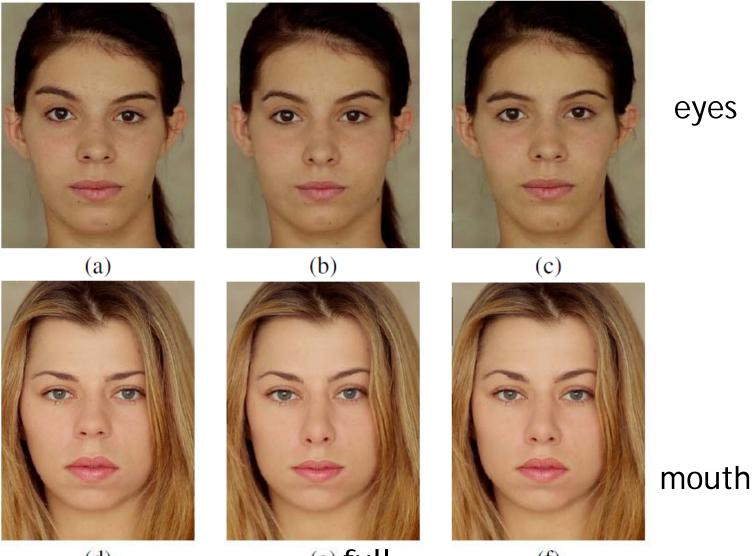
Results (in training set)

Original portrait	3.37 (0.49)
Warped to mean	3.75 (0.49)
KNN-beautified (best)	4.14 (0.51)
SVR-beautified	4.51 (0.49)

Results (not in training set)



By parts



(d)

(e) full

(f)

50%

100%

Facial collage

Image morphing

image #2

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image #1

dissolving

Artifacts of cross-dissolving

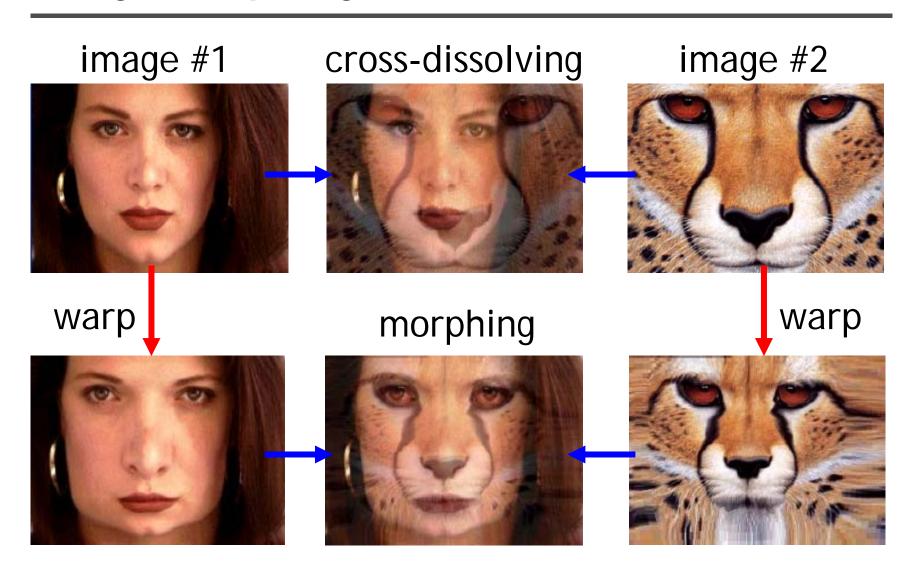
http://www.salavon.com/

Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

shape color (geometric) (photometric)

