Camera calibration

Digital Visual Effects

Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz,, Fred Pighin and Marc Pollefyes

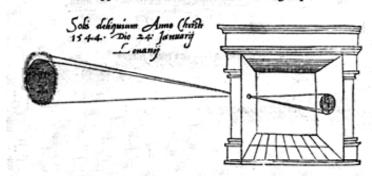
Camera projection models

Outline

- Camera projection models
- Camera calibration
- Nonlinear least square methods
- A camera calibration tool
- Applications

Pinhole camera

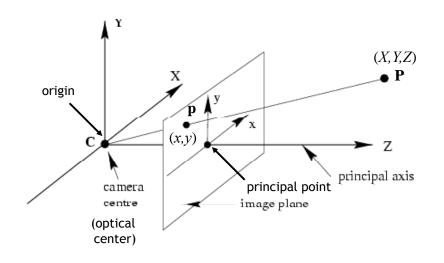
illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.



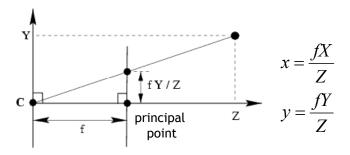
Sic nos exactè Anno .1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Pinhole camera model

DigiVFX

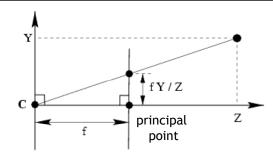


Pinhole camera model



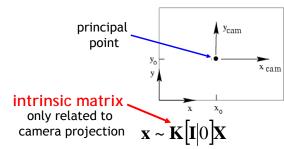
$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Pinhole camera model



$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Principal point offset



$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Intrinsic matrix

Digi<mark>VFX</mark>

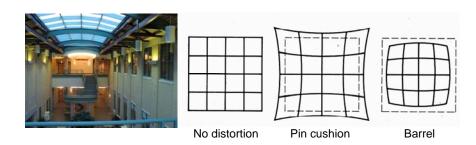
Is this form of ${\bf K}$ good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew
- radial distortion

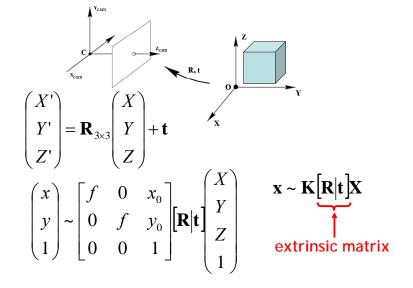
$$\mathbf{K} = \begin{bmatrix} fa & s & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Distortion



- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

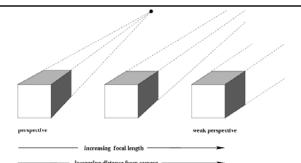
Camera rotation and translation



Two kinds of parameters

- *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation: where is the camera?

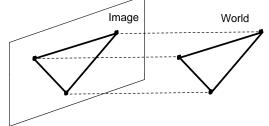
Other projection models



Orthographic projection

DigiVFX

- Special case of perspective projection
 - Distance from the COP to the PP is infinite



$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

Other types of projections

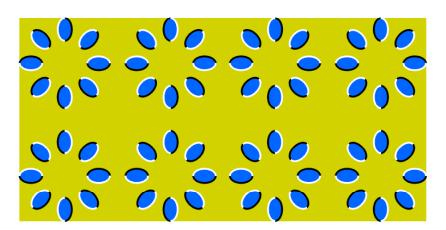
- Scaled orthographic
 - Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

- Affine projection
 - Also called "paraperspective"

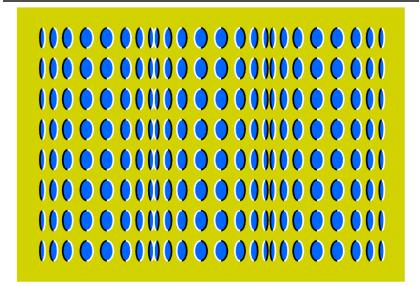
$$\left[\begin{array}{ccc} a & b & c & d \\ e & f & g & h \\ 0 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right]$$

