3D photography

Digital Visual Effects Yung-Yu Chuang

with slides by Szymon Rusinkiewicz, Richard Szeliski, Steve Seitz and Brian Curless

3D photography

• Acquisition of geometry and material

Range image

Range acquisition taxonomy

Range acquisition taxonomy

Outline

- Passive approaches
 - Stereo
 - Multiview approach
- Active approaches
 - Triangulation
 - Shadow scanning
- Active variants of passive approaches
 - Photometric stereo
 - Example-based photometric stereo

Passive approaches

Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

- One distinguishable point being observed
 - The preimage can be found at the intersection of the rays from the focal points to the image points

Stereo

- Many points being observed
 - Need some method to establish correspondences

- Camera calibration
- Image rectification: simplifies the search for correspondences
- Correspondence: which item in the left image corresponds to which item in the right image
- Reconstruction: recovers 3-D information from the 2-D correspondences

- Epipolar constraint: corresponding points must lie on conjugate epipolar lines
 - Search for correspondences becomes a 1-D problem

Image rectification

 Warp images such that conjugate epipolar lines become collinear and parallel to u axis

Rectified left image

Rectified right image

Disparity

- With rectified images, disparity is just (horizontal) displacement of corresponding features in the two images
 - Disparity = 0 for distant points
 - Larger disparity for closer points
 - Depth of point proportional to 1/disparity

Reconstruction

- Geometric
 - Construct the line segment perpendicular to R and R' that intersects both rays and take its mid-point

Basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- For each pixel
 - For each disparity
 - For each pixel in window
 - Compute difference
 - Find disparity with minimum SSD

Reverse order of loops

- For each disparity
 - For each pixel
 - For each pixel in window
 - Compute difference
- Find disparity with minimum SSD at each pixel

• Given SSD of a window, at some disparity

Incremental computation

• Want: SSD at next location

Incremental computation

• Subtract contributions from leftmost column, add contributions from rightmost column

Image 1

55 500 505 505 9 10 500 500 500 5	55 5665 555 555 52	19 2000 2007 2007 25	53 5555 555 555 5	10 2000 2007 2007 20
10 000 000 000 000 000 000 000 000 000	53 553 553 553 5	13 1000 1000 1000 10	33 2003 203 203 2	2 202 2 202 2
	8 88 88 88 8			10 800 T 10 80 8
		10 X000 X00 X00 X 0X 000X 00X 00X 0	10,000,000,000,000,0	10 X000 00 00 00 00 00
lococcocci lococcocci	000000000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000
000000000000000000000000000000000000000				00000
Loss	0000000000	0000000000	1000000000	0000
				10000 10000
terrenerative incompany				Concession of the local division of the loca
loss and some second se		1000000000	0000000000	10000
local second sec				0000 0000
incompany incompany				000000000000
000000000000000000000000000000000000000				00000
000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000		000000 000000
				10000 10000
	12 222 223 223 223 2	10 1000 100 100 10	12 1222 1223 1223 122	12 200 200 200 20
20 200 200 200 2 20 200 200 200 2	12 1000 1000 1000 10	131 2333 233 233 2	13 1000 1000 1000 10	12 1000 1440 1000 10
	53 555 555 555 5	13 1000 1000 1000 10	13 XXX 83 83 83 8	10 1000 1 2 200 10
50 1004 1005 100 P	13 000 000 000 0	10 1000 1000 1000 10	12 200 200 200 20	10 0000 R 2000 D
		EXE (XXXX CHUR CHUR CH 210 XXXXX XXXX CHUR CH 210 XXXXX XXXX CHUR CH	20 1000 200 200 200 X	201 0000 2000 2000 20

Image 2

-			+
-			+
-			+
-			+
-			+

Selecting window size

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:

Selecting window size

3 pixel window

20 pixel window

Non-square windows

- Compromise: have a large window, but higher weight near the center
- Example: Gaussian
- Example: Shifted windows

- Order of matching features usually the same in both images
- But not always: occlusion

• Treat feature correspondence as graph problem

Left image features

Cost of edges = similarity of regions between image features

• Find min-cost path through graph

- Another approach to improve quality of correspondences
- Assumption: disparities vary (mostly) smoothly
- Minimize energy function:

 $E_{data} + \lambda E_{smoothness}$

- E_{data}: how well does disparity match data
- E_{smoothness}: how well does disparity match that of neighbors regularization

- If data and energy terms are nice (continuous, smooth, etc.) can try to minimize via gradient descent, etc.
- In practice, disparities only piecewise smooth
- Design smoothness function that doesn't penalize large jumps too much
 - Example: $V(\alpha,\beta)=min(|\alpha-\beta|, K)$

Stereo as energy minimization

- Matching Cost Formulated as Energy
 - "data" term penalizing bad matches

$$D(x, y, d) = |\mathbf{I}(x, y) - \mathbf{J}(x + d, y)|$$

– "neighborhood term" encouraging spatial smoothness

 $V(d_1, d_2) = \text{cost of adjacent pixels with labels d1 and d2}$ = $|d_1 - d_2|$ (or something similar)

$$E = \sum_{(x,y)} D(x, y, d_{x,y}) + \sum_{neighbors\ (x1,y1), (x2,y2)} V(d_{x1,y1}, d_{x2,y2})$$

- Hard to find global minima of non-smooth functions
 - Many local minima
 - Provably NP-hard
- Practical algorithms look for approximate minima (e.g., simulated annealing)

Stereo results

- Data from University of Tsukuba

scene

ground truth

http://cat.middlebury.edu/stereo/

Results with window correlation

normalized correlation (best window size) ground truth

Results with graph cuts

graph cuts (Potts model *E*, expansion move algorithm) ground truth

Stereo evaluation

Stereo

Evaluation • Datasets • Code • Submit

Daniel Scharstein • Richard Szeliski

Welcome to the Middlebury Stereo Vision Page, formerly located at <u>www.middlebury.edu/stereo</u>. This website accompanies our taxonomy and comparison of two-frame stereo correspondence algorithms [1]. It contains:

- · An on-line evaluation of current algorithms
- · Many stereo datasets with ground-truth disparities
- Our stereo correspondence software
- An <u>on-line submission script</u> that allows you to evaluate your stereo algorithm in our framework

How to cite the materials on this website:

We grant permission to use and publish all images and numerical results on this website. If you report performance results, we request that you cite our paper [1]. Instructions on how to cite our datasets are listed on the <u>datasets page</u>. If you want to cite this website, please use the URL "vision.middlebury.edu/stereo/".

vision.middlebury.edu

stereo • mview • MRF • flow

References:

 D. Scharstein and R. Szeliski. <u>A taxonomy and evaluation of dense two-frame stereo correspondence algorithms</u>. *International Journal of Computer Vision*, 47(1/2/3):7-42, April-June 2002. Microsoft Research Technical Report MSR-TR-2001-81, November 2001.