Image morphing



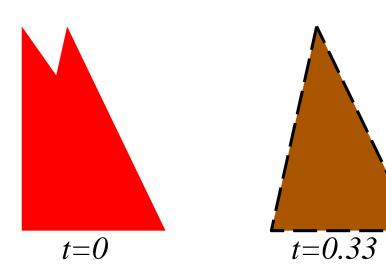
Morphing sequence

Face averaging by morphing

average faces

create a morphing sequence: for each time t

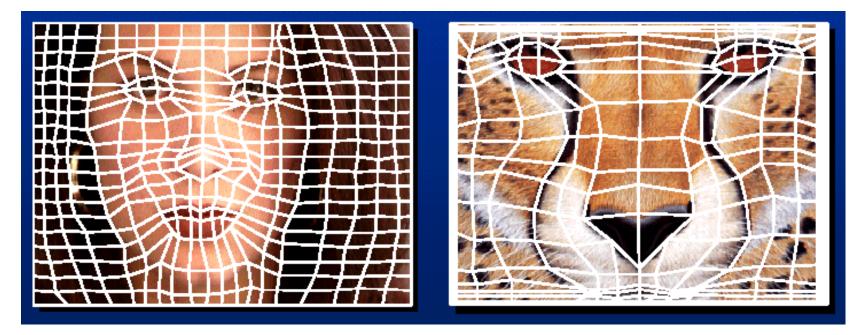
- 1. Create an intermediate warping field (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images



An ideal example (in 2004)

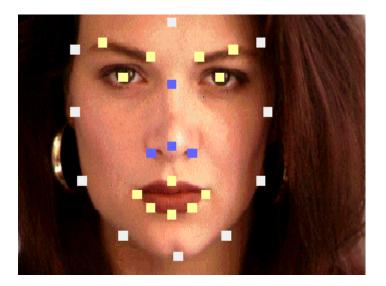
An ideal example

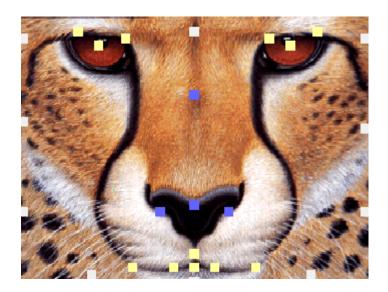
- How can we specify the warp?
 - 1. Specify corresponding *spline control points interpolate* to a complete warping function



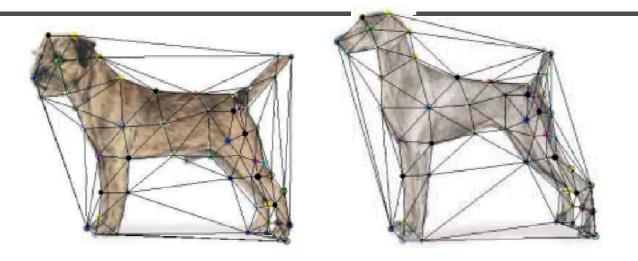
easy to implement, but less expressive

- How can we specify the warp
 - 2. Specify corresponding *points*
 - *interpolate* to a complete warping function



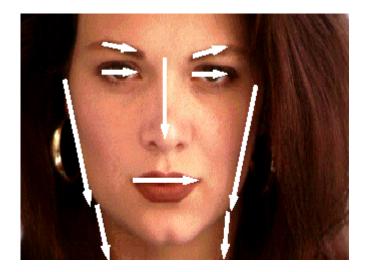


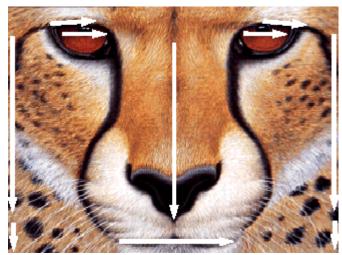
Solution: convert to mesh warping



- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

- How can we specify the warp?
 - 3. Specify corresponding vectors
 - *interpolate* to a complete warping function
 - The Beier & Neely Algorithm



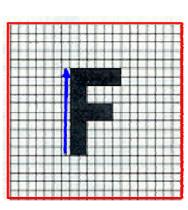


• Single line-pair PQ to P'Q': Q' Q v u u Р P۲ Destination Image Source Image $u = \frac{(X-P) \cdot (Q-P)}{\|Q-P\|^2}$ (1)

