Structure from motion

Digital Visual Effects

Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Zhengyou Zhang and Marc Pollefyes

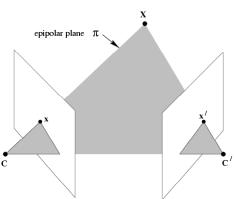
Epipolar geometry & fundamental matrix

Outline

- Epipolar geometry and fundamental matrix
- Structure from motion
- Factorization method
- Bundle adjustment
- Applications

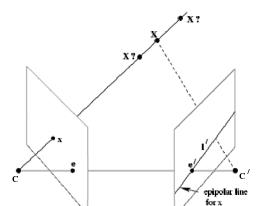
The epipolar geometry

epipolar geometry demo



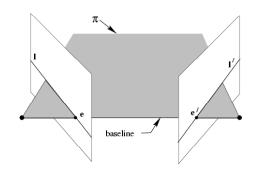
C,C',x,x' and X are coplanar

The epipolar geometry



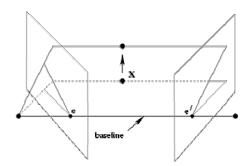
What if only C, C', x are known?

The epipolar geometry



All points on π project on I and I'

The epipolar geometry



Family of planes π and lines l and l' intersect at e and e'

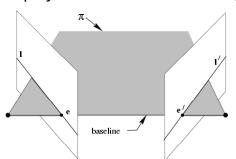
The epipolar geometry

<u>Digi</u>VFX

epipolar pole

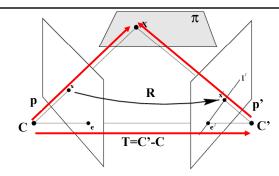
epipolar geometry demo

- = intersection of baseline with image plane
- = projection of projection center in other image



epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image

The fundamental matrix F



Two reference frames are related via the extrinsic parameters

$$p = Rp' + T$$

The fundamental matrix F

$$p = Rp' + T$$

Multiply both sides by
$$\mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}$$

$$[\mathbf{T}]_{\times} = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$$

$$\mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}\mathbf{p} = \mathbf{p}^{\mathrm{T}}[\mathbf{T}]_{\times}(\mathbf{R}\mathbf{p'} + \mathbf{T})$$

$$0 = \mathbf{p}^{\mathrm{T}} [\mathbf{T}]_{\times} \mathbf{R} \mathbf{p'}$$
$$\mathbf{p}^{\mathrm{T}} \mathbf{E} \mathbf{p'} = 0 \text{ essential matrix}$$

The fundamental matrix F

$$\mathbf{p}^{\mathrm{T}}\mathbf{E}\mathbf{p}'=0$$

Let M and M' be the intrinsic matrices, then

$$\mathbf{p} = \mathbf{M}^{-1}\mathbf{x} \qquad \mathbf{p'} = \mathbf{M'}^{-1}\mathbf{x'}$$

$$\longrightarrow (\mathbf{M}^{-1}\mathbf{x})^{\mathrm{T}}\mathbf{E}(\mathbf{M}^{-1}\mathbf{x}') = 0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{M}^{-\mathrm{T}}\mathbf{E}\mathbf{M}^{\mathsf{I}-1}\mathbf{x}^{\mathsf{I}}=0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x}'=0$$
 fundamental matrix

The fundamental matrix F

- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x'$ in the two images

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x'} = 0 \qquad \left(\mathbf{x}^{\mathrm{T}}\mathbf{1} = 0\right)$$

The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies $x^TFx'=0$ for all $x \leftrightarrow x'$

- 1. Transpose: if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)
- 2. Epipolar lines: l=Fx' & $l'=F^Tx$
- 3. Epipoles: on all epipolar lines, thus $e^TFx'=0$, $\forall x' \Rightarrow e^TF=0$, similarly Fe'=0
- 4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- 5. F is a correlation, projective mapping from a point x to a line l=Fx' (not a proper correlation, i.e. not invertible)

Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

$$\mathbf{x}^{\mathrm{T}}\mathbf{F}\mathbf{x}'=0$$

for any pair of matches **x** and **x**' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^T$$
 and $\mathbf{x}' = (u', v', 1)^T$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ each match gives a linear equation

$$uu' f_{11} + uv' f_{12} + uf_{13} + vu' f_{21} + vv' f_{22} + vf_{23} + u' f_{31} + v' f_{32} + f_{33} = 0$$

The fundamental matrix F

- It can be used for
 - Simplifies matching
 - Allows to detect wrong matches

8-point algorithm

$$\begin{bmatrix} u_{1}u_{1}' & u_{1}v_{1}' & u_{1} & v_{1}u_{1}' & v_{1}v_{1}' & v_{1} & u_{1}' & v_{1}' & 1\\ u_{2}u_{2}' & u_{2}v_{2}' & u_{2} & v_{2}u_{2}' & v_{2}v_{2}' & v_{2} & u_{2}' & v_{2}' & 1\\ \vdots & \vdots\\ u_{n}u_{n}' & u_{n}v_{n}' & u_{n} & v_{n}u_{n}' & v_{n}v_{n}' & v_{n} & u_{n}' & v_{n}' & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$

• In reality, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$ subj. $\|\mathbf{f}\| = 1$. Find the vector corresponding to the least singular value.

8-point algorithm

- To enforce that F is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} - \mathbf{F}'\|$ subject to $\det \mathbf{F}' = 0$.
- It is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

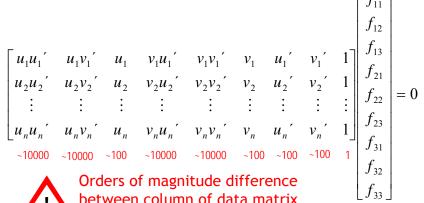
8-point algorithm

- % Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...x1(1,:)'x1(2,:)' ones(npts,1) 1; [U,D,V] = svd(A);
- % Extract fundamental matrix from the column of V
- % corresponding to the smallest singular value. F = reshape(V(:,9),3,3)';
- % Enforce rank2 constraint [U,D,V] = svd(F);F = U*diag([D(1,1) D(2,2) 0])*V';

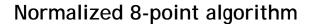
8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

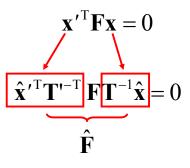
Problem with 8-point algorithm



between column of data matrix → least-squares yields poor results

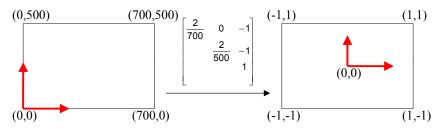


- 1. Transform input by $\hat{\mathbf{x}}_i = T\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = T\mathbf{x}_i'$
- 2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
- 3. $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$



Normalized 8-point algorithm

normalized least squares yields good results Transform image to \sim [-1,1]x[-1,1]



Normalized 8-point algorithm

Normalization

function [newpts, T] = normalise2dpts(pts)

RANSAC

Results (ground truth)

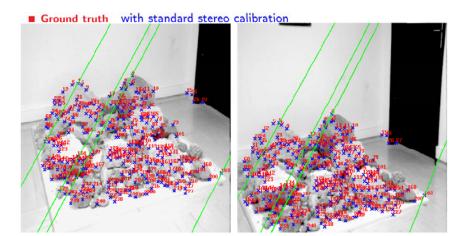
repeat

select minimal sample (8 matches) compute solution(s) for F

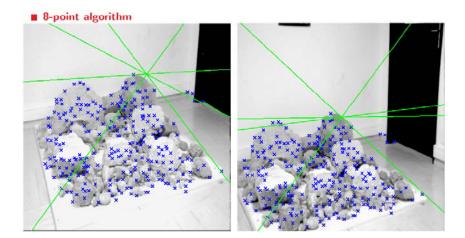
determine inliers

until $\Gamma(\#inliers, \#samples) > 95\%$ or too many times

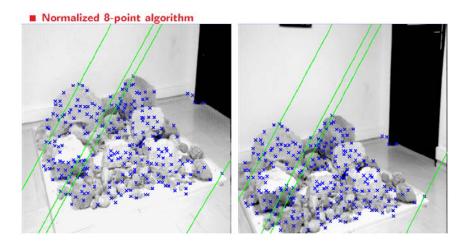
compute F based on all inliers



Results (8-point algorithm)