Stereo—best algorithms

Error Threshold =	1	Sort by nonocc				Sort by all				Sort by disc			
Error Threshold	*		▼ ▼						▼				
Algorithm	Avg.	<u>Tsukuba</u> ground truth		Venus ground truth			Teddy ground truth			Cones ground truth			
	Rank	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>
AdaptingBP [17]	2.8	<u>1.11</u> 6	1.37 3	5.797	<u>0.10</u> 1	0.21 2	1.44 1	<u>4.22</u> 4	7.06 2	11.8 4	<u>2.48</u> 1	7.92 <mark>2</mark>	7.32 1
DoubleBP2 [35]	2.9	<u>0.88</u> 1	1.29 1	4.76 1	<u>0.13</u> 3	0.45 5	1.87 5	<u>3.53</u> 2	8.30 <mark>3</mark>	9.63 1	<u>2.90</u> 3	8.78 8	7.79 <mark>2</mark>
DoubleBP [15]	4.9	<u>0.88</u> 2	1.29 <mark>2</mark>	4.76 <mark>2</mark>	<u>0.14</u> 5	0.60 13	2.00 7	<u>3.55</u> 3	8.71 5	9.70 <mark>2</mark>	<u>2.90</u> 4	9.24 11	7.80 3
SubPixDoubleBP [30]	5.6	<u>1.24</u> 10	1.76 13	5.98 <mark>8</mark>	<u>0.12</u> 2	0.46 6	1.74 <mark>4</mark>	<u>3.45</u> 1	8.38 4	10.0 <mark>3</mark>	<u>2.93</u> 5	8.73 7	7.91 4
AdaptOvrSeqBP [33]	9.9	<u>1.69</u> 22	2.04 21	5.64 6	<u>0.14</u> 4	0.20 1	1.47 <mark>2</mark>	<u>7.04</u> 14	11.17	16.4 11	<u>3.60</u> 11	8.96 10	8.84 10
SymBP+occ [7]	10.8	<u>0.97</u> 4	1.75 12	5.09 4	<u>0.16</u> 8	0.33 s	2.19 <mark>8</mark>	<u>6.47</u> 8	10.7 6	17.0 14	<u>4.79</u> 24	10.7 21	10.9 20
PlaneFitBP [32]	10.8	<u>0.97</u> 5	1.83 14	5.26 5	<u>0.17</u> 7	0.51 <mark>8</mark>	1.71 s	<u>6.65</u> 9	12.1 13	14.7 7	<u>4.17</u> 20	10.7 20	10.6 19
AdaptDispCalib [36]	11.8	<u>1.19</u> 8	1.42 4	6.15 <mark>9</mark>	<u>0.23</u> 9	0.34 4	2.50 11	<u>7.80</u> 19	13.6 21	17.3 17	<u>3.62</u> 12	9.33 12	9.72 15
Segm+visib [4]	12.2	<u>1.30</u> 15	1.57 5	6.92 18	<u>0.79</u> 21	1.06 18	6.76 22	<u>5.00</u> 5	6.54 1	12.3 5	<u>3.72</u> 13	8.62 6	10.2 17
C-SemiGlob [19]	12.3	<u>2.61</u> 29	3.29 24	9.89 27	<u>0.25</u> 12	0.57 10	3.24 15	<u>5.14</u> 8	11.8 8	13.0 6	<u>2.77</u> 2	8.35 4	8.20 5
SO+borders [29]	12.8	<u>1.29</u> 14	1.71 <mark>9</mark>	6.83 15	<u>0.25</u> 13	0.53 <mark>9</mark>	2.26 9	<u>7.02</u> 13	12.2 14	16.3 <mark>9</mark>	<u>3.90</u> 15	9.85 16	10.2 18
DistinctSM [27]	14.1	<u>1.21</u> 9	1.75 11	6.39 11	<u>0.35</u> 14	0.69 16	2.63 13	<u>7.45</u> 18	13.0 17	18.1 19	<u>3.91</u> 18	9.91 18	8.32 7
CostAggr+occ [39]	14.3	<u>1.38</u> 17	1.96 17	7.14 19	<u>0.44</u> 16	1.13 19	4.87 19	<u>6.80</u> 11	11.9 10	17.3 16	<u>3.60</u> 10	8.57 5	9.36 13
OverSegmBP [26]	14.5	<u>1.69</u> 23	1.97 18	8.47 24	<u>0.51</u> 18	0.68 15	4.69 18	<u>6.74</u> 10	11.9 12	15.8 8	<u>3.19</u> 8	8.81 <mark>9</mark>	8.89 11
SegmentSupport [28]	15.1	<u>1.25</u> 11	1.62 7	6.68 13	<u>0.25</u> 11	0.64 14	2.59 12	<u>8.43</u> 24	14.2 22	18.2 20	<u>3.77</u> 14	9.87 17	9.77 16

- Goal: find a model consistent with images
- "Model-centric" (vs. image-centric)
- Typically use discretized volume (voxel grid)
- For each voxel, compute occupied / free (for some algorithms, also color, etc.)

