Faces and Image-Based Lighting

Digital Visual Effects Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Alex Efros, Li-Yi Wei and Paul Debevec

Outline

- Image-based lighting
- 3D acquisition for faces
- Statistical methods (with application to face super-resolution)
- 3D Face models from single images
- Image-based faces
- Relighting for faces

Image-based lighting

Rendering

- Rendering is a function of geometry, reflectance, lighting and viewing.
- To synthesize CGI into real scene, we have to match the above four factors.
- Viewing can be obtained from *calibration* or *structure from motion*.
- Geometry can be captured using *3D* photography or made by hands.
- How to capture lighting and reflectance?

- The Bidirectional Reflection Distribution Function
 - Given an incoming ray (θ_i, ϕ_i) and outgoing ray (θ_e, ϕ_e) what proportion of the incoming light is reflected along out

Rendering equation

Complex illumination

$$L_{o}(\mathbf{p}, \omega_{o}) = L_{e}(\mathbf{p}, \omega_{o}) + \int_{s^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

$$B(\mathbf{p}, \omega_{o}) = \int_{s^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{d}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

$$B_{p}(\omega_{o}) = \int_{s^{2}} f_{p,\omega_{o}}(\omega_{i}) L_{d}(\omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

Point lights

Classically, rendering is performed assuming point light sources

directional source

Natural illumination

People perceive materials more easily under natural illumination than simplified illumination.

Images courtesy Ron Dror and Ted Adelson

Natural illumination

Rendering with natural illumination is more expensive compared to using simplified illumination

directional source

natural illumination

Environment maps

Miller and Hoffman, 1984

Digi<mark>VFX</mark>

HDR lighting

Examples of complex environment light

Examples of complex environment light

$$L_{o}(\mathbf{p}, \mathbf{\omega}_{o}) = L_{e}(\mathbf{p}, \mathbf{\omega}_{o}) + \int_{s^{2}} f(\mathbf{p}, \mathbf{\omega}_{o}, \mathbf{\omega}_{i}) L_{i}(\mathbf{p}, \mathbf{\omega}_{i}) |\cos \theta_{i}| d\omega_{i}$$
$$B(\mathbf{p}, \mathbf{\omega}_{o}) = \int_{s^{2}} f(\mathbf{p}, \mathbf{\omega}_{o}, \mathbf{\omega}_{i}) L_{d}(\mathbf{p}, \mathbf{\omega}_{i}) |\cos \theta_{i}| d\omega_{i}$$
$$B_{p}(\mathbf{\omega}_{o}) = \int_{s^{2}} f_{p, \mathbf{\omega}_{o}}(\mathbf{\omega}_{i}) L_{d}(\mathbf{\omega}_{i}) |\cos \theta_{i}| d\omega_{i}$$
reflectance lighting
Both are spherical functions

- G(x): the function to approximate
- $B_1(x)$, $B_2(x)$, ... $B_n(x)$: basis functions
- We want

$$G(x) = \sum_{i=1}^{n} c_i B_i(x)$$

 Storing a finite number of coefficients c_i gives an approximation of G(x)

- How to find coefficients c_i?
 - Minimize an error measure
- What error measure?

- L₂ error

$$E_{L_2} = \int_{I} [G(x) - \sum_{i} c_i B_i(x)]^2$$

• Coefficients $c_i = \langle G | B_i \rangle = \int_X G(x) B_i(x) dx$

• Basis Functions are pieces of signal that can be used to produce approximations to a function

• We can then use these coefficients to reconstruct an approximation to the original signal

• We can then use these coefficients to reconstruct an approximation to the original signal