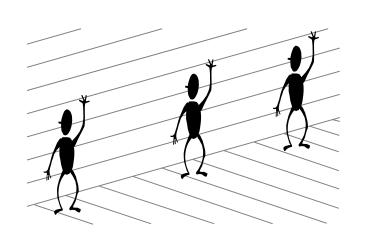
Illusion



Illusion

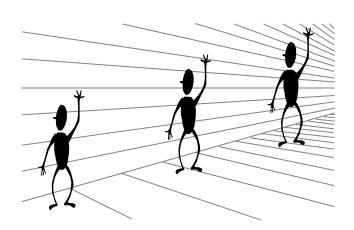
Fun with perspective

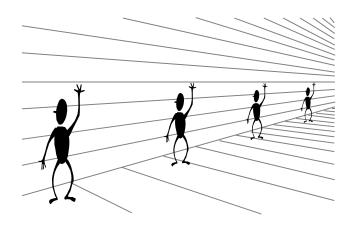




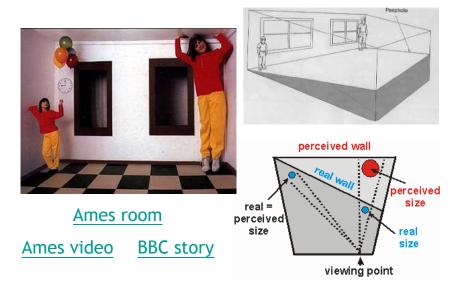
Perspective cues







Fun with perspective



Forced perspective in LOTR

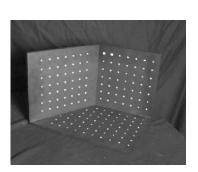
Camera calibration

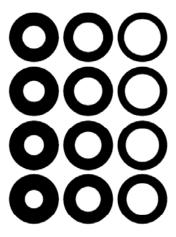
Camera calibration

- Estimate both intrinsic and extrinsic parameters. Two main categories:
- 1. Photometric calibration: uses reference objects with known geometry
- 2. Self calibration: only assumes static scene, e.g. structure from motion

Camera calibration approaches

- Digi<mark>VFX</mark>
- 1. linear regression (least squares)
- 2. nonlinear optimization





Camera calibration

Chromaglyphs (HP research)

Linear regression

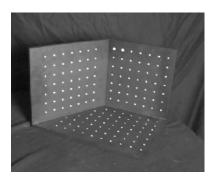
$$x \sim K \Big[R \big| t \Big] \! X = M X$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Linear regression

Digi<mark>VFX</mark>

• Directly estimate 11 unknowns in the M matrix using known 3D points (X_i, Y_i, Z_i) and measured feature positions (u_i, v_i)



Linear regression

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$
$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

Linear regression

Linear regression

 m_{00}

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & \vdots & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Solve for Projection Matrix M using least-square techniques

Normal equation

Given an overdetermined system

$$Ax = b$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Nonlinear optimization

- A probabilistic view of least square
- Feature measurement equations

$$u_i = f(\mathbf{M}, \mathbf{x}_i) + n_i = \hat{u}_i + n_i, \quad n_i \sim N(0, \sigma)$$

$$v_i = g(\mathbf{M}, \mathbf{x}_i) + m_i = \hat{v}_i + m_i, \quad m_i \sim N(0, \sigma)$$

• Probability of M given $\{(u_i, v_i)\}$

$$P = \prod_{i} p(u_i|\hat{u}_i)p(v_i|\hat{v}_i)$$
$$= \prod_{i} e^{-(u_i-\hat{u}_i)^2/\sigma^2} e^{-(v_i-\hat{v}_i)^2/\sigma^2}$$

Linear regression

- Advantages:
 - All specifics of the camera summarized in one matrix
 - Can predict where any world point will map to in the image
- Disadvantages:
 - Doesn't tell us about particular parameters
 - Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks
 - More unknowns than true degrees of freedom

Optimal estimation

• Likelihood of M given $\{(u_i, v_i)\}$

$$L = -\log P = \sum_{i} (u_i - \hat{u}_i)^2 / \sigma_i^2 + (v_i - \hat{v}_i)^2 / \sigma_i^2$$

- It is a least square problem (but not necessarily linear least square)
- How do we minimize *L*?