Photo consistency

- Result: not necessarily the correct scene
- Many scenes produce the same images

Silhouette carving

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

Silhouette carving

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

- Limit of silhouette carving is *visual hull* or *line hull*
- Complement of lines that don't intersect object
- In general not the same as object
 - Can't recover "pits" in object
- Not the same as convex hull

Silhouette carving

- Discrete version:
 - Loop over all voxels in some volume
 - If projection into images lies inside all silhouettes, mark as occupied
 - Else mark as free

Voxel coloring

- Seitz and Dyer, 1997
- In addition to free / occupied, store color at each voxel
- Explicitly accounts for occlusion

- Basic idea: sweep through a voxel grid
 - Project each voxel into each image in which it is visible
 - If colors in images agree, mark voxel with color
 - Else, mark voxel as empty
- Agreement of colors based on comparing standard deviation of colors to threshold

Voxel coloring and occlusion

Voxel coloring and occlusion

- Problem: which voxels are visible?
- Solution: constrain camera views
 - When a voxel is considered, necessary occlusion information must be available
 - Sweep occluders before occludees
 - Constrain camera positions to allow this sweep

Voxel coloring sweep order

Voxel coloring camera positions

Inward-looking Cameras above scene Outward-looking Cameras inside scene

Image acquisition

Selected Dinosaur Images

Selected Flower Images

Calibrated Turntable
360° rotation (21 images)

Voxel coloring results

Dinosaur Reconstruction 72 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI Flower Reconstruction 70 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

Initialize to a volume V containing the true scene Choose a voxel on the current surface Project to visible input images Carve if not photo-consistent Repeat until convergence

- Faster alternative:
 - Sweep plane in each of 6 principal directions
 - Consider cameras on only one side of plane
 - Repeat until convergence

True Scene

Reconstruction

Space carving results: African violet

Space carving results: hand

Input image (1 of 100)

Reconstruction

Active approaches

Time of flight

• Basic idea: send out pulse of light (usually laser), time how long it takes to return

$$r = \frac{1}{2}c\Delta t$$

Laser scanning (triangulation)

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning
- Other patterns are possible

Cyberware

face and hand

full body

XYZRGB

Shadow scanning

http://www.vision.caltech.edu/bouguetj/ICCV98/

- Calibration issues:
 - where's the camera wrt. ground plane?
 - where's the shadow plane?
 - depends on light source position, shadow edge

Two Plane Version

- Advantages
 - don't need to pre-calibrate the light source
 - shadow plane determined from two shadow edges

Estimating shadow lines

Shadow scanning in action

Results

accuracy: 0.1mm over 10cm - 0.1% error

Textured objects

Scanning with the sun

Scanning with the sun

Active variants of passive approaches

- The Bidirectional Reflection Distribution Function
 - Given an incoming ray (θ_i, ϕ_i) and outgoing ray (θ_e, ϕ_e) what proportion of the incoming light is reflected along outgoing ray?

Diffuse reflection (Lambertian)

$$\rho(l, v) = k_d$$
 albedo
 $I = k_d \mathbf{N} \cdot \mathbf{L}$

Assuming that light strength is 1.

Photometric stereo

• Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} \mathbf{N}$$

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} k_d \mathbf{N}$$
$$\mathbf{J}_{\mathbf{L}_3^T} = \mathbf{J}_{\mathbf{L}_3^T} \mathbf{J}_{\mathbf{L}_3^T} \mathbf{J}_{\mathbf{L}_3^T}$$
$$\mathbf{G} = \mathbf{L}^{-1} \mathbf{I}$$
$$k_d = \|\mathbf{G}\|$$
$$\mathbf{N} = \frac{1}{k_d} \mathbf{G}$$

• Get better results by using more lights

$$\begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1 \\ \vdots \\ \mathbf{L}_n \end{bmatrix} k_d \mathbf{N}$$

• Least squares solution:

$$I = LG$$

$$L^{T}I = L^{T}LG$$

$$G = (L^{T}L)^{-1}(L^{T}I)$$

• Solve for N, k_d as before

• Weight each equation by the pixel brightness:

$$I_i(I_i) = I_i[k_d \mathbf{N} \cdot \mathbf{L_i}]$$

• Gives weighted least-squares matrix equation:

$$\begin{bmatrix} I_1^2 \\ \vdots \\ I_n^2 \end{bmatrix} = \begin{bmatrix} I_1 \mathbf{L}_1^T \\ \vdots \\ I_n \mathbf{L}_n^T \end{bmatrix} k_d \mathbf{N}$$

• Solve for N, k_d as before

Photometric Stereo Setup

Procedure

- Calibrate camera
- Calibrate light directions/intensities
- Photographing objects (HDR recommended)
- Estimate normals
- Estimate depth