Orthogonal basis functions

- Orthogonal Basis Functions
 - These are families of functions with special properties

$$\int B_i(x)B_j(x)\,dx = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$$

- Intuitively, it's like functions don't overlap each other's footprint
 - A bit like the way a Fourier transform breaks a functions into component sine waves

$$I = \int F(x)G(x) dx$$

$$F(x) = \sum_{i} f_{i}B_{i}(x) \qquad G(x) = \sum_{j} g_{j}B_{j}(x)$$

$$\int F(x)G(x) dx = \int \left(\sum_{i} f_{i}B_{i}(x)\sum_{j} g_{j}B_{j}(x)\right) dx$$

$$= \int \sum_{i} \sum_{j} f_{i}g_{j}B_{i}(x)B_{j}(x) dx = \int \sum_{i} f_{i}g_{i}dx = \hat{F} \cdot \hat{G}$$

$$B_{p}(\omega_{0}) = \int_{s^{2}} f_{p,\omega_{0}}(\omega_{0})L_{d}(\omega_{0})|\cos\theta_{0}|d\omega_{0}$$

- Transform data to a space in which we can capture the essence of the data better
- Spherical harmonics, similar to Fourier transform in spherical domain, is used in PRT.

Real spherical harmonics

- A system of signed, orthogonal functions over the sphere
- Represented in spherical coordinates by the function

$$y_l^m(\theta,\varphi) = \begin{cases} \sqrt{2}K_l^m \cos(m\varphi)P_l^m(\cos\theta), & m > 0\\ \sqrt{2}K_l^m \sin(-m\varphi)P_l^{-m}(\cos\theta), & m < 0\\ K_l^0 P_l^0(\cos\theta), & m = 0 \end{cases}$$

where l is the band and m is the index within the band

Real spherical harmonics

Reading SH diagrams

Reading SH diagrams

The SH functions

The SH functions

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

$$Y_{00}(\theta, \phi) = 0.282095$$

$$(Y_{11}; Y_{10}; Y_{1-1})(\theta, \phi) = 0.488603 (x; z; y)$$

$$(Y_{21}; Y_{2-1}; Y_{2-2})(\theta, \phi) = 1.092548 (xz; yz; xy)$$

$$Y_{20}(\theta, \phi) = 0.315392 (3z^{2} - 1)$$

$$Y_{22}(\theta, \phi) = 0.546274 (x^{2} - y^{2})$$

Spherical harmonics

• First we define a strict order for SH functions

$$i = l(l+1) + m$$

 Project a spherical function into a vector of SH coefficients

$$c_i = \int_{S} f(s) y_i(s) ds$$

• To reconstruct the approximation to a function

$$\widetilde{f}(s) = \sum_{i=0}^{N^2} c_i y_i(s)$$

• We truncate the infinite series of SH functions to give a low frequency approximation

Examples of reconstruction

An example

- Take a function comprised of two area light sources
 - SH project them into 4 bands = 16 coefficients

Low frequency light source

- We reconstruct the signal
 - Using only these coefficients to find a low frequency approximation to the original light source

SH lighting for diffuse objects

- An Efficient Representation for Irradiance Environment Maps, Ravi Ramamoorthi and Pat Hanrahan, SIGGRAPH 2001
- Assumptions
 - Diffuse surfaces
 - Distant illumination
 - No shadowing, interreflection

$$B(p,\omega_o) = \int_{s^2} f(\mathbf{p},\omega_o,\omega_i) L_d(\mathbf{p},\omega_i) |\cos\theta_i| d\omega_i$$
$$B(p,n) = \rho(p)E(\mathbf{n})$$

irradiance is a function of surface normal

Irradiance environment maps

 $E(n) = \int L(\omega)(n \cdot \omega) d\omega$ Ω

Expand lighting (L), irradiance (E) in basis functions

$$L(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} L_{lm} Y_{lm}(\theta,\phi)$$
$$E(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} E_{lm} Y_{lm}(\theta,\phi)$$

9 parameter approximation

9 Parameter Approximation

9 Parameter Approximation

Comparison

Incident illumination 300x300

Irradiance map Texture: 256x256 Hemispherical Integration 2Hrs

Time $\propto 300 \times 300 \times 256 \times 256$

Irradiance map Texture: 256x256Spherical Harmonic Coefficients 1sec Time $\propto 9 \times 256 \times 256$

