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Outline

• Image-based lighting

• 3D acquisition for faces
• Statistical methods (with application to face 

super-resolution)p )
• 3D Face models from single images
• Image based faces• Image-based faces
• Relighting for faces

Image-based lightingImage based lighting

Rendering

• Rendering is a function of geometry, 
reflectance  lighting and viewingreflectance, lighting and viewing.

• To synthesize CGI into real scene, we have to 
t h th  b  f  f tmatch the above four factors.

• Viewing can be obtained from calibration or 
structure from motion.

• Geometry can be captured using 3D y p g
photography or made by hands.

• How to capture lighting and reflectance?• How to capture lighting and reflectance?



Reflectance

• The Bidirectional Reflection Distribution Function
Given an incoming ray              and outgoing ray– Given an incoming ray              and outgoing ray
what proportion of the incoming light is reflected along 
outgoing ray?

surface normalsurface normal

Answer given by the BRDF:  

Rendering equation
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Point lights
Classically, rendering is performed assuming point 
light sourceslight sources

directional source



Natural illumination
People perceive materials more easily under 
natural illumination than simplified illuminationnatural illumination than simplified illumination.

I t R D d T d Ad lImages courtesy Ron Dror and Ted Adelson

Natural illumination
Rendering with natural illumination is more 
expensive compared to using simplified expensive compared to using simplified 
illumination

directional source natural illumination

Environment maps

Miller and Hoffman 1984Miller and Hoffman, 1984

HDR lighting



Examples of complex environment light Examples of complex environment light

Complex illumination
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reflectance lighting

B th  h i l f tiBoth are spherical functions

Function approximation

• G(x): the function to approximate
• B1(x), B2(x), … Bn(x): basis functions
• We want
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• Storing a finite number of coefficients ci gives 
an approximation of G(x)



Function approximation
• How to find coefficients ci?

Mi i i    – Minimize an error measure
• What error measure?

– L2 error
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Function approximation
• Basis Functions are pieces of signal that can be used to 

produce approximations to a functionproduce approximations to a function
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Function approximation
• We can then use these coefficients to reconstruct an 

approximation to the original signalapproximation to the original signal
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• We can then use these coefficients to reconstruct an 

approximation to the original signalapproximation to the original signal
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Orthogonal basis functions
• Orthogonal Basis Functions

Th   f ili  f f ti  ith i l – These are families of functions with special 
properties
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– Intuitively, it’s like functions don’t overlap each 
other’s footprint

A bit lik  th    F i  t f  b k   • A bit like the way a Fourier transform breaks a 
functions into component sine waves

Integral of product
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Basis functions
• Transform data to a space in which we can 

capture the essence of the data bettercapture the essence of the data better
• Spherical harmonics, similar to Fourier 

t f  i  h i l d i  i  d i  PRTtransform in spherical domain, is used in PRT.

Real spherical harmonics
• A system of signed, orthogonal functions over 

the spherethe sphere
• Represented in spherical coordinates by the 

f ti  function 
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Real spherical harmonics Reading SH diagrams
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The SH functions Spherical harmonics

Spherical harmonics
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SH projection
• First we define a strict order for SH functions

  mlli  1

• Project a spherical function into a vector of• Project a spherical function into a vector of
SH coefficients
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SH reconstruction
• To reconstruct the approximation to a function
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• We truncate the infinite series of SH functions 
to give a low frequency approximationg q y pp

Examples of reconstruction

An example
• Take a function comprised of two area light 

sourcessources
– SH project them into 4 bands = 16 coefficients
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Low frequency light source
• We reconstruct the signal

U i  l  th  ffi i t  t  fi d  l  f  – Using only these coefficients to find a low frequency 
approximation to the original light source



SH lighting for diffuse objects
• An Efficient Representation for Irradiance 

Environment Maps  Ravi Ramamoorthi and Pat Environment Maps, Ravi Ramamoorthi and Pat 
Hanrahan, SIGGRAPH 2001
A ti• Assumptions
– Diffuse surfaces
– Distant illumination 
– No shadowing, interreflection
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Analytic irradiance formula