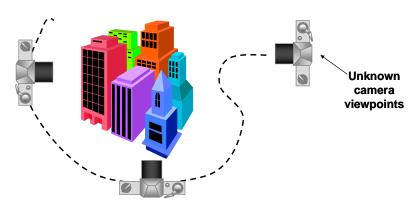


Results (normalized 8-point algorithm)



Structure from motion

Structure from motion



structure for motion: automatic recovery of <u>camera motion</u> and <u>scene structure</u> from two or more images. It is a self calibration technique and called *automatic camera tracking* or *matchmoving*.

Applications

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds

Matchmove

example #1

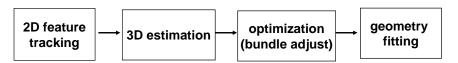
example #2

example #3

example #4

Structure from motion

DigiVFX



SFM pipeline

Structure from motion

- Step 1: Track Features
 - Detect good features, Shi & Tomasi, SIFT
 - Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - window-based correlation
 - SIFT matching

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

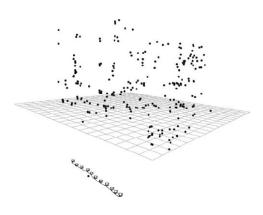
Structure from Motion

- Step 2: Estimate Motion and Structure
 - Simplified projection model, e.g., [Tomasi 92]
 - 2 or 3 views at a time [Hartley 00]

Structure from Motion

Digi<mark>VFX</mark>

- Step 3: Refine estimates
 - "Bundle adjustment" in photogrammetry
 - Other iterative methods



Structure from Motion

• Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)

Factorization methods

Problem statement

Notations

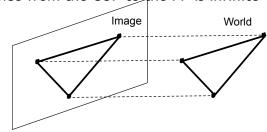
DigiVFX

- *n* 3D points are seen in *m* views
- q=(u, v, 1): 2D image point
- p=(x,y,z,1): 3D scene point
- Π : projection matrix
- π : projection function
- q_{ii} is the projection of the *i*-th point on image *j*
- λ_{ij} projective depth of q_{ij}

$$\mathbf{q}_{ij} = \pi(\Pi_j \mathbf{p}_i) \qquad \pi(x, y, z) = (x/z, y/z)$$
$$\lambda_{ij} = z$$

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite



$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

Structure from motion

ullet Estimate \prod_i and $oldsymbol{p}_i$ to minimize

$$\varepsilon(\mathbf{\Pi}_1, \dots, \mathbf{\Pi}_m, \mathbf{p}_1, \dots, \mathbf{p}_n) = \sum_{j=1}^m \sum_{i=1}^n w_{ij} \log P(\pi(\mathbf{\Pi}_j \mathbf{p}_i); \mathbf{q}_{ij})$$

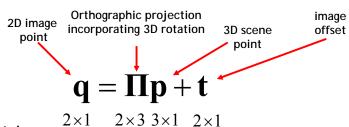
$$w_{ij} = \begin{cases} 1 & \text{if } p_i \text{ is visible in view j} \\ 0 & \text{otherwise} \end{cases}$$

• Assume isotropic Gaussian noise, it is reduced to

$$\mathcal{E}(\mathbf{\Pi}_1, \dots, \mathbf{\Pi}_m, \mathbf{p}_1, \dots, \mathbf{p}_n) = \sum_{j=1}^m \sum_{i=1}^n w_{ij} \| \pi(\mathbf{\Pi}_j \mathbf{p}_i) - \mathbf{q}_{ij} \|^2$$