Optimal estimation

• Non-linear regression (least squares), because the relations between \hat{u}_i and u_i are non-linear functions of \mathbf{M}

unknown parameters

We could have terms like $f\cos\theta$ in this

$$\mathbf{u} - \hat{\mathbf{u}} \sim \mathbf{u} - \mathbf{K} [\mathbf{R} | \mathbf{t}] \mathbf{X}$$
known constant

 We can use Levenberg-Marquardt method to minimize it

Nonlinear least square methods

Least square fitting

Least Squares Problem

Find x^* , a local minimizer for

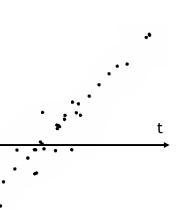
$$F(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} (f_i(\mathbf{x}))^2 ,$$

where $f_i: \mathbb{R}^n \mapsto \mathbb{R}, i=1,\ldots,m$ are given functions, and $m \geq n$.

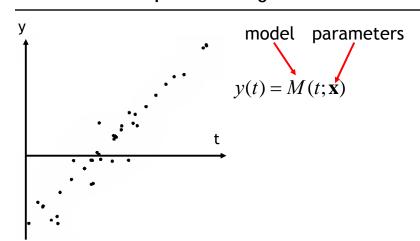
number of data points

number of parameters

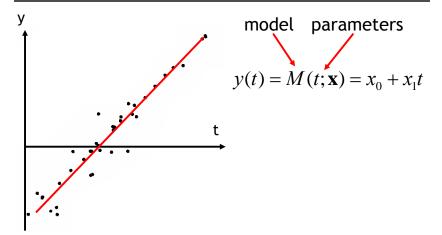
Linear least square fitting



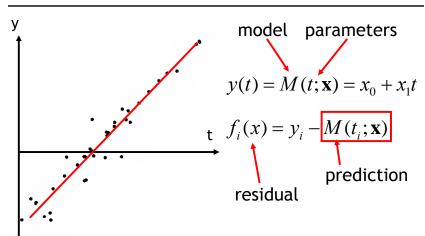
Linear least square fitting



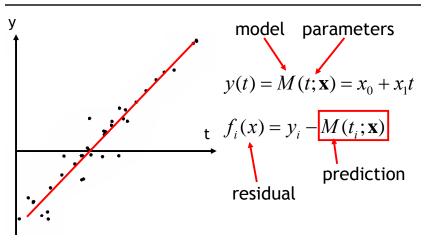
Linear least square fitting



Linear least square fitting

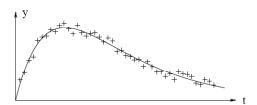


Linear least square fitting



$$M(t; \mathbf{x}) = x_0 + x_1 t + x_2 t^3$$
 is linear, too.

Nonlinear least square fitting



$$\begin{aligned} \text{model} \quad & M(t; \mathbf{x}) = x_3 e^{x_1 t} + x_4 e^{x_2 t} \\ \text{parameters} \quad & \mathbf{x} = [x_1, x_2, x_4, x_4]^T \\ \text{residuals} \quad & f_i(\mathbf{x}) = y_i - M(t_i; \mathbf{x}) \\ & = y_i - \left(x_3 e^{x_1 t} + x_4 e^{x_2 t}\right) \end{aligned}$$

Function minimization

Least square is related to function minimization.

Global Minimizer

Given
$$F: \mathbb{R}^n \mapsto \mathbb{R}$$
. Find

$$\mathbf{x}^+ = \operatorname{argmin}_{\mathbf{x}} \{ F(\mathbf{x}) \}$$
.

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

Local Minimizer

Given
$$F: \mathbb{R}^n \mapsto \mathbb{R}$$
. Find \mathbf{x}^* so that

$$F(\mathbf{x}^*) \le F(\mathbf{x})$$
 for $\|\mathbf{x} - \mathbf{x}^*\| < \delta$.