Estimating light directions

• Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is
- Use a ruler

Photographing objects

Normalize light intensities

Estimate normals

Depth from normals

$$(n_{x}, n_{y}, n_{z}) = (\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1) = (p, q, -1)$$

$$E = E_{data} + E_{smooth} + E_{cons}$$

$$= \sum_{i,j} w_{data} * \left[\left(\frac{\partial z(i, j)}{\partial x} - p_{ij} \right)^{2} + \left(\frac{\partial z(i, j)}{\partial y} - q_{ij} \right)^{2} \right]$$

$$+ \sum_{i,j} w_{smooth} * \left[\left(\frac{\partial^{2} z(i, j)}{\partial x^{2}} \right)^{2} + 2 \left(\frac{\partial^{2} z(i, j)}{\partial x \partial y} \right)^{2} + \left(\frac{\partial^{2} z(i, j)}{\partial y^{2}} \right)^{2} \right]$$

$$+ \sum_{(i,j) \in Cons} w_{cons} * (z(i, j) - c_{ij})^{2}$$

$$E = \frac{1}{2} z^{T} A z - b^{T} z + c \equiv A z = b$$

Results

Limitations

- Big problems
 - doesn't work for shiny things, semi-translucent things
 - shadows, inter-reflections
- Smaller problems
 - calibration requirements
 - measure light source directions, intensities
 - camera response function

- Estimate 3D shape by varying illumination, fixed camera
- Operating conditions
 - any opaque material
 - distant camera, lighting
 - reference object available
 - no shadows, interreflections, transparency

P

1.00

Virtual views

Virtual Views

Brushed Fur

Virtual Views

Quality Control Phone & Fax Addresses E-mail Directory Methods of Payment

Salem Specialty Ball supplies industrial grade balls that are used in bearings, pumps, valves and other commercial applications. We can supply balls in just about any size that is machineable. We have produced precision balls from .002" all the way up to 12.0" and beyond. We can also produce these balls in any material. Almost without exception, if the material exists, we can make it into a ball. Not only do we specialize in hard to find materials, we also carry standard materials such as <u>ichrome steel</u> and the <u>stainless steels</u>. We stock an extensive <u>inventory</u> of ready to ship balls. Most orders are shipped the same day. And if is isn't in stock, we can make it for you in matter of days. In addition, you will find that our prices are very competitive.

Located in the beautiful northwest corner of Connecticut, Canton has been our company's home for the last three years and we have been in complete operation for over ten years. Proud of our reputation, Salem Specialty Ball Company has over fifty years of combined experience allowing us to provide topnotch quality technical support and expert engineering consultation

Active stereo with structured light

- Project "structured" light patterns onto the object
 - simplifies the correspondence problem

Spacetime Stereo

http://grail.cs.washington.edu/projects/stfaces/

3D Model Acquisition Pipeline

3D Scanner

Range image	Tesellation	Range surface
		(1)

Signed distance function

Results

The Digital Michelangelo Project

- Goal: scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Stanford University, led by Marc Levoy

Systems, projects and applications

Scanning the David

height of gantry: weight of gantry:

7.5 meters800 kilograms

Range processing pipeline

steps

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

Statistics about the scan

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

Digi<mark>VFX</mark>

Comparison

photograph

1.0 mm computer model

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage
- Institute of Industrial Science, University of Tokyo, led by Katsushi Ikeuchi

Scanner

- Cyrax range scanner
 by Cyra Technologies
- Laser pulse time-of-flight
- Accuracy: 4 mm
- Range: 100 m

Processing

- 20 range images (a few million points)
- Simultaneous all-to-all ICP
- Variant of volumetric merging (parallelized)

Results

Applications in VFX

- 3D scanning
- Hybrid camera for IMAX
- View interpolation

3D scanning

XYZRGB Inc.

- 6K resolution, 42 linear bits per pixel
- For CG, it typically takes 6 hours for a frame
- 45-minute IMAX 3D CG film requires a 100-CPU rendering farm full-time for about a year just for rendering
- For live-action, camera is bulky (like a refrigerator)

Live-action sequence

Hybrid input

left

right

Hybrid input

Combine multiple hires to lores

Results

View interpolation

Bullet time video

View interpolation

High-quality video view interpolation