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Outline Digill2s

e Image-based lighting

e 3D acquisition for faces

« Statistical methods (with application to face
super-resolution)

e 3D Face models from single images
e Image-based faces
e Relighting for faces



Image-based lighting



Rendering

Rendering is a function of geometry,
reflectance, lighting and viewing.

To synthesize CGl into real scene, we have to
match the above four factors.

Viewing can be obtained from calibration or
structure from motion.

Geometry can be captured using 3D
photography or made by hands.

How to capture lighting and reflectance?
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Reflectance

« The Bidirectional Reflection Distribution Function

- Given an incoming ray (0;, ;) and outgoing ray (fe, ¢e)
what proportion of the incoming light is reflected along

out
‘/ surface normal

O

v

Answer given by the BRDF: ,O(QZ, Qb?:, 967 ¢€)



Rendering equation
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Complex illumination Doz
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Point lights CIFTvex

Classically, rendering is performed assuming point
light sources

directional source



Natural iHHlumination

People perceive materials more easily under
natural illumination than simplified illumination.

Images courtesy Ron Dror and Ted Adelson



Natural iHHlumination

Rendering with natural illumination is more
expensive compared to using simplified
illumination

directional source natural illumination



Environment maps

Miller and Hoffman, 1984



HDR lighting Digill2X
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Complex illumination

Digil2d

Lo(pﬂa)o) — Le(pﬂmo)

+J2f(p,(DO,(Di)Ll-(p,(Di)COSOi d(Di
B(p,(DO) — jzf(p,(DO,(Di)Ld(p,(Di)COSOi d(Di
B,(0,)= jz J p.o, (@)L, (@;)|cos 8, |dw,

reflectance lighting

Both are spherical functions



Function approximation

e G(x): the function to approximate
e B,(x), B,(x), ... B,(x): basis functions
« We want

G =Y B

« Storing a finite number of coefficients c. gives
an approximation of G(x)



Function approximation

« How to find coefficients c;?

- Minimize an error measure
« What error measure?

- L, error

j [G(x)- ZcB<x>

e Coefficients .

l

= J G(x)B,(x)dx
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Function approximation

e Basis Functions are pieces of signal that can be used to
produce approximations to a function
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Function approximation

e We can then use these coefficients to reconstruct an
approximation to the original signal
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Function approximation

e We can then use these coefficients to reconstruct an
approximation to the original signal




Orthogonal basis functions

e Orthogonal Basis Functions

- These are families of functions with special

properties

IB dx—<

(

1 i=

0 1#j

\

- Intuitively, it’s like functions don’t overlap each

other’s footprint

A bit like the way a Fourier transform breaks a
functions into component sine waves




Integral of product

[ = jF(x)G(x) dx
Flx)=2 fB(x)  Glx)=3g,B,x
OO DI e

:JZZfl.ngi(x)Bj(x)dx:jZﬁgidx:ﬁ-é

B,(0,)= [, [, (@)L, (0)|cos8,|do,
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Basis functions

e Transform data to a space in which we can
capture the essence of the data better

e Spherical harmonics, similar to Fourier
transform in spherical domain, is used in PRT.
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Real spherical harmonics

e A system of signed, orthogonal functions over
the sphere

e Represented in spherical coordinates by the
function

2K " cos(me)P" (cosb), m >0
(0.0)= N2 sin (- mg)B " (cos0), m<0
K)P’(cos8), m=0

where [ is the band and m is the index within the band



Real spherical harmonics




Reading SH diagrams




Reading SH diagrams




The SH functions EFlvex




The SH functions




Spherical harmonics
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VFX

Spherical harmonics

. Y, (0,0
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SH projection

e First we define a strict order for SH functions

i=1(/+1)+m

e Project a spherical function into a vector of
SH coefficients

e, = | f(s)y,(s)ds
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SH reconstruction

e To reconstruct the approximation to a function

7<s>=§c,.yi<s>

e We truncate the infinite series of SH functions
to give a low freguency approximation