Lambertian surface 
acts like low-pass 
filter 2 / 3
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Comparison

Incident Irradiance map Irradiance map
illumination

300x300

p
Texture: 256x256

Hemispherical

p
Texture: 256x256

Spherical Harmonic
Integration   2Hrs Coefficients   1sec

Time 300 300 256 256    Time 9 256 256  

Complex geometry

Assume no shadowing: Simply use surface normalAssume no shadowing: Simply use surface normal

y

Natural illumination
For diffuse objects, rendering with natural 
illumination can be done quicklyillumination can be done quickly

directional source natural illumination

Video



Acquiring the Light Probe HDRI Sky Probe

Clipped Sky + Sun Source Lit by sun onlyy y



Lit by sky onlyy y y Lit by sun and skyy y

Illuminating a Small Scene



Real Scene Example

• Goal: place synthetic objects on tableGoal: place synthetic objects on table

Light Probe / Calibration Gridg

Modeling the Scene

light-based modellight-based model

real scene

The Light-Based Room Model



Rendering into the Scene

• Background PlateBackground Plate

Rendering into the scene

• Objects and Local Scene matched to SceneObjects and Local Scene matched to Scene

Differential rendering

• Local scene w/o objects, illuminated by modelLocal scene w/o objects, illuminated by model

Differential rendering

==-



Differential rendering

++

Differential Rendering

• Final ResultFinal Result

Environment map from single image? Eye as light probe! (Nayar et al)



Results Application in “Superman returns”

Capturing reflectance Application in “The Matrix Reloaded”



3D acquisition for faces3D acquisition for faces

Cyberware scanners

face & head scanner whole body scannery

Making facial expressions from photos

• Similar to Façade, use a generic face model 
and view dependent texture mappingand view-dependent texture mapping

• Procedure
1. Take multiple photographs of a person
2. Establish corresponding feature points
3. Recover 3D points and camera parameters 
4. Deform the generic face model to fit points
5. Extract textures from photos

Reconstruct a 3D model

input photographs

generic 3D pose more deformedgeneric 3D 
face model

p
estimation features model



Mesh deformation

– Compute displacement of feature points
Apply scattered data interpolation– Apply scattered data interpolation

generic model displacement deformed model

Texture extraction

• The color at each point is a weighted 
combination of the colors in the photoscombination of the colors in the photos

• Texture can be:
– view-independent 
– view-dependent

• Considerations for weighting
– occlusion
– smoothness
– positional certaintyp y
– view similarity

Texture extraction Texture extraction



Texture extraction

view-independent view-dependent

Model reconstruction

Use images to adapt a generic face modelUse images to adapt a generic face model.

Creating new expressions

• In addition to global blending we can use: 
R i l bl di– Regional blending

– Painterly interface

Creating new expressions

New expressions are created with 3D morphing:

+ =+

/2 /2

Applying a global blend



Creating new expressions

+x x+ =

Applying a region-based blend

Creating new expressions

+ + ++ + +

=

Using a painterly interface

Drunken smile Animating between expressions

Morphing over time creates animation:

“neutral” “joy”



Video Spacetime faces

Spacetime faces

black & white cameras

color cameras

video projectors

time



time

Face surfaceFace surface

time

stereo

time

stereo active stereo

time

spacetime stereostereo active stereo



timeSpacetime Stereo

surface motionsurface motion

time=1

timeSpacetime Stereo

surface motionsurface motion

time=2

timeSpacetime Stereo

surface motionsurface motion

time=3

timeSpacetime Stereo

surface motionsurface motion

time=4



timeSpacetime Stereo

surface motionsurface motion

time=5

timeSpacetime Stereo

surface motionsurface motion

Better 
• spatial resolution
• temporal stableness

time

• temporal stableness

Spacetime stereo matching Video



Fitting FaceIK

Animation 3D face applications: The one



3D face applications: Gladiator

extra 3Mextra 3M

Statistical methodsStatistical methods

Statistical methods
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Statistical methods

There are approximately 10240 possible 1010 There are approximately 10 possible 1010 
gray-level images. Even human being has not 
seen them all yet. There must be a strong seen them all yet. There must be a strong 
statistical bias.