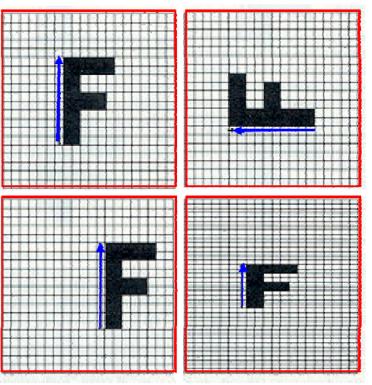
$$\mathbf{v} = \frac{(\mathbf{X} - \mathbf{P}) \cdot Perpendicular(\mathbf{Q} - \mathbf{P})}{||\mathbf{Q} - \mathbf{P}||}$$
(2)

$$X' = P' + u \cdot (Q' - P') + \frac{v \cdot Perpendicular(Q' - P')}{\|Q' - P'\|}$$
(3)

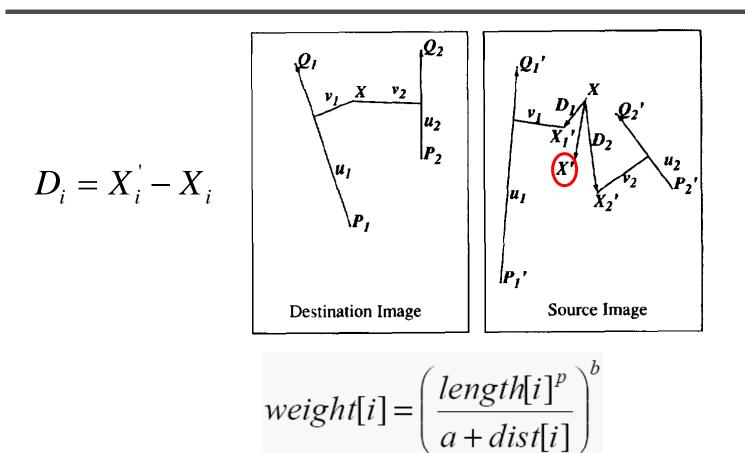
- For each X in the destination image:
 - 1. Find the corresponding u,v
 - 2. Find X' in the source image for that u,v
 - 3. destinationImage(X) = sourceImage(X')
- Examples:



Affine transformation



Multiple Lines

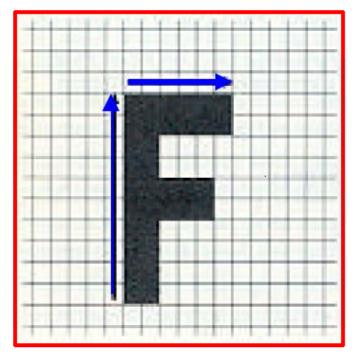


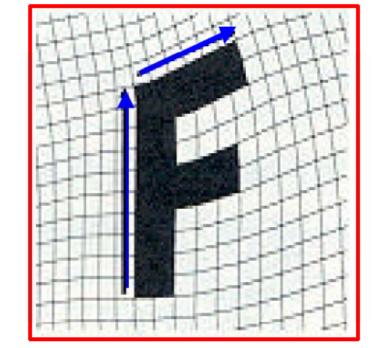
length = length of the line segment, *dist* = distance to line segment The influence of *a*, *p*, *b*. The same as the average of X_i'

Full Algorithm

```
WarpImage(SourceImage, L'[...], L[...])
begin
    foreach destination pixel X do
         XSum = (0,0)
         WeightSum = 0
         foreach line L[i] in destination do
              X'[i] = X transformed by (L[i], L'[i])
              weight[i] = weight assigned to X'[i]
              XSum = Xsum + X'[i] * weight[i]
              WeightSum += weight[i]
         end
         X' = XSum/WeightSum
         DestinationImage(X) = SourceImage(X')
    end
    return Destination
end
```

