Camera calibration

Digital Visual Effects Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz,, Fred Pighin and Marc Pollefyes

Outline

- Camera projection models
- Camera calibration
- Nonlinear least square methods
- A camera calibration tool
- Applications

Camera projection models

Pinhole camera

Sic nos exacté Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Intrinsic matrix

Is this form of **K** good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew
- radial distortion

$$\mathbf{K} = \begin{bmatrix} fa & s & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Camera rotation and translation

- *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio: *what kind of camera?*
- *external* or *extrinsic* (pose) parameters including rotation and translation: *where is the camera?*

Other projection models

- Special case of perspective projection
 - Distance from the COP to the PP is infinite Image World $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$

- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

Other types of projections

- Scaled orthographic
 - Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

- Affine projection
 - Also called "paraperspective"

$$\left[\begin{array}{cccc}a&b&c&d\\e&f&g&h\\0&0&0&1\end{array}\right]\left[\begin{array}{c}x\\y\\z\\1\end{array}\right]$$

Illusion

Perspective cues

Perspective cues

Fun with perspective

Forced perspective in LOTR

Camera calibration

- Estimate both intrinsic and extrinsic parameters. Two main categories:
- 1. Photometric calibration: uses reference objects with known geometry
- 2. Self calibration: only assumes static scene, e.g. structure from motion

Camera calibration approaches

- 1. linear regression (least squares)
- 2. nonlinear optimization

OOU

Chromaglyphs (HP research)

Camera calibration

$$\mathbf{x} \sim \mathbf{K} \Big[\mathbf{R} \Big| \mathbf{t} \Big] \mathbf{X} = \mathbf{M} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

• Directly estimate 11 unknowns in the M matrix using known 3D points (X_i, Y_i, Z_i) and measured feature positions (u_i, v_i)

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$
$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

 $u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$ $v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$

Linear regression

Solve for Projection Matrix M using least-square techniques

Normal equation

Given an overdetermined system

$\mathbf{A}\mathbf{x} = \mathbf{b}$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$

Linear regression

- Advantages:
 - All specifics of the camera summarized in one matrix
 - Can predict where any world point will map to in the image
- Disadvantages:
 - Doesn't tell us about particular parameters
 - Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks
 - More unknowns than true degrees of freedom

Nonlinear optimization

- A probabilistic view of least square
- Feature measurement equations

$$u_i = f(\mathbf{M}, \mathbf{x}_i) + n_i = \hat{u}_i + n_i, \quad n_i \sim N(0, \sigma)$$

$$v_i = g(\mathbf{M}, \mathbf{x}_i) + m_i = \hat{v}_i + m_i, \quad m_i \sim N(0, \sigma)$$

• Probability of M given {(*u_i*,*v_i*)}

$$P = \prod_{i} p(u_i | \hat{u}_i) p(v_i | \hat{v}_i)$$

=
$$\prod_{i} e^{-(u_i - \hat{u}_i)^2 / \sigma^2} e^{-(v_i - \hat{v}_i)^2 / \sigma^2}$$

Optimal estimation

• Likelihood of M given {(*u_i*,*v_i*)}

$$L = -\log P = \sum_{i} (u_i - \hat{u}_i)^2 / \sigma_i^2 + (v_i - \hat{v}_i)^2 / \sigma_i^2$$

- It is a least square problem (but not necessarily linear least square)
- How do we minimize *L*?

• Non-linear regression (least squares), because the relations between \hat{u}_i and u_i are non-linear functions of M

unknown parameters

We could have terms like $f \cos \theta$ in this

$$\mathbf{u} - \hat{\mathbf{u}} \sim \mathbf{u} - \mathbf{K} \begin{bmatrix} \mathbf{R} | \mathbf{t} \end{bmatrix} \mathbf{X}$$

known constant

• We can use Levenberg-Marquardt method to minimize it

Nonlinear least square methods

Least square fitting

 $M(t; \mathbf{x}) = x_0 + x_1 t + x_2 t^3$ is linear, too.

model $M(t; \mathbf{x}) = x_3 e^{x_1 t} + x_4 e^{x_2 t}$ parameters $\mathbf{x} = [x_1, x_2, x_4, x_4]^T$ residuals $f_i(\mathbf{x}) = y_i - M(t_i; \mathbf{x})$ $= y_i - (x_3 e^{x_1 t} + x_4 e^{x_2 t})$

Least square is related to function minimization.