Examples of reconstruction

Original

$ 0006
* 00Ve
* QOB *k

; 9
&
»




An example CIFTvex

e Take a function comprised of two area light
sources

- SH project them into 4 bands = 16 coefficients

1.329,

—0.679, 0.930, 0.908,
—-0.940,0,0.417,0,0.278,
—-0.642,0.001,0.317,0.837,
—-0.425,0,-0.238
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Low frequency light source

 We reconstruct the signal

- Using only these coefficients to find a low frequency
approximation to the original light source
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SH lighting for diffuse objects

o An Efficient Representation for Irradiance

Environment Maps, Ravi Ramamoorthi and Pat
Hanrahan, SIGGRAPH 2001

e Assumptions
- Diffuse surfaces
- Distant illumination
- No shadowing, interreflection

B(p.w,)= |.[(p,0,0)L,(p,0)
B(p,n) = p(p)E(n)

irradiance is a function of surface normal

cos 0. |dw,



Diffuse reflection

B=pE
o

radiosity reflectance irradiance
(image intensity) (albedo/texture)  (incoming light)

..Xh
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Spherical harmonic expansion

Expand lighting (L), lrradlance (E) in basis functions

L@.4)=3 L LY, (0.9)

[=0 m=

E@.6)=3 L Y, (6.9)

[=0 m=




Analytic irradiance formula

Lambertian surface T
acts like low-pass
filter

Elm — Alle
/ 01 2

cosine term [—

A =2 i / ~| [leven
I+ 2' (1)
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O parameter approximation

Order 0

Exact image
= 1 term

"’ Y, (0,9)
RMS error =25 % 0 F - l
1

2 xy yz e oW X — )7

-2 -1 0 1 2




Digil2d

9 Parameter Approximation

Order 1

Exact image
= 4 terms

Y,,(0,9)
RMS Error = 8% 0 F -
|

2 xy yz e oW X — )7

-2 -1 0 1 2
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9 Parameter Approximation

J Order 2

Exact image
5 O terms

Y,,(0,9)
RMS Error =1% 0 F - l

1 v z X

For any illumination, average
error < 3% [Basri Jacobs 01] >

xy vz 3221 zx = x*—)?

-2 -1 0 1 2




Comparison

Incident Irradiance map Irradiance map
illumination Texture: 256x256 Texture: 256x256
300x300 Hemispherical Spherical Harmonic
Integration 2Hrs Coefficients Isec

Time oc 300x300x256x256 Time o« 9x256x256
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Complex geometry

Assume no shadowing: Simply use surface normal




Natural iHHlumination

For diffuse objects, rendering with natural
illumination can be done quickly

directional source natural illumination



Video




Acquiring the Light Probe




HDRI Sky Probe




Clipped Sky + Sun Source gl

R







Lit by sky only




Lit by sun and sky










Real Scene Example

e Goal: place synthetic objects on table






Modeling the Scene

light-based model

real scene




The Light-Based Room Model Ve




e Background Plate



Rendering into the scene

e Objects and Local Scene matched to Scene



Differential rendering

e Local scene w/o objects, illuminated by model



Differential rendering
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Differential rendering
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Environment map from single image?
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Eye as light probe! (Nayar et al)




Results

-

a2} left eye

fa3) environment map
{al) original image {a4) face replaced image
(a}) replacing faces in Amelre

{b2) left eve

{b3) evironment map
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Application in “Superman returns”
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Capturing reflectance




Application Iin “The Matrix Reloaded’ > IV FX




3D acquisition for faces



Cyberware scanners

face & head scanner whole body scanner



Making facial expressions from photoé@

« Similar to Facade, use a generic face model
and view-dependent texture mapping

e Procedure

Take multiple photographs of a person
Establish corresponding feature points
Recover 3D points and camera parameters
Deform the generic face model to fit points
Extract textures from photos

U9 AN W N =



Reconstruct a 3D model

input photographs
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generic 3D pose more deformed
face model estimation features model



