Faces and Image-Based Lighting

Digital Visual Effects

Yung-Yu Cbuang
with slides by Richard Sreliski, Steve Seitz, Alex Efros, Li-Yi Wei and Paul Debevec

Outline

- Image-based lighting
- 3D acquisition for faces
- Statistical methods (with application to face super-resolution)
- 3D Face models from single images
- Image-based faces
- Relighting for faces

Image-based lighting

Rendering

- Rendering is a function of geometry, reflectance, lighting and viewing.
- To synthesize CGI into real scene, we have to match the above four factors.
- Viewing can be obtained from calibration or structure from motion.
- Geometry can be captured using 3D photography or made by hands.
- How to capture lighting and reflectance?

Reflectance

- The Bidirectional Reflection Distribution Function
- Given an incoming ray $\left(\theta_{i}, \phi_{i}\right)$ and outgoing ray $\left(\theta_{e}, \phi_{e}\right)$ what proportion of the incoming light is reflected along

Answer given by the BRDF: $\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)$

Rendering equation

Complex illumination

$$
\begin{aligned}
L_{o}\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & L_{e}\left(\mathrm{p}, \omega_{\mathrm{o}}\right) \\
& +\int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{i}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}} \\
B\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & \int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{d}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}} \\
B_{p}\left(\omega_{\mathrm{o}}\right)= & \int_{s^{2}} f_{p, \omega_{\mathrm{o}}}\left(\omega_{\mathrm{i}}\right) L_{d}\left(\omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
\end{aligned}
$$

Point lights

Classically, rendering is performed assuming point light sources

directional source

Natural illumination

People perceive materials more easily under natural illumination than simplified illumination.

Images courtesy Ron Dror and Ted Adelson

Natural illumination

Rendering with natural illumination is more expensive compared to using simplified illumination

directional source

natural illumination

Environment maps

Miller and Hoffman, 1984

HDR lighting

Examples of complex environment lipiqivFx Examples of complex environment ighit

Examples of complex environment ligiqivFx

Complex illumination

$$
\begin{aligned}
L_{o}\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & L_{e}\left(\mathrm{p}, \omega_{\mathrm{o}}\right) \\
& +\int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{i}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}} \\
B\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & \int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{d}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}} \\
B_{p}\left(\omega_{\mathrm{o}}\right)= & \int_{s^{2}} f_{p, \omega_{\mathrm{o}}}\left(\omega_{\mathrm{i}}\right) L_{d}\left(\omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
\end{aligned}
$$

reflectance lighting
Both are spherical functions

Function approximation

- $G(x)$: the function to approximate
- $B_{1}(x), B_{2}(x), \ldots B_{n}(x)$: basis functions
- We want

$$
G(x)=\sum_{i=1}^{n} c_{i} B_{i}(x)
$$

- Storing a finite number of coefficients c_{i} gives an approximation of $\mathrm{G}(\mathrm{x})$

Function approximation

- How to find coefficients c_{i} ?
- Minimize an error measure
- What error measure?
- L_{2} error

$$
E_{L_{2}}=\int_{I}\left[G(x)-\sum_{i} c_{i} B_{i}(x)\right]^{2}
$$

- Coefficients

$$
c_{i}=\left\langle G \mid B_{i}\right\rangle=\int_{X} G(x) B_{i}(x) d x
$$

Function approximation

- Basis Functions are pieces of signal that can be used to produce approximations to a function

Function approximation

- We can then use these coefficients to reconstruct an approximation to the original signal

Function approximation

- We can then use these coefficients to reconstruct an approximation to the original signal

$$
\sum_{i=1}^{N} c_{i} B_{i}(x)=
$$

Orthogonal basis functions

- Orthogonal Basis Functions
- These are families of functions with special properties

$$
\int B_{i}(x) B_{j}(x) d x= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- Intuitively, it's like functions don't overlap each other's footprint
- A bit like the way a Fourier transform breaks a functions into component sine waves