Function minimization

We assume that the cost function F is differentiable and so smooth that the following *Taylor expansion* is valid, ²⁾

$$F(\mathbf{x}+\mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathsf{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}\mathbf{h} + O(\|\mathbf{h}\|^{3}),$$

where g is the gradient,

$$\mathbf{g} \equiv \mathbf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}) \end{bmatrix},$$

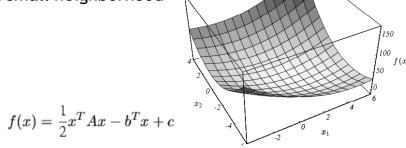
and H is the Hessian,

$$\mathbf{H} \equiv \mathbf{F}''(\mathbf{x}) = \left[\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x}) \right] .$$

Quadratic functions

Approximate the function with a quadratic function within

a small neighborhood

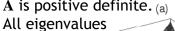


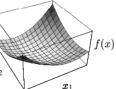
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ -8 \end{bmatrix}, \qquad c = 0$$

Quadratic functions

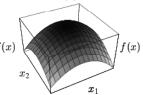
A is positive definite. (a)

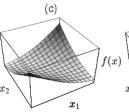
are positive. For all x, $x^TAx>0$.

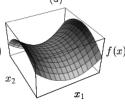




(b) negative definite







A is singular

A is indefinite

Function minimization

Theorem 1.5. Necessary condition for a local minimizer.

If x^* is a local minimizer, then

$$\mathbf{g}^* \equiv \mathbf{F}'(\mathbf{x}^*) = \mathbf{0}.$$

Why?

By definition, if x^* is a local minimizer,

$$\|\mathbf{h}\|$$
 is small enough \longrightarrow $\mathbf{F}(\mathbf{x}^* + \mathbf{h}) > \mathbf{F}(\mathbf{x}^*)$

$$F(x^* + h) = F(x^*) + h^T F'(x^*) + O(||h||^2)$$

Function minimization

Theorem 1.5. Necessary condition for a local minimizer.

If x^* is a local minimizer, then

$${\bf g}^* \, \equiv \, {\bf F}'({\bf x}^*) \, = \, {\bf 0} \, .$$

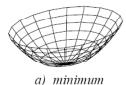
Definition 1.6. Stationary point. If

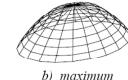
$${\bf g}_s \, \equiv \, {\bf F}^{\, \prime}({\bf x}_s) \, = \, {\bf 0} \, \, , \label{eq:gs}$$

then x_s is said to be a stationary point for F.

$$F(\mathbf{x}_s + \mathbf{h}) = F(\mathbf{x}_s) + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{H}_s \, \mathbf{h} + O(\|\mathbf{h}\|^3)$$

 H_s is positive definite





c) saddle point

Function minimization

Theorem 1.8. Sufficient condition for a local minimizer.

Assume that \mathbf{x}_s is a stationary point and that $\mathbf{F}''(\mathbf{x}_s)$ is positive definite. Then x_s is a local minimizer.

$$F(\mathbf{x}_s + \mathbf{h}) = F(\mathbf{x}_s) + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{H}_s \, \mathbf{h} + O(\|\mathbf{h}\|^3)$$
with $\mathbf{H}_s = \mathbf{F}''(\mathbf{x}_s)$

If we request that H_s is positive definite, then its eigenvalues are greater than some number $\delta > 0$

$$\mathbf{h}^{\mathsf{T}}\mathbf{H}_{\mathsf{s}}\,\mathbf{h} > \delta \|\mathbf{h}\|^2$$

$$\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \to \mathbf{x}^* \text{ for } k \to \infty$$

- 1. Find a descent direction \mathbf{h}_{d}
- 2. find a step length giving a good decrease in the F-value.

```
Algorithm Descent method
begin
   k := 0; \mathbf{x} := \mathbf{x}_0; found := false
                                                                                {Starting point}
   while (not found) and (k < k_{max})
       \mathbf{h}_{d} := search\_direction(\mathbf{x})
                                                                     {From x and downhill}
       if (no such h exists)
                                                                               \{x \text{ is stationary}\}\
          found := true
       else
                                                                   \{\text{from } \mathbf{x} \text{ in direction } \mathbf{h}_{d}\}
          \alpha := \text{step\_length}(\mathbf{x}, \mathbf{h}_d)
          \mathbf{x} := \mathbf{x} + \alpha \mathbf{h}_{\mathsf{d}}; \quad k := k+1
                                                                                    {next iterate}
end
```

Descent direction

$$F(\mathbf{x} + \alpha \mathbf{h}) = F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) + O(\alpha^{2})$$
$$\simeq F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.}$$

Definition Descent direction.

