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Camera projection modelsCamera projection models



Pinhole camera



Pinhole camera model
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Pinhole camera model
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Pinhole camera model
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Principal point offset

principal 
point

intrinsic matrix
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Intrinsic matrix
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Distortion

No distortion Pin cushion Barrel

• Radial distortion of the image
Ca sed b  imperfect lenses– Caused by imperfect lenses

– Deviations are most noticeable for rays that pass 
through the edge of the lensthrough the edge of the lens



Camera rotation and translation
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Two kinds of parameters

• internal or intrinsic parameters such as focal 
l th  ti l t  t tilength, optical center, aspect ratio:
what kind of camera?

• external or extrinsic (pose) parameters 
including rotation and translation:
where is the camera?



Other projection models



Orthographic projection
• Special case of perspective projection

Di t  f  th  COP t  th  PP i  i fi it– Distance from the COP to the PP is infinite

Image World

– Also called “parallel projection”:  (x, y, z) → (x, y)



Other types of projections
• Scaled orthographic

Al  ll d “ k ti ”– Also called “weak perspective”

• Affine projection
– Also called “paraperspective”



Illusion



Illusion



Fun with perspective



Perspective cues



Perspective cues



Fun with perspective

Ames room

Ames video BBC storyAmes video BBC story



Forced perspective in LOTR



Camera calibrationCamera calibration



Camera calibration

• Estimate both intrinsic and extrinsic parameters. 
Two main categories:Two main categories:

1. Photometric calibration: uses reference objects 
ith k  twith known geometry

2. Self calibration: only assumes static scene, e.g. 
structure from motion



Camera calibration approaches

1. linear regression (least squares)
2 li  i i i2. nonlinear optimization



Chromaglyphs (HP research)



Camera calibrationCamera calibration



Linear regression

  MXXtRKx ~



Linear regression

• Directly estimate 11 unknowns in the M matrix 
using known 3D points (X Y Z ) and measured using known 3D points (Xi,Yi,Zi) and measured 
feature positions (ui,vi)



Linear regression



Linear regression



Linear regression

Solve for Projection Matrix M using least-square 
techniquesq



Normal equation

Given an overdetermined system

bAx 
the normal equation is that which minimizes the 
sum of the square differences between left and sum of the square differences between left and 
right sides

bAAxA TT 



Linear regression

• Advantages:
All ifi  f th   i d i   t i– All specifics of the camera summarized in one matrix

– Can predict where any world point will map to in the 
imageimage

• Disadvantages:
’  ll  b  l  – Doesn’t tell us about particular parameters

– Mixes up internal and external parameters
 ifi   h   d hi  b k• pose specific: move the camera and everything breaks

– More unknowns than true degrees of freedom



Nonlinear optimization

• A probabilistic view of least square
F   i• Feature measurement equations

• Probability of M given {(ui,vi)}

PP



Optimal estimation

• Likelihood of M given {(ui,vi)} 

It i   l t  bl  (b t t il  

PL

• It is a least square problem (but not necessarily 
linear least square)

• How do we minimize L?



Optimal estimation

• Non-linear regression (least squares), because 
the relations between û and u are non linear the relations between ûi and ui are non-linear 
functions of M

unknown parameters

We could have terms like             in thiscosf

unknown parameters

 XtRKuuu  ~ˆ  XtRKuuu

known constant

• We can use Levenberg-Marquardt method to 

known constant

minimize it



Nonlinear least square methodsNonlinear least square methods



Least square fitting

number of data pointsnumber of data points

number of parametersnumber of parameters



Linear least square fitting

y

tt



Linear least square fitting

y model parameters
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Linear least square fitting
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Linear least square fitting

y model parameters

txxtMty );()(  x

t

txxtMty 10);()(  x

);()( xtMyxf t );()( xiii tMyxf 

prediction
residual

prediction



Linear least square fitting

y model parameters

txxtMty );()(  x

t

txxtMty 10);()(  x

);()( xtMyxf t );()( xiii tMyxf 
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3);( txtxxtM x i  li  t  210);( txtxxtM x is linear, too. 