Integral of product

$$
\begin{gathered}
I=\int F(x) G(x) d x \\
F(x)=\sum_{i} f_{i} B_{i}(x) \quad G(x)=\sum_{j} g_{j} B_{j}(x) \\
\int F(x) G(x) d x=\int\left(\sum_{i} f_{i} B_{i}(x) \sum_{j} g_{j} B_{j}(x)\right) d x \\
=\int \sum_{i} \sum_{j} f_{i} g_{j} B_{i}(x) B_{j}(x) d x=\int \sum_{i} f_{i} g_{i} d x=\hat{F} \cdot \hat{G} \\
B_{p}\left(\omega_{\mathrm{o}}\right)=\int_{s^{2}} f_{p, \omega_{\mathrm{o}}}\left(\omega_{\mathrm{i}}\right) L_{d}\left(\omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
\end{gathered}
$$

Basis functions

- Transform data to a space in which we can capture the essence of the data better
- Spherical harmonics, similar to Fourier transform in spherical domain, is used in PRT.

Real spherical harmonics

- A system of signed, orthogonal functions over the sphere
- Represented in spherical coordinates by the function

$$
y_{l}^{m}(\theta, \varphi)= \begin{cases}\sqrt{2} K_{l}^{m} \cos (m \varphi) P_{l}^{m}(\cos \theta), & m>0 \\ \sqrt{2} K_{l}^{m} \sin (-m \varphi) P_{l}^{-m}(\cos \theta), & m<0 \\ K_{l}^{0} P_{l}^{0}(\cos \theta), & m=0\end{cases}
$$

where l is the band and m is the index within the band

Real spherical harmonics

Reading SH diagrams

Reading SH diagrams

The SH functions

The SH functions

Spherical harmonics

$$
\begin{aligned}
(x, y, z) & =(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \\
Y_{00}(\theta, \phi) & =0.282095 \\
\left(Y_{11} ; Y_{10} ; Y_{1-1}\right)(\theta, \phi) & =0.488603(x ; z ; y) \\
\left(Y_{21} ; Y_{2-1} ; Y_{2-2}\right)(\theta, \phi) & =1.092548(x z ; y z ; x y) \\
Y_{20}(\theta, \phi) & =0.315392\left(3 z^{2}-1\right) \\
Y_{22}(\theta, \phi) & =0.546274\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Spherical harmonics

$Y_{l m}(\theta, \varphi)$

SH projection

- First we define a strict order for SH functions

$$
i=l(l+1)+m
$$

- Project a spherical function into a vector of SH coefficients

$$
c_{i}=\int_{S} f(s) y_{i}(s) d s
$$

SH reconstruction

- To reconstruct the approximation to a function

$$
\widetilde{f}(s)=\sum_{i=0}^{N^{2}} c_{i} y_{i}(s)
$$

- We truncate the infinite series of SH functions to give a low frequency approximation

Examples of reconstruction

Original

$n=4$
$n=6$
$n=8$
$n=10$

An example

- Take a function comprised of two area light sources
- SH project them into 4 bands = 16 coefficients

$$
\left[\begin{array}{l}
1.329, \\
-0.679,0.930,0.908, \\
-0.940,0,0.417,0,0.278, \\
-0.642,0.001,0.317,0.837, \\
-0.425,0,-0.238
\end{array}\right]
$$

Low frequency light source

- We reconstruct the signal
- Using only these coefficients to find a low frequency approximation to the original light source

SH lighting for diffuse obj ects

- An Efficient Representation for Irradiance Environment Maps, Ravi Ramamoorthi and Pat Hanrahan, SIGGRAPH 2001
- Assumptions
- Diffuse surfaces
- Distant illumination
- No shadowing, interreflection

$$
\begin{aligned}
B\left(p, \omega_{o}\right) & =\int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{d}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}} \\
B(p, n) & =\rho(p) E(\mathrm{n})
\end{aligned}
$$

irradiance is a function of surface normal

Diffuse reflection

radiosity

(image intensity) (albedo/texture) (incoming light)

