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Camera projection models
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Pinhole camera model
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Pinhole camera model

Lo
- =| principal Z
point
(X
(&) [f 00 0]
/=0 s 00
z) |0 010




Pinhole camera model

()

1)

Lo
- =| principal Z
point
_ (X
/ﬂ(\f001OOO(Y\
1Y OfOOlOOZ
z) |0 0 1|0 0 1 0




Principal point offset —

principal — T Yeam
point
v, _\‘- —
}ri cam
intrinsic matrix |

only related to \ N

camera projection ¥ ~ K[I‘O]X

i o X))
1) Lz) [0 0 1]o 01 0f




Intrinsic matrix

Is this form of K good enough?

e non-square pixels (digital video)
e skew

e radial distortion K —




Distortion

No distortion
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Pin cushion

e Radial distortion of the image

- Caused by imperfect lenses

- Deviations are most noticeable for rays that pass

through the edge of the lens
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Camera rotation and translation
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Two kinds of parameters

e iInternal or intrinsic parameters such as focal
length, optical center, aspect ratio:
what kind of camera?

e external or extrinsic (pose) parameters
including rotation and translation:
where Is the camera?



Other projection models

perspective

weak perspective

increasing focal length

increasing distance from camera




Orthographic projection

e Special case of perspective projection
‘he PP is infinite
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- Also called “parallel projection”: (X, Yy, z) = (X, V)



Other types of projections

e Scaled orthographic
- Also called “weak perspective”
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o Affine projection
- Also called “paraperspective”
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lllusion
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Fun with perspective




Perspective cues




Perspective cues




Fun with perspective

perceived

real = size
Ames room perceived
size real
size

Ames video BBC story

viewing point



Forced perspective in LOTR




Camera calibration
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Camera calibration

e Estimate both intrinsic and extrinsic parameters.
Two main categories:

1. Photometric calibration: uses reference objects
with known geometry

2. Self calibration: only assumes static scene, e.g.
structure from motion



Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optimization







Camera calibration



Linear regression

x ~ K[Rt]X = MX
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Linear regression

e Directly estimate 11 unknowns in the M matrix
using known 3D points (X;,Y.,Z;) and measured
feature positions (u;,V;)
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Linear regression

mQoo
mo1
mo2
mo3
mio
mii
mi2
mi3
m20
m21
m22
ma3




Linear regression
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Solve for Projection Matrix M using least-square

techniques




Normal equation

Given an overdetermined system

AX =D

the normal equation is that which minimizes the
sum of the square differences between left and
right sides

A'Ax=A"b



Linear regression

e Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the
image
e Disadvantages:
- Doesn’t tell us about particular parameters

- Mixes up internal and external parameters
e pose specific: move the camera and everything breaks

- More unknowns than true degrees of freedom



Nonlinear optimization BEIVF

o A probabilistic view of least square
 Feature measurement equations

f(Msz)_l_nZ:az_l_n’w TL%NN(O,O')
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e Probability of M given {(u,v,)}
P = Hp(uﬂﬁi)p(vﬂ@i)

= T] o~ (ui—1)? /0% —(v;—0;)? 0?



Optimal estimation DigiI2%

o Likelihood of M given {(u,v,)}

L=—log P=S (u;— ;)2 /02 + (v; — 5;)2 /02

e |t is a least square problem (but not necessarily
inear least square)

e How do we minimize L?
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Optimal estimation

e Non-linear regression (least squares), because
the relations between 7. and u; are non-linear

functions of M
unknown parameters

.
We could have terms llke f cos@ in this
u—0~u-— K[R\t

Y Y

Known constant

« We can use Levenberg-Marquardt method to
minimize it



Nonlinear least square methods



Least square fitting

Least Squares Problem

Find x*, a local mimimaizer for
Fix) = 13 (fi(x)?

where f; : R" — R, i=1,...,m are given functions, and m > n.

number of data points

number of parameters




Linear least square fitting
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Linear least square fitting

Y model parameters

y(1) = M(t (
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Linear least square fitting

y model parameters

\

y(t) = M (£;X) = x, + x;t
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Linear least square fitting

y model parameters

\

y(t) = M (£;X) = x, + x;t
t fz(x) = Vi _M(ti;x)

\ prediction
residual
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Linear least square fitting

y model parameters

\

y(t) = M (£;X) = x, + x;t
t fz(x) = Vi _M(ti;x)

\ prediction
residual

M (t;X) = x, + x;t + x2t3 is linear, too.



Nonlinear least square fitting

model M (¢;X) = x,e™ + x,e™
parameters X =[x, x,,x,,x,]"
residuals f,(X) =y, —M(¢,;X)

_ . .xlt th
=y, (xBe +x,e )



Function minimization

Least square is related to function minimization.

Global Minimizer
Given F' : R" — R. Find

xT = argmin {F(x)} .

It is very hard to solve in general. Here, we only consider
a simpler problem of finding local minimum.