Mesh deformation

- Compute displacement of feature points
- Apply scattered data interpolation

—

R
v N
LYY

generic model  displacement

N\
\

\__—/
deformed model



Texture extraction

e The color at each point is a weighted
combination of the colors in the photos

e Texture can be:
- view-independent
- view-dependent

e Considerations for weighting
occlusion

smoothness

positional certainty

view similarity



Texture extraction




Texture extraction




Texture extraction

view-independent view-dependent



Model reconstruction

Use images to adapt a generic face model.
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Creating new expressions

e |In addition to global blending we can use:
- Regional blending
- Painterly interface
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Creating new expressions

New expressions are created with 3D morphing:

Applying a global blend



Creating new expressions

Applying a region-based blend



Using a painterly interface



Drunken smile




Animating between expressions

Morphing over time creates animation:

“neutral” > “joy




Video




Spacetime faces




black & white cameras

Spacetime faces
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video projectors



time




time




time

LvH

o

stereo



time

active stereo

stereo



stereo active stereo spacetime stereo



Spacetime Stereo

3@5.
Lo

a.,__....w___ |

Il

time



Spacetime Stereo

4

Face

surface motion\

time=2



Spacetime Stereo

4

Face

surface motion\

time=3



Spacetime Stereo

4

Face

time=4



Spacetime Stereo

Face surface

time=5



Better
 spatial resolution
? e temporal stableness



Spacetime stereo matching

A moving oblique surface

I

X, X,
4 q
Left camera Right camera



Editing Animation




Fitting

A sequence of
depth map pairs:

e
&
-




FacelK

Face Editing




Animation







extra 3M



Statistical methods
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Statistical methods

para- observed
z —|f(z)+e| — :
meters 2) Y signal
Example:
z¥*=max P(z|y) super-resolution
- de-noisin
= ax LU 12DP(E) de-blockiig
z P(y) Inpainting

=min L(y|z)+ L(z)



Statistical methods

Digil2d

para-  _ _ Tteel obs.erved
meters (2)+e y signal
z*=minL(y | z) + L(z)
N\
data Hy — f(Z)H a-priori
evidence o2 knowledge
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Statistical methods

There are approximately 102*° possible 10x10
gray-level images. Even human being has not
seen them all yet. There must be a strong
statistical bias.

Takeo Kanade

Approximately 8X10'! blocks per day per person.
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Generic priors

“Smooth images are good images.”

L(2) =Y plV(x))

Gaussian MRF  p(d) = d*

d’ di<T

d) =+
Huber MRF  p(d) T2 2T(d[-T) d>T




Generic priors

—— quadratic
e Huber




Example-based priors

“Existing images are good images.”

six 200x200

2,000,000
pairs




Example-based priors




Example-based priors

high-resolution

low-resolution
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Model-based priors

“Face images are good images when
working on face images ...”

Parametric

model L=WX+p L(X)

Zz* =minL(y | z) + L(z)

N 4

X* =minL(y | WX + u) + L(X)
" =WX " +u




PCA Dol

e Principal Components Analysis (PCA):
approximating a high-dimensional data set
with a lower-dimensional subspace

Second principal component First principal component

Original axes
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PCA on faces: “eigenfaces”

First principal component
Average

face \

Other
components

For all except average,
ngayﬂ —_ :

“white” > 0,

“black” < 0
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Model-based priors

“Face images are good images when
working on face images ...”