Irradiance environment maps

$$
E(n)=\int_{\Omega} L(\omega)(n \cdot \omega) d \omega
$$

Spherical harmonic expansion

Expand lighting (L), irradiance (E) in basis functions

$$
\begin{aligned}
& L(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} L_{l m} Y_{l m}(\theta, \phi) \\
& E(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} E_{l m} Y_{l m}(\theta, \phi)
\end{aligned}
$$

Analytic irradiance formula

Lambertian surface acts like low-pass filter

$$
E_{l m}=A_{l} L_{l m}
$$

$$
A_{l}=2 \pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)}\left[\frac{l!}{2^{l}\left(\frac{l}{2}!\right)^{2}}\right] \quad l \text { even }
$$

9 parameter approximation

9 Parameter Approximation

RMS Error $=\mathbf{8 \%}$

9 Parameter Approximation

Exact image

RMS Error $=\mathbf{1 \%}$
For any illumination, average error $<3 \%$ [Basri Jacobs 01]

Comparison

Incident
illumination
300x300

Irradiance map
Texture: 256×256
Hemispherical Integration 2 Hrs
Time $\propto 300 \times 300 \times 256 \times 256$

Irradiance map
Texture: 256x256
Spherical Harmonic Coefficients 1sec
Time $\propto 9 \times 256 \times 256$

Complex geometry

Assume no shadowing: Simply use surface normal

Natural illumination

For diffuse objects, rendering with natural illumination can be done quickly

directional source

natural illumination

HDRI Sky Probe

DigivFX

Clipped Sky + Sun Source

Diqivex

Lit by sun only

Lit by sky only

Real Scene Example

- Goal: place synthetic objects on table

Light Probe / Calibration Grid

Modeling the Scene

The Light-Based Room Model

Rendering into the Scene

- Background Plate

Rendering into the scene

- Objects and Local Scene matched to Scene

Differential rendering

- Local scene w/o objects, illuminated by model

Differential rendering

DigivFX

Differential rendering

Environment map from single image? DiqivFX

Eye as light probe! (Nayar et al)

Results

(al) original image

(a4) face replaced image
(a) replacing faces in Amelie

Application in "Superman returns"

Capturing reflectance

Application in "The Matrix Reloaded" "DigivFx

3D acquisition for faces

Cyberware scanners

face $\mathbb{\&}$ head scanner
whole body scanner

Making facial expressions from photos

- Similar to Façade, use a generic face model and view-dependent texture mapping
- Procedure

1. Take multiple photographs of a person
2. Establish corresponding feature points
3. Recover 3D points and camera parameters
4. Deform the generic face model to fit points
5. Extract textures from photos

Reconstruct a 3D model

input photographs

Mesh deformation

- Compute displacement of feature points
- Apply scattered data interpolation

generic model

displacement

deformed model

Texture extraction

- The color at each point is a weighted combination of the colors in the photos
- Texture can be:
- view-independent
- view-dependent
- Considerations for weighting
- occlusion
- smoothness
- positional certainty
- view similarity

Texture extraction

Texture extraction

Texture extraction

view-independent
view-dependent

Model reconstruction

Use images to adapt a generic face model.

Creating new expressions

- In addition to global blending we can use:
- Regional blending
- Painterly interface

Creating new expressions

New expressions are created with 3D morphing:

Applying a global blend

Creating new expressions

Applying a region-based blend

Creating new expressions

Using a painterly interface

Drunken smile

Animating between expressions

Morphing over time creates animation:

"neutral"

"joy"

Video

Digivex

Spacetime faces

DigjVFX

Spacetime faces

time

stereo
time

stereo

active stereo
time

stereo

active stereo

spacetime stereo

Spacetime Stereo

Spacetime Stereo

Spacetime Stereo

Spacetime Stereo

Spacetime stereo matching

A moving oblique surface

Video

Editing

Animation

Fitting

Facelk

Face Editing

Animation

3D face applications: The one

3D face applications: Gladiator

extra 3 M

Statistical methods

Statistical methods

parameters
 $$
z \longrightarrow f(z)+\varepsilon \rightarrow y
$$
 observed signal

$$
\begin{aligned}
z^{*} & =\max _{z} P(z \mid y) \\
& =\max _{z} \frac{P(y \mid z) P(z)}{P(y)} \\
& =\min _{z} L(y \mid z)+L(z)
\end{aligned}
$$