 \mathbf{h} is a descent direction for F at \mathbf{x} if $\mathbf{h}^{\top}\mathbf{F}'(\mathbf{x}) < 0$.

Steepest descent method

$$\begin{split} F(\mathbf{x} + \alpha \mathbf{h}) &= F(\mathbf{x}) + \alpha \mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) + O(\alpha^2) \\ &\simeq F(\mathbf{x}) + \alpha \mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.} \end{split}$$

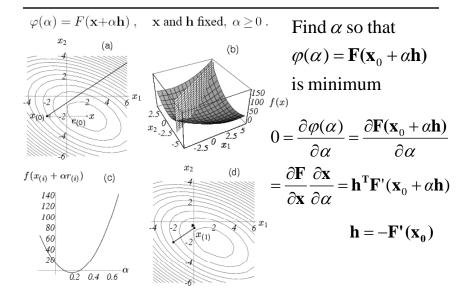
$$\frac{F(\mathbf{x}) - F(\mathbf{x} + \alpha \mathbf{h})}{\alpha \|\mathbf{h}\|} = -\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) = -\|\mathbf{F}'(\mathbf{x})\| \cos \theta$$

the decrease of F(x) per unit along h direction

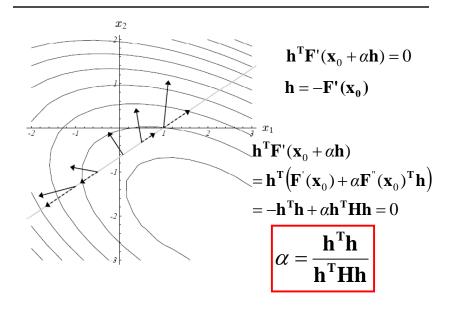
greatest gain rate if
$$\theta = \pi \rightarrow \mathbf{h}_{sd} = -\mathbf{F}'(\mathbf{x})$$

 h_{sd} is a descent direction because $h_{sd}^T F'(x) = -F'(x)^2 < 0$

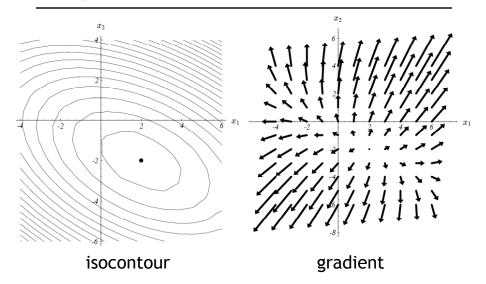
Line search



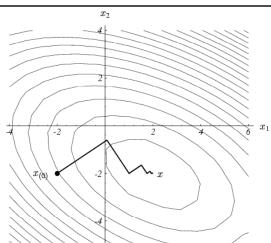
Line search



Steepest descent method



Steepest descent method



It has good performance in the initial stage of the iterative process. Converge very slow with a linear rate.

Newton's method

 \mathbf{x}^* is a stationary point \rightarrow it satisfies $\mathbf{F}'(\mathbf{x}^*) = \mathbf{0}$.

$$\begin{split} \mathbf{F}'(\mathbf{x} + \mathbf{h}) &= \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2) \\ &\simeq \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} \quad \text{for } \|\mathbf{h}\| \text{ sufficiently small} \end{split}$$

Suppose that H is positive definite

$$\rightarrow \mathbf{u}^{\mathsf{T}} \mathbf{H} \mathbf{u} > 0$$
 for all nonzero \mathbf{u} .

$$\to 0 < \mathbf{h}_n^\top \mathbf{H} \, \mathbf{h}_n = - \mathbf{h}_n^\top \mathbf{F}^{\, \prime}(\mathbf{x}) \ \, \mathbf{h}_n \, \, \text{is a descent direction}$$