• Start from a simpler projection model

SFM under orthographic projection



- Trick
 - Choose scene origin to be centroid of 3D points
 - Choose image origins to be centroid of 2D points
 - Allows us to drop the camera translation:

$$q = \Pi p$$

factorization (Tomasi & Kanade)

projection of *n* features in one image:

$$\begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} = \prod_{2 \times 3} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

projection of *n* features in *m* images

$$\begin{bmatrix} \mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1n} \\ \mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{m1} & \mathbf{q}_{m2} & \cdots & \mathbf{q}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{\Pi}_1 \\ \mathbf{\Pi}_2 \\ \vdots \\ \mathbf{\Pi}_m \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

$$2m \times n$$

$$2m \times 3$$

W measurement M motion

S shape

Key Observation: rank(**W**) <= 3

Metric constraints

- Orthographic Camera
 - Rows of Π are orthonormal: $\Pi \Pi^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Enforcing "Metric" Constraints
 - Compute A such that rows of M have these properties

$$M'A = M$$

Trick (not in original Tomasi/Kanade paper, but in followup work)

Constraints are linear in AAT:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \prod \prod^{T} = \prod' \mathbf{A} (\mathbf{A} \prod')^{T} = \prod' \mathbf{G} \prod'^{T} \qquad where \ \mathbf{G} = \mathbf{A} \mathbf{A}^{T}$$

- Solve for **G** first by writing equations for every Π_i in **M**
- Then $G = AA^T$ by SVD (since U = V)

Factorization

- Factorization Technique
 - W is at most rank 3 (assuming no noise)
 - We can use singular value decomposition to factor W:

$$\mathbf{W}_{2m\times n} = \mathbf{M}' \mathbf{S}'_{2m\times 3 3\times n}$$

- S' differs from S by a linear transformation A:

$$\mathbf{W} = \mathbf{M}'\mathbf{S}' = (\mathbf{M}\mathbf{A}^{-1})(\mathbf{A}\mathbf{S})$$

- Solve for A by enforcing *metric* constraints on M

Factorization with noisy data

$$\mathbf{W}_{2m \times n} = \mathbf{M}_{2m \times 3} \mathbf{S}_{3 \times n} + \mathbf{E}_{2m \times n}$$

- SVD gives this solution
 - Provides optimal rank 3 approximation W' of W

$$\mathbf{W}_{2m\times n} = \mathbf{W}' + \mathbf{E}_{2m\times n}$$

- Approach
 - Estimate W', then use noise-free factorization of W' as before
 - Result minimizes the SSD between positions of image features and projection of the reconstruction

Results

Extensions to factorization methods

- Projective projection
- With missing data
- Projective projection with missing data

Levenberg-Marquardt method

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Bundle adjustment

Nonlinear least square

Given a set of measurements \mathbf{x} , try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

Levenberg-Marquardt method

For a small $||\delta_{\mathbf{p}}||$, $f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$ \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| \approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}||$$

$$\begin{aligned} \mathbf{J}^T \mathbf{J} \delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N} \delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N}_{ii} &= \mu + \left[\mathbf{J}^T \mathbf{J} \right]_{ii} \\ &\uparrow \\ &damping \ term \end{aligned}$$

Levenberg-Marquardt method

- μ =0 \rightarrow Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing μ
 - Start with some small μ
 - If error is not reduced, keep trying larger $\boldsymbol{\mu}$ until it does
 - If error is reduced, accept it and reduce $\boldsymbol{\mu}$ for the next iteration

Bundle adjustment

- Bundle adjustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.