Takeo KanadeTakeo Kanade

Approximately  8X1011 blocks per day per person.

Generic priors

“S th i   d i ”“Smooth images are good images.”
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Generic priors Example-based priors

“E i ti  i   d i ”“Existing images are good images.”

six 200200
Images Images 
2,000,000
pairspairs



Example-based priors

L(z)

Example-based priors

high-resolution

low-resolution

Model-based priors

“Face images are good images whenFace images are good images when
working on face images …”

Parametric 
model Z=WX+ L(X)model
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PCA
• Principal Components Analysis (PCA): 

approximating a high dimensional data setapproximating a high-dimensional data set
with a lower-dimensional subspace

****

**
**
**

**
** **

**

** **

**

**
First principal componentFirst principal componentSecond principal componentSecond principal component

Original axesOriginal axes

**

**** **

**
**
** **

**** **
****
****

Data pointsData points



PCA on faces: “eigenfaces”

AverageAverage
First principal componentFirst principal component

AverageAverage
faceface

OtherOther
componentscomponents

For all except average,For all except average,o a e cept a e age,o a e cept a e age,
“gray” = 0,“gray” = 0,

“white” > 0,“white” > 0,
“black” < 0“black” < 0black  < 0black  < 0

Model-based priors

“Face images are good images whenFace images are good images when
working on face images …”

Parametric 
model Z=WX+ L(X)model
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Super-resolution

(a) (b) (c) (d) (e) (f)

(a) Input low 24×32 (b) Our results (c) Cubic B-Spline(a) Input low 24×32    (b) Our results     (c)  Cubic B Spline 

(d) Freeman et al.        (e) Baker et al.    (f)  Original high 96×128

Face models from single imagesFace models from single images



Morphable model of 3D faces

• Start with a catalogue of 200 aligned 3D 
Cyberware scansCyberware scans

• Build a model of average shape and texture  • Build a model of average shape and texture, 
and principal variations using PCA

Morphable model

shape examplars texture examplars

Morphable model of 3D faces

• Adding some variations

Reconstruction from single image

Rendering must 
be similar to 
the input if we
guess rightg g



Reconstruction from single image

prior

shape and texture priors are learnt from database

ρ is the set of parameters for shading including 
camera pose, lighting and so onp , g g

Modifying a single image

Animating from a single image Video



Exchanging faces in images Exchange faces in images

Exchange faces in images Exchange faces in images



Exchange faces in images Morphable model for human body

Image-based faces
(lip sync.)

Video rewrite (analysis)



Video rewrite (synthesis) Results

• Video database
2 i t  f JFK– 2 minutes of JFK

• Only half usable
• Head rotation• Head rotation

training video

R d  liRead my lips.

I never met Forest Gump.

Morphable speech model Preprocessing



Prototypes (PCA+k-mean clustering)

W  fi d I d C f  h t t  iWe find Ii and Ci for each prototype image.

Morphable model

analysis
I α β

analysis

synthesis

Morphable model

analysis

synthesis

Synthesis



Results Results

Relighting facesRelighting faces

Light is additive
lamp #1 lamp #2



Light stage 1.0 Light stage 1.0

64x32 lighting directions

Input images Reflectance function

occlusion flare



Relighting Results

Changing viewpoints Results



3D face applications: Spiderman 2 Spiderman 2

real syntheticreal synthetic

Spiderman 2

videovideo

Light stage 3



Light stage 6 Application: The Matrix Reloaded

Application: The Matrix Reloaded References
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