Global Minimizer Given $F : \mathbb{R}^n \mapsto \mathbb{R}$. Find $\mathbf{x}^+ = \operatorname{argmin}_{\mathbf{x}} \{F(\mathbf{x})\}$.

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

> Local Minimizer Given $F : \mathbb{R}^n \mapsto \mathbb{R}$. Find \mathbf{x}^* so that $F(\mathbf{x}^*) \leq F(\mathbf{x}) \text{ for } \|\mathbf{x} - \mathbf{x}^*\| < \delta$.

Function minimization

We assume that the cost function F is differentiable and so smooth that the following *Taylor expansion* is valid,²⁾

$$F(\mathbf{x}+\mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathsf{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}\mathbf{h} + O(\|\mathbf{h}\|^3),$$

where g is the gradient,

$$\mathbf{g} \equiv \mathbf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}) \end{bmatrix},$$

and H is the Hessian,

$$\mathbf{H} \equiv \mathbf{F}''(\mathbf{x}) = \left[\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x})\right]$$

Quadratic functions

Theorem 1.5. Necessary condition for a local minimizer. If x^* is a local minimizer, then

$$\mathbf{g}^* \equiv \mathbf{F}'(\mathbf{x}^*) = \mathbf{0} \,.$$

Why? By definition, if \mathbf{x}^* is a local minimizer,

 $\|\mathbf{h}\|$ is small enough $\longrightarrow \mathbf{F}(\mathbf{x}^* + \mathbf{h}) > \mathbf{F}(\mathbf{x}^*)$

$$F(x^* + h) = F(x^*) + h^T F'(x^*) + O(||h||^2)$$

Theorem 1.5. Necessary condition for a local minimizer. If \mathbf{x}^* is a local minimizer, then

$${f g}^* \ \equiv \ {f F}'({f x}^*) \ = \ {f 0} \; .$$

Definition 1.6. Stationary point. If

$$\mathbf{g}_s \ \equiv \ \mathbf{F}^{\,\prime}(\mathbf{x}_s) \ = \ \mathbf{0} \ ,$$

then \mathbf{x}_s is said to be a *stationary point* for F.

$$F(\mathbf{x}_{s}+\mathbf{h}) = F(\mathbf{x}_{s}) + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}_{s}\mathbf{h} + O(\|\mathbf{h}\|^{3})$$

 H_s is positive definite

a) minimum

b) maximum

c) saddle point

Theorem 1.8. Sufficient condition for a local minimizer. Assume that \mathbf{x}_s is a stationary point and that $\mathbf{F}''(\mathbf{x}_s)$ is positive definite. Then \mathbf{x}_s is a local minimizer.

$$\begin{aligned} F(\mathbf{x}_{s}+\mathbf{h}) &= F(\mathbf{x}_{s}) + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}_{s}\,\mathbf{h} + O(\|\mathbf{h}\|^{3}) \\ \text{with } \mathbf{H}_{s} &= \mathbf{F}''(\mathbf{x}_{s}) \end{aligned}$$

If we request that \mathbf{H}_s is *positive definite*, then its eigenvalues are greater than some number $\delta > 0$

$$\mathbf{h}^{\!\top}\mathbf{H}_{\!\mathsf{s}}\,\mathbf{h} > \delta \,\|\mathbf{h}\|^2$$

$$\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \to \mathbf{x}^*$$
 for $k \to \infty$

- 1. Find a descent direction h_d
- 2. find a step length giving a good decrease in the F-value.

```
Algorithm Descent method
begin
                                                                                {Starting point}
   k := 0; \mathbf{x} := \mathbf{x}_0; found := false
   while (not found) and (k < k_{\max})
       \mathbf{h}_{d} := \text{search}_{direction}(\mathbf{x})
                                                                     {From x and downhill}
      if (no such h exists)
                                                                               \{\mathbf{x} \text{ is stationary}\}\
          found := true
       else
          \alpha := \text{step\_length}(\mathbf{x}, \mathbf{h}_{d})
                                                                   {from x in direction \mathbf{h}_d}
          \mathbf{x} := \mathbf{x} + \alpha \mathbf{h}_{\mathsf{d}}; \quad k := k+1
                                                                                   {next iterate}
end
```


$$\begin{split} F(\mathbf{x} + \alpha \mathbf{h}) &= F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) + O(\alpha^2) \\ &\simeq F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.} \end{split}$$