Assume no shadowing: Simply use surface normal

Natural illumination

For diffuse objects, rendering with natural illumination can be done quickly

directional source

natural illumination

Digi<mark>VFX</mark>

Video

Acquiring the Light Probe

Clipped Sky + Sun Source

Lit by sun only

Lit by sky only

Lit by sun and sky

Real Scene Example

• Goal: place synthetic objects on table

Light Probe / Calibration Grid

The Light-Based Room Model

Rendering into the Scene

• Background Plate

Rendering into the scene

• Objects and Local Scene matched to Scene

Differential rendering

• Local scene w/o objects, illuminated by model

Differential rendering

Differential rendering

Environment map from single image?

Results

(b3) environment map

Capturing reflectance

Application in "The Matrix Reloaded"

3D acquisition for faces

Cyberware scanners

face & head scanner

whole body scanner

Making facial expressions from photos

- Similar to Façade, use a generic face model and view-dependent texture mapping
- Procedure
 - 1. Take multiple photographs of a person
 - 2. Establish corresponding feature points
 - 3. Recover 3D points and camera parameters
 - 4. Deform the generic face model to fit points
 - 5. Extract textures from photos

Reconstruct a 3D model

input photographs

generic 3D face model pose estimation

more features deformed model

- Compute displacement of feature points
- Apply scattered data interpolation

- The color at each point is a weighted combination of the colors in the photos
- Texture can be:
 - view-independent
 - view-dependent
- Considerations for weighting
 - occlusion
 - smoothness
 - positional certainty
 - view similarity

Texture extraction

Texture extraction

Texture extraction

view-independent

view-dependent

Model reconstruction

Use images to adapt a generic face model.

- In addition to global blending we can use:
 - Regional blending
 - Painterly interface

New expressions are created with 3D morphing:

Applying a global blend

Creating new expressions

Applying a region-based blend

Creating new expressions

Using a painterly interface

Drunken smile

Morphing over time creates animation:

Video

Spacetime faces

video projectors

stereo

stereo

active stereo

time -

stereo

active stereo

spacetime stereo

Spacetime stereo matching

A moving oblique surface

Video

Fitting

Face Editing

Animation

3D face applications: The one

3D face applications: Gladiator

extra 3M

Statistical methods

para-
meters
$$z \rightarrow f(z)+\varepsilon \rightarrow y$$
 observed
signal
 $z^* = \max_{z} P(z \mid y)$
 $= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$
 $Example:$
super-resolution
de-noising
de-blocking
Inpainting
...

There are approximately 10²⁴⁰ possible 10×10 gray-level images. Even human being has not seen them all yet. There must be a strong statistical bias.

Takeo Kanade

Approximately 8X10¹¹ blocks per day per person.

"Smooth images are good images."

$$L(z) = \sum_{x} \rho(V(x))$$

Gaussian MRF $\rho(d) = d^2$

Huber MRF
$$\rho(d) = \begin{cases} d^2 & |d| \le T \\ T^2 + 2T(|d| - T) & d > T \end{cases}$$

"Existing images are good images."

six 200×200 Images \Rightarrow 2,000,000 pairs

Example-based priors

		L(z)

"Face images are good images when working on face images ..."

Parametric model Z=WX+µ L(X)

$$Z^* = \min_{z} L(y \mid z) + L(z)$$
$$\begin{cases} X^* = \min_{x} L(y \mid WX + \mu) + L(X) \\ Z^* = WX^* + \mu \end{cases}$$

• Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

"Face images are good images when working on face images ..."