Local Minimizer
Given F' : R" — R. Find x* so that

F(x") < F(x) for [x—x"]|<d.
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Function minimization

We assume that the cost function F' 1s differentiable and so smooth that the
following Taylor expansion is valid,?

F(x+h) = F(x)+h'g+ h"Hh + O(||h|*),
where g 1s the gradient,

- OF i}
J—H(X)

OF
| day, (X) J

and H 1s the Hessian,

rr (F-)QF
H=F'(x) = [dzd’r(x)] :
Lg ULl 4




Quadratic functions

Approximate the function with
a quadratic function within
a small neighborhood




Quadratic functions Digi {72

A is positive definite. (a) 1) negative definite
All eigenvalues

are positive. |
For all x,
xTAx>0.

A is singular A is indefinite




Function minimization

Theorem 1.5. Necessary condition for a local minimizer.
If x™ 1s a local mmimizer, then

gt = F'(x") = 0.

Why?
By definition, if X is a local minimizer,

||| is small enough —— F(x" +h) > F(x")

F(x"+h) = F(x")+h"F (x")+O(h[")



Function minimization

Theorem 1.5. Necessary condition for a local minimizer.
If x™ 1s a local mmimizer, then

g" = F(x') =0.

Definition 1.6. Stationary point. If
g = Fi(x) =0,
then X 1s said to be a stationary point for F'.
F(x+h) = F(x) + 1h"H h 4+ O(|h|?)
H; 1s positive definite

a) minimum b) maximum c) saddle point
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Function minimization

Theorem 1.8. Sufficient condition for a local minimizer.
Assume that X; 1s a stationary point and that F' 7/ (x;) 1s positive definite.
Then X, 1s a local minimizer.

F(x.+h) = F(xs) + th"H h + O(||h|”)
with H, = F”(x.)

[t we request that Hs 1s positive definite, then its eigenvalues are

greater than some number 0 > (

h'Hsh > 0 ||h|?



Descent methods

X0, X1, X9, ... , Xp — X for k— ¢
1. Find a descent direction hy

2. find a step length giving a good decrease in the F'-value.

Algorithm Descent method
begin
k:=0; x:=Xq; found := false | Starting point |
while (not found) and (k < kpax)
hg := search direction(x) {From x and downhill}
if (no such h exists)
found := true {x 1s stationary |
else
a = step_length(x, hy) {from x in direction hy}
X =X+ ahy; k:=k+1 I next iterate }
end




Descent direction

F(x+ah) = F(x) + oh'F/(x) + O(a?)
~ F(x) 4+ ah'F’(x) for a sufficiently small.

Definition Descent direction.

h is a descent direction for F atxif h'F/(x) < 0.



Steepest descent method

F(x+ah) = F(x) + ah' F/(x) + O(a?)
~ F(x) 4+ ah'F’(x) for a sufficiently small.

F(x) — F(x+ah) 1 h'F/(x) = —||F/(x)| cosf
a| h| [h

the decrease of F(x) per
unit along h direction

oreatest gainrate if 0 =7 — hy = —F'(x)

h.4is a descent direction because h', F’(x) = -F’(x)? <0
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Line search

Find « so that

x and h fixed, a > 0.

pla) = F(x+ah)

F(X, +ah)
IS minimum

o(a) =

OF (X, +ah)

oo

F'(X, +ah)

=h

h=-F (Xo)

o
| =
=
|
h ey
1) Lo
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Line search

h'F'(x, +ah) =0
h :_FI(Xo)

I

hTF' (X, +ah)
=h"(F (,) +aF (x,)"h)

— h"h+ah™Hh =0

~ h'h

" h"Hh
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Steepest descent method

gradient

isocontour



Steepest descent method

It has good p
~ . )
process. Converge very sld
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Newton’s method

X" 1s a stationary pomt — it satisfies F/(x*) = 0.
F'(x+h) = F/(x) +F"(x)h + O(||h|]?)
~ F/(x)+ F”(x)h for ||h|| sufficiently small
— Hh, = -F'(x) with H=F"(x)
X: =X+ h,

Suppose that H 1s positive definite

— u' Hu >0 for all nonzero u.

> 0<h/Hh, =—h/F’(x) h, is a descent direction
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Newton’s method

e Another view
E(h)= F(x+h)=F(x)+h"g +%hTHh
+ Minimizer satisfies £'(h") =0
E'(hy=g+Hh=0

h=-H"g



Newton’s method

h=-H"g

e It requires solving a linear system and H is not
always positive definite.

e It has good performance in the final stage of
the iterative process, where x is close to x*.



Gauss-Newton method

e Use the approximate Hessian
H~J'J

e No need for second derivative
e His positive semi-definite



Hybrid method

if F'"(x) 1s positive definite

¥
o

This needs to calculate second-order derivative which
might not be available.
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Levenberg-Marqguardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton’s
method.