Another view

$$E(\mathbf{h}) = F(\mathbf{x} + \mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathrm{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathrm{T}}\mathbf{H}\mathbf{h}$$

• Minimizer satisfies $E'(\mathbf{h}^*) = 0$

$$E'(\mathbf{h}) = \mathbf{g} + \mathbf{H}\mathbf{h} = 0$$

$$\mathbf{h} = -\mathbf{H}^{-1}\mathbf{g}$$

Newton's method

$$\mathbf{h} = -\mathbf{H}^{-1}\mathbf{g}$$

- It requires solving a linear system and H is not always positive definite.
- It has good performance in the final stage of the iterative process, where x is close to x*.

Gauss-Newton method

• Use the approximate Hessian

$$\mathbf{H} \approx \mathbf{J}^{\mathrm{T}} \mathbf{J}$$

- No need for second derivative
- H is positive semi-definite

Hybrid method

$$\begin{aligned} & \text{if } \mathbf{F}''(\mathbf{x}) \text{ is positive definite} \\ & \mathbf{h} := \mathbf{h}_n \\ & \text{else} \\ & \mathbf{h} := \mathbf{h}_{sd} \\ & \mathbf{x} := \mathbf{x} + \alpha \mathbf{h} \end{aligned}$$

This needs to calculate second-order derivative which might not be available.

Levenberg-Marquardt method

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Nonlinear least square

Given a set of measurements \mathbf{x} , try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

Levenberg-Marquardt method

For a small $||\delta_{\mathbf{p}}||$, $f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$ \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| \approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}||$$
 $\mathbf{J}^T \mathbf{J}\delta_{\mathbf{p}} = \mathbf{J}^T \epsilon$
 $\mathbf{N}\delta_{\mathbf{p}} = \mathbf{J}^T \epsilon$
 $\mathbf{N}\delta_{\mathbf{p}} = \mathbf{J}^T \epsilon$

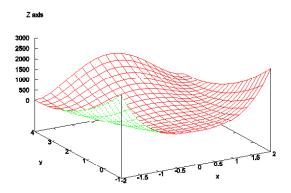
damping term

Levenberg-Marquardt method

$$(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \mu \mathbf{I})\mathbf{h} = -\mathbf{g}$$

- μ =0 \rightarrow Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing µ
 - Start with some small μ
 - If F is not reduced, keep trying larger μ until it does
 - If F is reduced, accept it and reduce $\boldsymbol{\mu}$ for the next iteration

Recap (the Rosenbrock function) DigiVFX



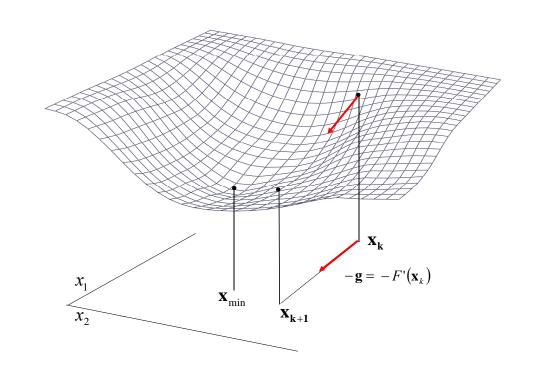
$$z = f(x, y) = (1 - x^2)^2 + 100(y - x^2)^2$$

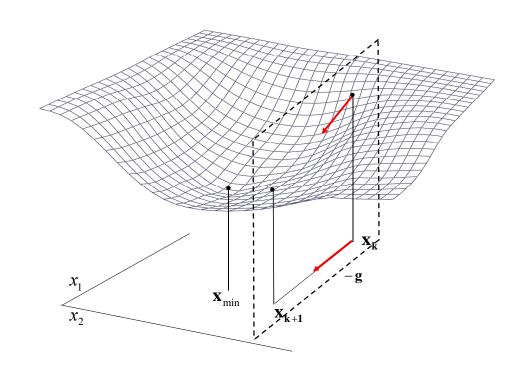
Global minimum at (1, 1)