Parametric

model L=WX+p L(X)

Zz* =minL(y | z) + L(z)

N 4

X* =minL(y | WX + u) + L(X)
" =WX " +u




Super-resolution
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(@) Input low 24X32 (b) Our results (c) Cubic B-Spline
(d) Freeman et al. (e) Baker etal. (f) Original high 96X128



Face models from single images



Morphable model of 3D faces

e Start with a catalogue of 200 aligned 3D
Cyberware scans

3D Database

A A
gleaig =
Analyzer 7]

20 Input 30 COutput

Morphable

™ Face Model

e Build a model of average shape and texture,
and principal variations using PCA
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Morphable model

shape examplars texture examplars

o | |

m—1
Smﬂdei — §—|— Z ;S5 T:}‘Rﬂdﬂf — T"‘ Z ,‘giti , (1)
i=1 i=1
a, 5” € ™ 1. The probability for coefficients & is given by

m—1
p(@) ~ eapl—3 3 (aifo0)’), @
i=1
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Morphable model of 3D faces

e Adding some variations

ORIGINAL CARICATURE MORE MALE FEMALE

sMILE FROWN WEIGHT HOOKED NOSE
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Reconstruction from single image

2D Input

f(rlnitialif_ing R
the
Morphable Model

rough interactive
alignment of
GD average head _)

Automated 3D Shape and Texture Reconstruction l':]‘j. ‘8}

\/

Rendering must
be similar to
the input if we
‘guess right
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Reconstruction from single image

22 _
i Z (P _EF’J) prior

J

E;

— Lnodet (%, y)|I”
shape and texture priors are learnt from database

p is the set of parameters for shading including
camera pose, lighting and so on



Modifying a single image




Animating from a single image

o€

3D Reconstruction

A {

\ n-i-l-;_;:.".” . |
Initialization

e e .’;,-' | S J;,-" : \
Recaonstruction Texture Extraction

of Shape & Texture & Facial Expression Cast Shadow New lllumination



Video Dig 2

A Morphable Model
for the
Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biclogical Cybernefics
Tubingen, Germany




Exchanging faces in images

Target Source Target
'I; el I; e’
< -
I

L

e

|
b ? \
t: Pose “ : E

"
h |

s f‘r‘““ g ) e
[ 8\ - iy e
L 4 w = = r? .
_.I'. N - 5 g2 *
. .

Background-Layer Face-Layer Hair-Layer Result
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Exchange faces in images




Exchange faces in images




Exchange faces in images




Exchange faces in images
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Morphable model for human body

% 8 & &

Y

A

-

-

S RS |

-20 kg -40keg -20 kg original +20 kg +40 kg +2-[I' kg
-20 cm +20 cm



Image-based faces
(lip sync.)



Video rewrite (analysis)

Video Model

-

Phoneme
Labeling

AA-B-AA/ /EH-B-AA/ /IY-B-AA/ /OW-B-

Visual
Labeling

5 EE




Video rewrite (synthesis)

SOLIBSIA
1088

Background
Video




Results

e Video database

- 2 minutes of JFK

e Only half usable
e Head rotation

training video

Read my lips.

| never met Forest Gump.




Morphable speech model

Analysis

Synthesis



Preprocessing




Prototypes (PCA+k-mean clustering) BEIVF

We find I. and C. for each prototype image.



Morphable model

nor pl
1", B) =Y BWI.W(Y aC

i—1 /=1

analysis
I ——oap

synthesis




Morphable model

llow pammealars
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Synthesis

E=(-—w)' D'z 'Diy—p)+Ay"wlwy
—_— N——

rarget rerm smoothness
20 T 35 T
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Results




Results




Relighting faces



Light iIs additive







Light stage 1.0

64x32 lighting directions



Input images




Reflectance function

occlusion

flare
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Relighting

normalized reflectance lighting product
light map function

lighting product rendered
pixel




Results




Changing viewpoints

fa)

(£) {h)



Results







Spiderman 2

1'||iﬁ: 2

synthetic



Spiderman 2

video



Light stage 3




Light stage 6

Relighting Human Locomotion
with Flowed Reflectance Fields

Per Einarsson Charles-Felix Chabert Andrew Jones Wan-Chun Ma !
Bruce Lamond Tim Hawkins Mark Bolas ¢ Sebastian Sylwan Paul Debevec

-~Hoil of

curographics symposium on Rendering, June 2006




Application: The Matrix Reloaded
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Application: The Matrix Reloaded
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