Parametric model Z=WX+µ L(X)

$$Z^* = \min_{z} L(y \mid z) + L(z)$$
$$\begin{cases} X^* = \min_{x} L(y \mid WX + \mu) + L(X) \\ Z^* = WX^* + \mu \end{cases}$$

Super-resolution

(d) Freeman et al. (e) Baker et al. (f) Original high 96×128

Face models from single images

 Start with a catalogue of 200 aligned 3D Cyberware scans

• Build a model of *average* shape and texture, and principal *variations* using PCA

 $\vec{\alpha}, \vec{\beta} \in \Re^{m-1}$. The probability for coefficients $\vec{\alpha}$ is given by

$$p(\vec{\alpha}) \sim exp[-\frac{1}{2}\sum_{i=1}^{m-1} (\alpha_i / \sigma_i)^2],$$
 (2)

Morphable model of 3D faces

• Adding some variations

Reconstruction from single image

2D Input

 $\alpha_j \beta_j$

Rendering must be similar to the input if we guess right

$$E = \frac{1}{\sigma_N^2} E_I + \sum_{j=1}^{m-1} \frac{\alpha_j^2}{\sigma_{S,j}^2} + \sum_{j=1}^{m-1} \frac{\beta_j^2}{\sigma_{T,j}^2} + \sum_j \frac{(\rho_j - \bar{\rho}_j)^2}{\sigma_{\rho,j}^2} \text{ prior}$$

$$E_I = \sum_{x,y} \|\mathbf{I}_{input}(x,y) - \mathbf{I}_{model}(x,y)\|^2$$

shape and texture priors are learnt from database

 ρ is the set of parameters for shading including camera pose, lighting and so on

Modifying a single image

Animating from a single image

Video

A Morphable Model for the Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics Tübingen, Germany

Image-based faces (lip sync.)

Results

- Video database
 - 2 minutes of JFK
 - Only half usable
 - Head rotation

training video

Read my lips.

I never met Forest Gump.

Preprocessing

Prototypes (PCA+k-mean clustering)

We find I_i and C_i for each prototype image.

$$I^{morph}(\alpha,\beta) = \sum_{i=1}^{N} \beta_i \mathbf{W}(I_i, \mathbf{W}(\sum_{j=1}^{N} \alpha_j C_j - C_i, C_i))$$

analysis $I \longrightarrow \alpha \beta$ synthesis

Morphable model

Synthesis

Results

Results

Relighting faces

Light is additive

Light stage 1.0

Input images

Reflectance function

Relighting

Results

Changing viewpoints

Results

3D face applications: Spiderman 2

Spiderman 2

synthetic

Spiderman 2

video

Light stage 3

Light stage 6

Relighting Human Locomotion with Flowed Reflectance Fields Per Einarsson Charles-Felix Chabert Andrew Jones Wan-Chun Ma¹ Bruce Lamond Tim Hawkins Mark Bolas² Sebastian Sylwan Paul Debevec USC Centers for Creative Technologies National Taiwan University 1 USC School of Cinema-Television² Eurographics Symposium on Rendering, June 2006

Application: The Matrix Reloaded

Application: The Matrix Reloaded

References

- Paul Debevec, <u>Rendering Synthetic Objects into Real Scenes:</u> Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography, SIGGRAPH 1998.
- F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, and R. Szeliski. <u>Synthesizing realistic facial expressions from</u> photographs. SIGGRAPH 1998, pp75-84.
- Li Zhang, Noah Snavely, Brian Curless, Steven M. Seitz, Spacetime Faces: High Resolution Capture for Modeling and Animation, SIGGRAPH 2004.
- Blanz, V. and Vetter, T., <u>A Morphable Model for the</u> <u>Synthesis of 3D Faces</u>, SIGGRAPH 1999, pp187-194.
- Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar, <u>Acquiring the</u> <u>Reflectance Field of a Human Face</u>, SIGGRAPH 2000.
- Christoph Bregler, Malcolm Slaney, Michele Covell, <u>Video</u> <u>Rewrite: Driving Visual Speeach with Audio</u>, SIGGRAPH 1997.
- Tony Ezzat, Gadi Geiger, Tomaso Poggio, <u>Trainable</u> <u>Videorealistic Speech Animation</u>, SIGGRAPH 2002.