Statistical methods

para$z \longrightarrow f(z)+\varepsilon \rightarrow y$
 observed signal

$$
z^{*}=\min _{z} L(y \mid z)+L(z)
$$

data $\quad\|y-f(z)\|^{2} \quad$ a-priori
evidence
σ^{2}
knowledge

Statistical methods

There are approximately 10^{240} possible 10×10 gray-level images. Even human being has not seen them all yet. There must be a strong statistical bias.

Takeo Kanade

Approximately 8×10^{11} blocks per day per person.

Generic priors

"Smooth images are good images."

$$
\mathrm{L}(\mathrm{z})=\sum_{\mathrm{x}} \rho(\mathrm{~V}(\mathrm{x}))
$$

Gaussian MRF $\rho(\mathrm{d})=\mathrm{d}^{2}$
Huber MRF $\quad \rho(d)= \begin{cases}d^{2} & |d| \leq T \\ T^{2}+2 T(|d|-T) & d>T\end{cases}$

Generic priors

Example-based priors

"Existing images are good images."

six 200×200
Images \Rightarrow
2,000,000 pairs

Example-based priors

Example-based priors

Model-based priors

"Face images are good images when working on face images ..."

Parametric model

$$
Z=W X+\mu \quad L(X)
$$

$$
\begin{aligned}
& z^{*}=\min _{z} L(y \mid z)+L(z) \\
& \left\{\begin{array}{l}
X^{*}=\min _{x} L(y \mid W X+\mu)+L(X) \\
z^{*}=W X^{*}+\mu
\end{array}\right.
\end{aligned}
$$

- Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

PCA on faces: "eigenfaces"

Model-based priors

"Face images are good images when working on face images ..."

Parametric model

$$
Z=W X+\mu \quad L(X)
$$

$$
\begin{aligned}
& z^{*}=\min _{z} L(y \mid z)+L(z) \\
& \left\{\begin{array}{l}
X^{*}=\min _{x} L(y \mid W X+\mu)+L(X) \\
z^{*}=W X^{*}+\mu
\end{array}\right.
\end{aligned}
$$

Super-resolution

(b)

(c)

(d)

(e)

(f)
(a) Input low 24×32
(b) Our results
(c) Cubic B-Spline
(d) Freeman et al.
(e) Baker et al.
(f) Original high 96×128

Face models from single images

Morphable model of 3D faces

- Start with a catalogue of 200 aligned 3D Cyberware scans

- Build a model of average shape and texture, and principal variations using PCA

Morphable model

shape examplars texture examplars

$$
\begin{equation*}
S_{\text {model }}=\bar{S}+\sum_{i=1}^{m-1} \alpha_{i} s_{i}, \quad T_{\text {model }}=\bar{T}+\sum_{i=1}^{m-1} \beta_{i} t_{i} \tag{1}
\end{equation*}
$$

$\vec{\alpha}, \vec{\beta} \in \Re^{m-1}$. The probability for coefficients $\vec{\alpha}$ is given by

$$
\begin{equation*}
p(\vec{\alpha}) \sim \exp \left[-\frac{1}{2} \sum_{i=1}^{m-1}\left(\alpha_{i} / \sigma_{i}\right)^{2}\right], \tag{2}
\end{equation*}
$$