Nonlinear least square

Glven a set of measurements X, try to find
the best parameter vector p so that the

squared distance ¢’ ¢ is minimal. Here,
& =X-X,WithXx= £ (p).
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Levenberg-Marqguardt method

For a small ||dp|[, f(p+dp) = f(p) + Jdp

J is the Jacobian matrix B—QLP:'

it is required to find the d, that minimizes the quantity

= flp+0p)ll = [lx = f(p) — Jopl| = [[e = Jop||
J' 36, = T
Nop = Je

N;; = _ITL + [JTJ]H

damping term



Levenberg-Marquardt method BEIVF

(J'J+ uh=—g

e u=0 — Newton’s method
e U—= — steepest descent method

e Strategy for choosing p
- Start with some small p
- If F is not reduced, keep trying larger p until it does

- If Fis reduced, accept it and reduce p for the next
iteration
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Recap (the Rosenbrock function)

z=f(x,y)=[0-x°)"+100(y — x*)*

Global minimum at (1,1)



Steepest descent

Xk+1 — Xk —0(

h'h
o =
h'Hh







min

~



VFX

In the plane of the steepest descent direct

Xk+1



Steepest descent (1000 iteration%@




Gauss-Newton method

e With the approximate Hessian

Hx~J'J]

e No need for second derivative
e His positive semi-definite






Newton’s method (48 evaluationi@




Levenberg-Marquardt DigilT

e Blends steepest descent and Gauss-Newton
e At each step, solve for the descent direction h

(J'J+ uh=—g

e If plarge, h = —Q , steepest descent

e If psmall, h ~ —(JTJ)‘lg , Gauss-Newton



Levenberg-Marquardt (90 evaluatio@




A popular calibration tool
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Multi-plane calibration

[ imanel (1-4]  ERER || QY 1imaoer 1-4] EEE| L naoei1-4) ERE] D in0oed (1-4) EREE (] imaoes -4 [ 9E E

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
e Only requires a plane
« Don’t have to know positions/orientations

« Good code available online!
- Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

- Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

- Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/



Step 1: data acquisition BEIVF
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Step 2: specify corner order

Click on tha four exireme comers of the ractangilar patbam ffirst coener = ofgin). . lmage 1 Click on tha four exirems comers of jhe reciagngular paltem lﬁrq.', comsr = onging . lmage 1

=
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100 a0 3m 4na & L]

Chck on ibe four extrerne comers of the rectangular pattesn (fest corner = origin.. bmage 1 Chck o the four gxtreme comars of the mctangulse pattem fisst comer = origin). . Imags 1




Step 3: corner extraction

The red crosses should be close to the image corners
w— -‘
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Step 4: minimize projection error

Reprojection errar {in pixel) - To exit: right button
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Calibration res .
Focal Length: fc = [ 657 .462940 65704673 ] = [ B.31819 8.34846 ]
Principal point: cc = [ 383.13665 242 56935 ] + [ B.64682 A.59218 ]
Skeuw: alpha c = [ 8.88888 ] =+ [ 8.88888 | =» angle of pixel axes =
Distortion: kc = [ -8.25483 B.12143 —-8.88821 8.000882 0.00080 ]
Pixel error: err = [ B.11689 B.11588 |
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Step 5: refinement

Reprajection errar (in pixel) - To exit: right button
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Optimized parameters
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Aspect ratio optimized {est aspect ratio

= 1) -> both components of fc are estimated (DEI
Principal point optimized (center optim=1) - {(DEFAULT). To reject principal point, set ci
Skew not optimized {est alpha=8) - (DEFAULT)
Distortion not fully estimated {(defined by the variable est dist):
Sixth order distortion not estimated (est dist(5)=8) - (DEFAULT} .

Main calibration optimization procedure - Humber of images: 2@
Gradient descent iterations: 1...2...3...4_...5%...done
Estimation of uncertainties...done

Calibration results after

optimization {with uncertainties):

Focal Length: fc =
Principal point: CC =
Skew: alpha c =
Distortion: kc
Pixel error: err

P p— p— p—

657 . 462908
382 .13665

H.868888 ] + [ B.80888

-8.25483
B.11689

657 .94673
242 56935

B.12143
8.11588 ]

] + [ 8.31819  0.34846 ]
] + [ 9.64682 0.59218 ]
] =» angle of pixel axes = 90.008

—-8. 88821

0.80882 0.8008688 ] =+ [ 8.8

Hote: The numerical errors are approximately three times the standard deviations {for rei



Applications
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How 1Is calibration used?

e Good for recovering intrinsic parameters; It is
thus useful for many vision applications

e Since it requires a calibration pattern, it is
often necessary to remove or replace the
pattern from the footage or utilize it in some
ways...



Example of calibration

(b) Camera calibration grid and light probe

(g) Final result with differential rendering

(¢) Objects and local scene matched to background



Example of calibration

monochrome cameras——-

‘/color cameras-
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Example of calibration

e Videos from GaTech
e DasTatoo, MakeOf

e PING, MakeOf

o Work, MakeOf

o LifelnPaints, MakeOf
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