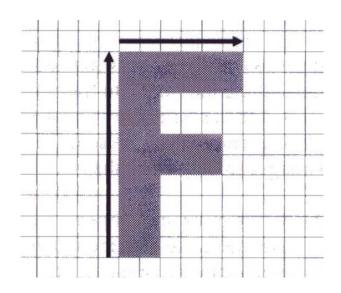

Resulting warp

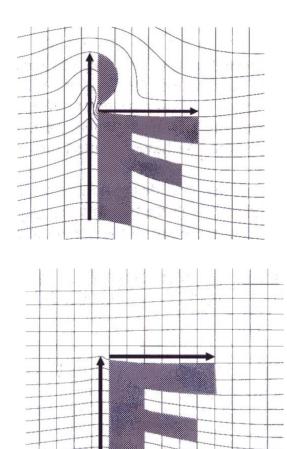




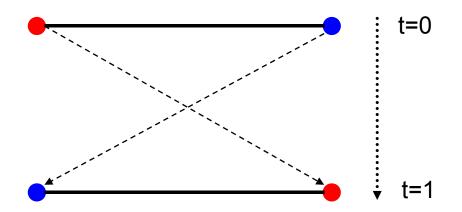
Comparison to mesh morphing

- Pros: more expressive
- Cons: speed and control





- How do we create an intermediate warp at time t?
 - linear interpolation for line end-points
 - But, a line rotating 180 degrees will become 0 length in the middle
 - One solution is to interpolate line mid-point and orientation angle



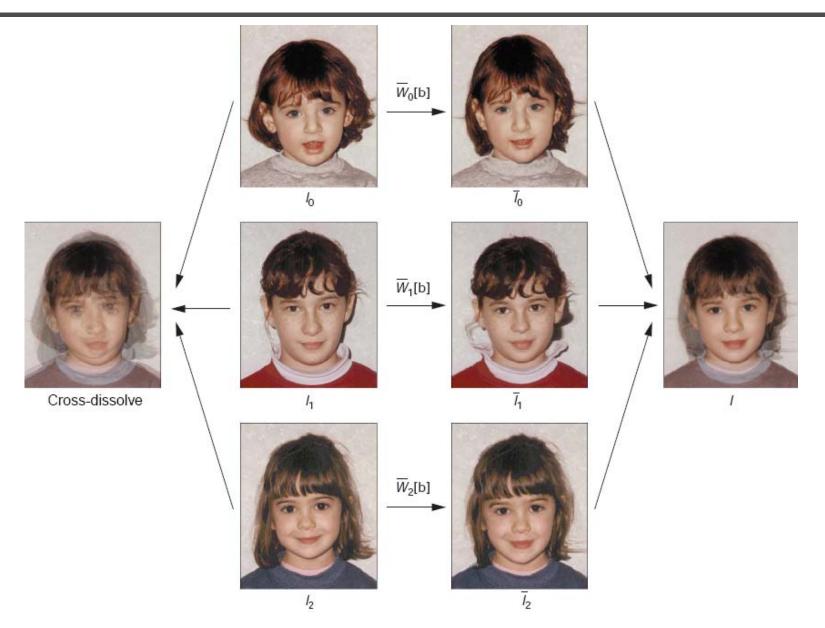
GenerateAnimation(Image₀, $L_0[...]$, Image₁, $L_1[...]$) begin **foreach** intermediate frame time t **do** for i=1 to number of line-pairs do $L[i] = line t-th of the way from L_0[i] to L_1[i].$ end $Warp_0 = WarpImage(Image_0, L_0[...], L[...])$ $Warp_1 = WarpImage(Image_1, L_1[...], L[...])$ foreach pixel p in FinalImage do FinalImage(p) = (1-t) Warp₀(p) + t Warp₁(p) end end end

- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

Results

Michael Jackson's MTV "Black or White"

Multi-source morphing



Multi-source morphing

Woman in arts

References

- Thaddeus Beier, Shawn Neely, <u>Feature-Based Image Metamorphosis</u>, SIGGRAPH 1992, pp35-42.
- Detlef Ruprecht, Heinrich Muller, <u>Image Warping with Scattered</u> <u>Data Interpolation</u>, IEEE Computer Graphics and Applications, March 1995, pp37-43.
- Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, <u>Image</u> <u>Metamorphosis Using Snakes and Free-Form Deformations</u>, SIGGRAPH 1995.
- Seungyong Lee, Wolberg, G., Sung Yong Shin, <u>Polymorph: morphing</u> <u>among multiple images</u>, IEEE Computer Graphics and Applications, Vol. 18, No. 1, 1998, pp58-71.
- Peinsheng Gao, Thomas Sederberg, <u>A work minimization approach</u> to image morphing, The Visual Computer, 1998, pp390-400.
- George Wolberg, <u>Image morphing: a survey</u>, The Visual Computer, 1998, pp360-372.
- <u>Data-Driven Enhancement of Facial Attractiveness</u>, SIGGRAPH 2008