Bundle adjustment

DigiVFX

- n 3D points are seen in m views
- x_{ij} is the projection of the *i*-th point on image j
- a_j is the parameters for the j-th camera
- b_i is the parameters for the *i*-th point
- BA attempts to minimize the projection error

$$\min_{\mathbf{a}_j, \mathbf{b}_i} \sum_{i=1}^n \sum_{j=1}^m d(\mathbf{Q}(\mathbf{a}_j, \mathbf{b}_i), \mathbf{x}_{ij})^2$$
predicted projection

Euclidean distance

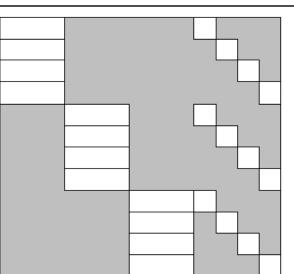
Bundle adjustment

Bundle adjustment

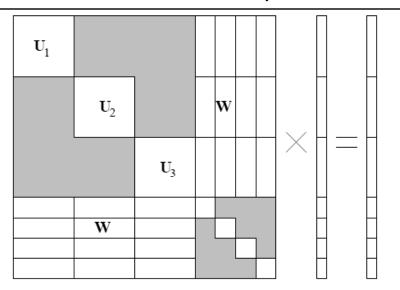
<u>Digi</u>VFX

$$\frac{\partial X}{\partial P} = \begin{pmatrix} A_{11} & 0 & 0 & B_{11} & 0 & 0 & 0 \\ 0 & A_{12} & 0 & B_{12} & 0 & 0 & 0 \\ 0 & 0 & A_{13} & B_{13} & 0 & 0 & 0 \\ A_{21} & 0 & 0 & 0 & B_{21} & 0 & 0 \\ 0 & A_{22} & 0 & 0 & B_{22} & 0 & 0 \\ 0 & 0 & A_{23} & 0 & B_{23} & 0 & 0 \\ A_{31} & 0 & 0 & 0 & 0 & B_{31} & 0 \\ 0 & A_{32} & 0 & 0 & 0 & B_{32} & 0 \\ 0 & 0 & A_{33} & 0 & 0 & B_{33} & 0 \\ A_{41} & 0 & 0 & 0 & 0 & 0 & B_{41} \\ 0 & A_{42} & 0 & 0 & 0 & 0 & B_{42} \\ 0 & 0 & A_{43} & 0 & 0 & 0 & B_{43} \end{pmatrix}$$

Typical Jacobian



Block structure of normal equation



Bundle adjustment

$$\begin{pmatrix} \mathbf{U}_1 & \mathbf{0} & \mathbf{0} & \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{0} & \mathbf{U}_2 & \mathbf{0} & \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{0} & \mathbf{0} & \mathbf{U}_3 & \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \\ \mathbf{W}_{11}^T & \mathbf{W}_{12}^T & \mathbf{W}_{13}^T & \mathbf{V}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{21}^T & \mathbf{W}_{22}^T & \mathbf{W}_{23}^T & \mathbf{0} & \mathbf{V}_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{31}^T & \mathbf{W}_{32}^T & \mathbf{W}_{33}^T & \mathbf{0} & \mathbf{0} & \mathbf{V}_3 & \mathbf{0} \\ \mathbf{W}_{41}^T & \mathbf{W}_{42}^T & \mathbf{W}_{43}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{V}_4 \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_{\mathbf{a}_1} \\ \boldsymbol{\delta}_{\mathbf{a}_2} \\ \boldsymbol{\delta}_{\mathbf{a}_3} \\ \boldsymbol{\delta}_{\mathbf{b}_1} \\ \boldsymbol{\delta}_{\mathbf{b}_2} \\ \boldsymbol{\delta}_{\mathbf{b}_3} \\ \boldsymbol{\delta}_{\mathbf{b}_4} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\epsilon}_{\mathbf{a}_1} \\ \boldsymbol{\epsilon}_{\mathbf{a}_2} \\ \boldsymbol{\epsilon}_{\mathbf{a}_3} \\ \boldsymbol{\epsilon}_{\mathbf{b}_1} \\ \boldsymbol{\epsilon}_{\mathbf{b}_2} \\ \boldsymbol{\epsilon}_{\mathbf{b}_3} \\ \boldsymbol{\delta}_{\mathbf{b}_4} \end{pmatrix}$$

$$\mathbf{U}^* = \begin{pmatrix} \mathbf{U}_1^* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2^* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2^* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{V}_3^* & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{V}_3^* & \mathbf{0} \end{pmatrix}, \mathbf{W} = \begin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