Steepest descent

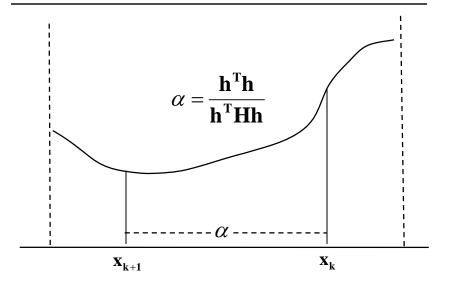
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}$$

$$\alpha = \frac{\mathbf{h}^{\mathrm{T}}\mathbf{h}}{\mathbf{h}^{\mathrm{T}}\mathbf{H}\mathbf{h}}$$

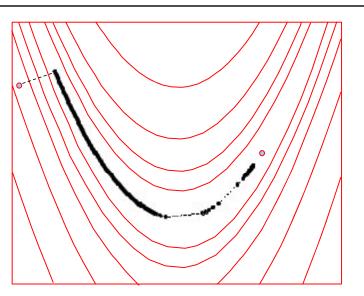




In the plane of the steepest descent direction



Steepest descent (1000 iterations)



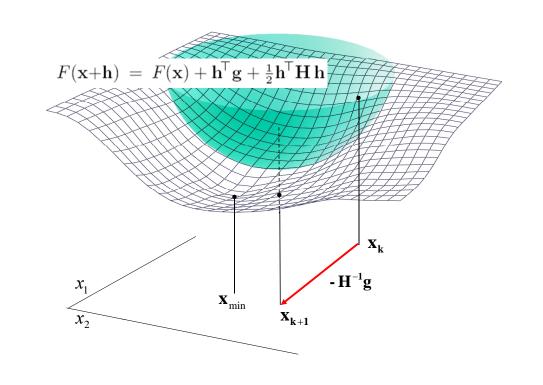
Gauss-Newton method

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \mathbf{H}^{-1}\mathbf{g}$$

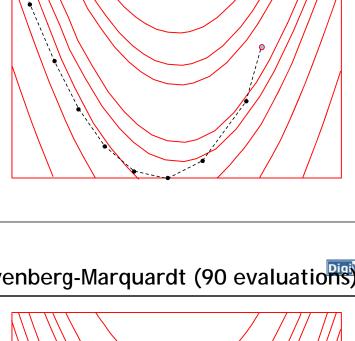
• With the approximate Hessian

$$\mathbf{H} \approx \mathbf{J}^{\mathrm{T}} \mathbf{J}$$

- No need for second derivative
- H is positive semi-definite



Newton's method (48 evaluations)



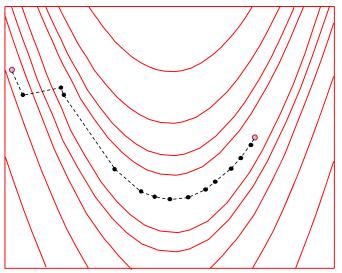
Levenberg-Marquardt

- Blends steepest descent and Gauss-Newton
- At each step, solve for the descent direction h

$$(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \mu \mathbf{I})\mathbf{h} = -\mathbf{g}$$

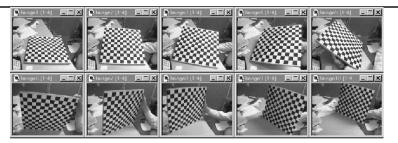
- If μ large, $\mathbf{h} \approx -\mathbf{g}$, steepest descent
- If μ small, $\mathbf{h} \approx -(\mathbf{J}^T\mathbf{J})^{-1}\mathbf{g}$, Gauss-Newton

Levenberg-Marquardt (90 evaluations)



A popular calibration tool

Multi-plane calibration

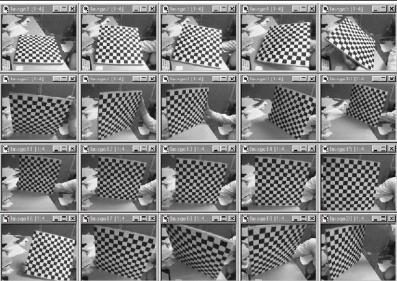


Images courtesy Jean-Yves Bouguet, Intel Corp.