Morphable model of 3D faces

- Adding some variations

ORIGINAL

CARICATURE

FROWN

MORE MALE

WEIGHT

FEMALE

HOORED NOSE

Reconstruction from single image

Reconstruction from single image

$$
\begin{gathered}
E=\frac{1}{\sigma_{N}^{2}}\left[E_{I}+\sum_{j=1}^{m-1} \frac{\alpha_{j}^{2}}{\sigma_{S, j}^{2}}+\sum_{j=1}^{m-1} \sqrt{\frac{\beta_{j}^{2}}{\sigma_{T, j}^{2}}}+\sum_{j} \frac{\left(\rho_{j}-\bar{\rho}_{j}\right)^{2}}{\sigma_{\rho, j}^{2}}\right. \text { prior } \\
E_{I}=\sum_{x, y}\left\|\mathbf{I}_{i n p u t}(x, y)-\mathbf{I}_{\text {model }}(x, y)\right\|^{2} \\
\text { shape and texture priors are learnt from database } \\
\\
\rho \text { is the set of parameters for shading including } \\
\text { camera pose, lighting and so on }
\end{gathered}
$$

Modifying a single image

Animating from a single image

\qquad

Reconstruction
of Shape \& Texture

A Morphable Model for the
 Synthesis of 3D Faces

Volker Blanz \& Thomas Vetter

MPI for Biological Cybernetics Tübingen, Germany

Exchanging faces in images

Exchange faces in images

DigivFX

Exchange faces in images

Exchange faces in images

Exchange faces in images

Morphable model for human body

Image-based faces (lip sync.)

Video rewrite (analysis)

Video rewrite (synthesis)

Results

- Video database
- 2 minutes of JFK
- Only half usable
- Head rotation

training video

Read my lips.
I never met Forest Gump.

Morphable speech model

Preprocessing

Prototypes (PCA+k-mean clustering)

We find I_{i} and C_{i} for each prototype image.

Morphable model

$$
I^{\text {morph }}(\alpha, \beta)=\sum_{i=1}^{N} \beta_{i} \mathbf{W}\left(I_{i}, \mathbf{W}\left(\sum_{j=1}^{N} \alpha_{j} C_{j}-C_{i}, C_{i}\right)\right)
$$

analysis

$$
I \underset{\text { synthesis }}{\rightleftarrows} \alpha \beta
$$

Morphable model

Synthesis

$$
E=\underbrace{(y-\mu)^{T} D^{T} \Sigma^{-1} D(y-\mu)}_{\text {target term }}+\lambda \underbrace{y^{T} W^{T} W y}_{\text {smoothness }}
$$

Results

DigjVFX

Results

DigivFX

Relighting faces

Light is additive

Light stage 1.0

Input images

Digivex

Reflectance function

Relighting

Results

DigjvFX

Changing viewpoints

Results

3D face applications: Spiderman 2

$$
{ }^{2}
$$

Spiderman 2

DigjVFX

video

Light stage 3

Light stage 6

Relighting Human Locomotion with Flowed Reflectance Fields

Per Einarsson Charles-Felix Chabert Andrew Jones Wan-Chun Ma ${ }^{1}$ Bruce Lamond Tim Hawkins Mark Bolas ${ }^{2}$ Sebastian Sylwan Paul Debevec

USC Centers for Creative Technologies
National Taiwan University ${ }^{1}$
USC School of Cinema-Television ${ }^{2}$
Eurographics Symposium on Rendering, June 2006

Application: The Matrix Reloaded

Application: The Matrix Reloaded

References

- Paul Debevec, Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography, SIGGRAPH 1998.
- F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, and R. Szeliski. Synthesizing realistic facial expressions from photographs. SIGGRAPH 1998, pp75-84.
- Li Zhang, Noah Snavely, Brian Curless, Steven M. Seitz, Spacetime Faces: High Resolution Capture for Modeling and Animation, SIGGRAPH 2004.
- Blanz, V. and Vetter, T., A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 1999, pp187-194.
- Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar, Acquiring the Reflectance Field of a Human Face, SIGGRAPH 2000.
- Christoph Bregler, Malcolm Slaney, Michele Covell, Video Rewrite: Driving Visual Speeach with Audio, SIGGRAPH 1997.
- Tony Ezzat, Gadi Geiger, Tomaso Poggio, Trainable Videorealistic Speech Animation, SIGGRAPH 2002.