Bundle adjustment

Multiplied by
$$\begin{pmatrix} \mathbf{I} & -\mathbf{W} \mathbf{V}^{*-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{U}^* - \mathbf{W} \, \mathbf{V}^{*-1} \, \mathbf{W}^T & \mathbf{0} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} - \mathbf{W} \, \mathbf{V}^{*-1} \, \epsilon_{\mathbf{b}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

$$\begin{aligned} & (\mathbf{U}^* - \mathbf{W} \ \mathbf{V^*}^{-1} \ \mathbf{W}^T) \ \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \ \mathbf{V^*}^{-1} \ \epsilon_{\mathbf{b}} \\ & \mathbf{V}^* \ \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \ \delta_{\mathbf{a}} \end{aligned}$$

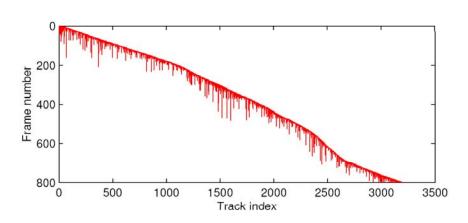
Issues in SFM

- Track lifetime
- Nonlinear lens distortion
- Degeneracy and critical surfaces
- Prior knowledge and scene constraints
- Multiple motions

Track lifetime

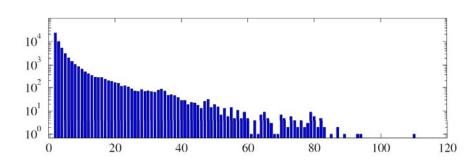
every 50th frame of a 800-frame sequence

Track lifetime



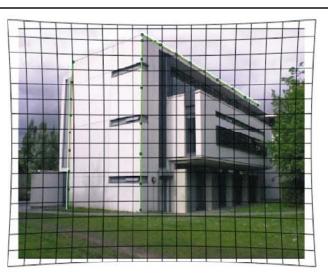
lifetime of 3192 tracks from the previous sequence

Track lifetime



track length histogram

Nonlinear lens distortion

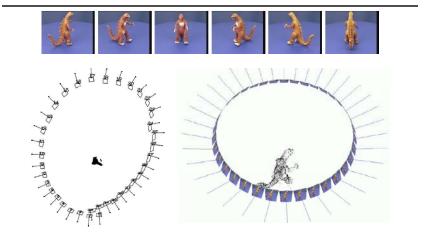


effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallel

Prior knowledge and scene constraints



add a constraint that it is a turntable sequence

Applications of matchmove

Jurassic park

Enemy at the Gate, Double Negative

2d3 boujou 🥞

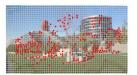
Enemy at the Gate, Double Negative

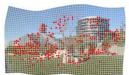
Photo Tourism

VideoTrace

http://www.acvt.com.au/research/videotrace/

Video stabilization





Project #3 MatchMove

- It is more about using tools in this project
- You can choose either calibration or structure from motion to achieve the goal
- Calibration
- Voodoo/Icarus
- Examples from previous classes, #1, #2

References

- Richard Hartley, <u>In Defense of the 8-point Algorithm</u>, ICCV, 1995.
- Carlo Tomasi and Takeo Kanade, <u>Shape and Motion from Image</u> <u>Streams: A Factorization Method</u>, Proceedings of Natl. Acad. Sci., 1993.
- Manolis Lourakis and Antonis Argyros, <u>The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm</u>, FORTH-ICS/TR-320 2004.
- N. Snavely, S. Seitz, R. Szeliski, <u>Photo Tourism: Exploring Photo Collections in 3D</u>, SIGGRAPH 2006.
- A. Hengel et. al., <u>VideoTrace: Rapid Interactive Scene Modelling</u> from Video, SIGGRAPH 2007.