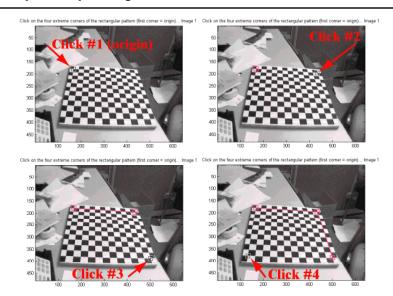
Advantage

- · Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

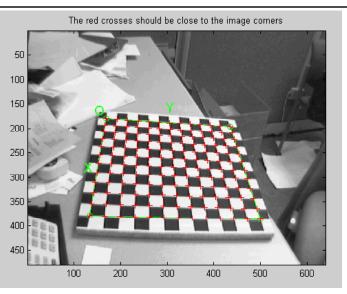
Step 1: data acquisition



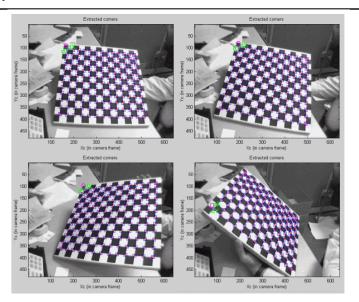
Step 2: specify corner order



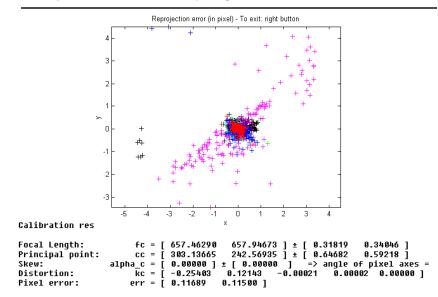
Step 3: corner extraction



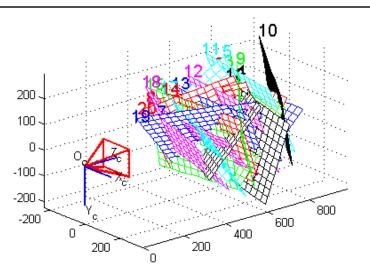
Step 3: corner extraction



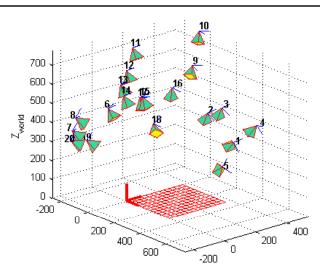
Step 4: minimize projection error



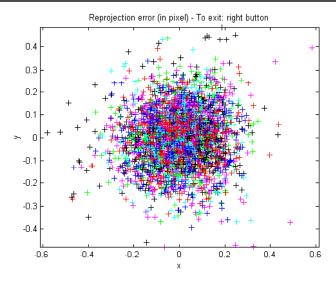
Step 4: camera calibration



Step 4: camera calibration



Step 5: refinement



Optimized parameters

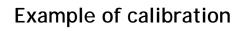

```
Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEI
Principal point optimized (center optim=1) - (DEFAULT). To reject principal point, set co
Skew not optimized (est_alpha=0) - (DEFAULT)
Distortion not fully estimated (defined by the variable est_dist):
    Sixth order distortion not estimated (est dist(5)=0) - (DEFAULT) .
Main calibration optimization procedure - Number of images: 20
Gradient descent iterations: 1...2...3...4...5...done
Estimation of uncertainties...done
Calibration results after optimization (with uncertainties):
Focal Length:
                   fc = [ 657.46290 657.94673 ] ± [ 0.31819 0.34046 ]
                   Principal point:
               Skew:
Distortion:
Pixel error:
                  Note: The numerical errors are approximately three times the standard deviations (for re-
```

How is calibration used?

- Good for recovering intrinsic parameters; It is thus useful for many vision applications
- Since it requires a calibration pattern, it is often necessary to remove or replace the pattern from the footage or utilize it in some ways...

Applications

Example of calibration



(b) Camera calibration grid and light probe

monochrome cameras: color cameras projectors

Example of calibration

- DasTatoo, MakeOf
- P!NG, MakeOf
- Work, MakeOf
- LifeInPaints, MakeOf

PhotoBook

DigiVFX