Definition Descent direction.

h is a descent direction for F at **x** if $\mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) < 0$.

$$F(\mathbf{x}+\alpha\mathbf{h}) = F(\mathbf{x}) + \alpha\mathbf{h}^{\mathsf{T}}\mathbf{F}'(\mathbf{x}) + O(\alpha^2)$$

$$\simeq F(\mathbf{x}) + \alpha\mathbf{h}^{\mathsf{T}}\mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.}$$

$$\frac{F(\mathbf{x}) - F(\mathbf{x}+\alpha\mathbf{h})}{\alpha\|\mathbf{h}\|} = -\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\mathsf{T}}\mathbf{F}'(\mathbf{x}) = -\|\mathbf{F}'(\mathbf{x})\|\cos\theta$$

the decrease of F(x) per unit along h direction

greatest gain rate if
$$\theta = \pi \rightarrow \mathbf{h}_{sd} = -\mathbf{F}'(\mathbf{x})$$

 h_{sd} is a descent direction because $h_{sd}^{T} F'(x) = -F'(x)^2 < 0$

Line search

Line search

Steepest descent method

It has good performance in the initial stage of the iterative process. Converge very slow with a linear rate.

 \mathbf{x}^* is a stationary point \rightarrow it satisfies $\mathbf{F}'(\mathbf{x}^*) = \mathbf{0}$. $\mathbf{F}'(\mathbf{x}+\mathbf{h}) = \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} + O(||\mathbf{h}||^2)$

$$\mathbf{F}'(\mathbf{x}+\mathbf{h}) = \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2)$$

$$\simeq \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} \quad \text{for } \|\mathbf{h}\| \text{ sufficiently small}$$

$$\rightarrow \mathbf{H} \mathbf{h}_n = -\mathbf{F}'(\mathbf{x}) \quad \text{with } \mathbf{H} = \mathbf{F}''(\mathbf{x})$$

$$\mathbf{x} := \mathbf{x} + \mathbf{h}_n$$

Suppose that H is positive definite

$$\rightarrow \mathbf{u}^{\top} \mathbf{H} \mathbf{u} > 0$$
 for all nonzero u.
 $\rightarrow 0 < \mathbf{h}_{n}^{\top} \mathbf{H} \mathbf{h}_{n} = -\mathbf{h}_{n}^{\top} \mathbf{F}'(\mathbf{x}) \quad \mathbf{h}_{n}$ is a descent direction

Newton's method

• Another view

$$E(\mathbf{h}) = F(\mathbf{x} + \mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathrm{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathrm{T}}\mathbf{H}\mathbf{h}$$

• Minimizer satisfies $E'(\mathbf{h}^*) = 0$

$$E'(\mathbf{h}) = \mathbf{g} + \mathbf{H}\mathbf{h} = \mathbf{0}$$
$$\mathbf{h} = -\mathbf{H}^{-1}\mathbf{g}$$

$$\mathbf{h} = -\mathbf{H}^{-1}\mathbf{g}$$

- It requires solving a linear system and H is not always positive definite.
- It has good performance in the final stage of the iterative process, where x is close to x*.

Gauss-Newton method

• Use the approximate Hessian

$\mathbf{H} \approx \mathbf{J}^{\mathrm{T}} \mathbf{J}$

- No need for second derivative
- H is positive semi-definite

if
$$\mathbf{F}''(\mathbf{x})$$
 is positive definite
 $\mathbf{h} := \mathbf{h}_n$
else
 $\mathbf{h} := \mathbf{h}_{sd}$
 $\mathbf{x} := \mathbf{x} + \alpha \mathbf{h}$

This needs to calculate second-order derivative which might not be available.

 LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Given a set of measurements **x**, try to find the best parameter vector **p** so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

For a small
$$||\delta_{\mathbf{p}}||, f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$$

J is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

 $\begin{aligned} ||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| &\approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}|| \\ \mathbf{J}^T \mathbf{J}\delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N}\delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N}_{ii} &= \mu + \left[\mathbf{J}^T \mathbf{J}\right]_{ii} \\ damping \ term \end{aligned}$

$$(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \boldsymbol{\mu}\mathbf{I})\mathbf{h} = -\mathbf{g}$$

- $\mu=0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing $\boldsymbol{\mu}$
 - Start with some small μ
 - If F is not reduced, keep trying larger μ until it does
 - If F is reduced, accept it and reduce μ for the next iteration

Recap (the Rosenbrock function)

$$z = f(x, y) = (1 - x^{2})^{2} + 100(y - x^{2})^{2}$$

Global minimum at (1, 1)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \boldsymbol{\alpha} \mathbf{g}$$

$$\alpha = \frac{\mathbf{h}^{\mathrm{T}} \mathbf{h}}{\mathbf{h}^{\mathrm{T}} \mathbf{H} \mathbf{h}}$$

In the plane of the steepest descent direction

Steepest descent (1000 iterations)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}^{-1}\mathbf{g}$$

• With the approximate Hessian

$\mathbf{H} \approx \mathbf{J}^{\mathrm{T}} \mathbf{J}$

- No need for second derivative
- H is positive semi-definite

Newton's method (48 evaluations)

- Blends steepest descent and Gauss-Newton
- At each step, solve for the descent direction h

$$(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \boldsymbol{\mu}\mathbf{I})\mathbf{h} = -\mathbf{g}$$

- If μ large, $h\approx -g$, steepest descent
- If μ small, $\boldsymbol{h} \approx -(\boldsymbol{J}^T\boldsymbol{J})^{-1}\boldsymbol{g}$, Gauss-Newton

Levenberg-Marquardt (90 evaluations)

A popular calibration tool

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget: <u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/~zhang/Calib/</u>

Step 1: data acquisition

Step 2: specify corner order

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1

Step 3: corner extraction

Step 3: corner extraction

Step 4: minimize projection error

Calibration res

Focal Length: fc = [657.46290 657.94673] ± [0.31819 0.34046] Principal point: cc = [303.13665 242.56935] ± [0.64682 0.59218] Skew: alpha_c = [0.00000] ± [0.00000] => angle of pixel axes = Distortion: 0.12143 -0.000210.00002 0.00000] kc = [-0.25403]Pixel error: err = [0.11689 0.11500]

Step 5: refinement

Optimized parameters

Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DE Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set c Skew not optimized (est_alpha=0) - (DEFAULT) Distortion not fully estimated (defined by the variable est_dist): Sixth order distortion not estimated (est dist(5)=0) - (DEFAULT) .

Main calibration optimization procedure - Number of images: 20 Gradient descent iterations: 1...2...3...4...5...done Estimation of uncertainties...done

Calibration results after optimization (with uncertainties):

```
Focal Length:
                     fc = [ 657.46290
                                        657.94673 ] ± [ 0.31819
                                                                 0.34046 ]
Principal point:
                     cc = [ 303.13665
                                        242.56935 ] ± [ 0.64682
                                                                 0.59218 ]
Skew:
                 alpha c = [ 0.00000 ] ± [ 0.00000 ] => angle of pixel axes = 90.000
Distortion:
                      kc = [ -0.25403
                                       0.12143 - 0.00021 0.00002 0.00000 ] \pm [ 0.0 ]
Pixel error:
                     err = [ 0.11689
                                      0.11500 ]
```

Note: The numerical errors are approximately three times the standard deviations (for ref

Applications

- Good for recovering intrinsic parameters; It is thus useful for many vision applications
- Since it requires a calibration pattern, it is often necessary to remove or replace the pattern from the footage or utilize it in some ways...

Example of calibration

(a) Background photograph

(b) Camera calibration grid and light probe

(c) Objects and local scene matched to background

(g) Final result with differential rendering

Example of calibration

- Videos from GaTech
- DasTatoo, MakeOf
- <u>P!NG</u>, <u>MakeOf</u>
- Work, MakeOf
- LifeInPaints, MakeOf

PhotoBook

PhotoBook MakeOf