Nonlinear least square fitting

txtx exextM 21
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Function minimization
Least square is related to function minimization. 

It is very hard to solve in general  Here  we only consider It is very hard to solve in general. Here, we only consider 
a simpler problem of finding local minimum. 



Function minimization



Quadratic functions

Approximate the function with 
a quadratic function within a quadratic function within 
a small neighborhood



Quadratic functions

A is positive definite.
All eigenvalues 

negative definite
All eigenvalues 
are positive.
For all x, 
xTAx>0. 

A is indefiniteA is singular



Function minimization

Why?
By definition, if     is a local minimizer,*xy , ,

h )F(xh)F(x ** is small enough

)hO()(xF'h)F(xh)F(x 2*T** 



Function minimization



Function minimization



Descent methods



Descent direction



Steepest descent method

the decrease of F(x) per the decrease of F(x) per 
unit along h direction

→→
hsd is a descent direction because hT

sd F’(x) = -F’(x)2 <0



Line search
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Line search
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Steepest descent method

isocontour gradientisocontour gradient



Steepest descent method

It has good performance in the initial stage of the iterative It has good performance in the initial stage of the iterative 
process. Converge very slow with a linear rate.



Newton’s method

→

→

→
→



Newton’s method
• Another view

1 Hhhghxhxh TT

2
1)()()(  FFE

• Minimizer satisfies 0)(' * hE

0)('  HhghE

gHh 1



Newton’s method

gHh 1

• It requires solving a linear system and H is not 

gHh

always positive definite.
• It has good performance in the final stage of g p g

the iterative process, where x is close to x*. 



Gauss-Newton method
• Use the approximate Hessian

JJH T

• No need for second derivative• No need for second derivative
• H is positive semi-definite



Hybrid method

This needs to calculate second-order derivative which 
i h   b  il bl  might not be available. 



Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method  steepest descent and the Newton method. 
When the current solution is far from the 
correct one  the algorithm behaves like a correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge  When the current solution is close to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
methodmethod.



Nonlinear least square 
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Levenberg-Marquardt method



Levenberg-Marquardt method

gI)hJ(JT  
• μ=0 → Newton’s method

gI)hJ(J  

• μ→∞ → steepest descent method

• Strategy for choosing μ
St t ith  ll – Start with some small μ

– If F is not reduced, keep trying larger μ until it does
If F i  d d  t it d d  f  th  t – If F is reduced, accept it and reduce μ for the next 
iteration 



Recap (the Rosenbrock function)( )

2222 )(100)1()(f 2222 )(100)1(),( xyxyxfz 

Gl b l i i   (1 1)Global minimum at (1,1)



Steepest descent
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In the plane of the steepest descent direction
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Steepest descent (1000 iterations)( )

Regularized Least-



Gauss-Newton method

gHxx 1 gHxx k1k 

• With the approximate Hessian

TJJH T

• No need for second derivative
• H is positive semi-definite
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Newton’s method (48 evaluations)( )

Regularized Least-



Levenberg-Marquardt
• Blends steepest descent and Gauss-Newton

A  h  l  f  h  d  di i  h• At each step, solve for the descent direction h

gI)hJ(JT  
• If μ large                steepest descent

gI)hJ(J  
gh • If μ large,              , steepest descent

If ll                             G N t

gh 

J)(Jh T 1• If μ small,                           , Gauss-NewtongJ)(Jh T 1



Levenberg-Marquardt (90 evaluations)

Regularized Least-



A popular calibration toolA popular calibration tool



Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations

G d d  il bl  li !• Good code available online!
– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  y g
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/



Step 1: data acquisition



Step 2: specify corner order



Step 3: corner extraction



Step 3: corner extraction



Step 4: minimize projection error



Step 4: camera calibration



Step 4: camera calibration



Step 5: refinement



Optimized parameters



ApplicationsApplications



How is calibration used?

• Good for recovering intrinsic parameters; It is 
thus useful for many vision applicationsthus useful for many vision applications

• Since it requires a calibration pattern, it is 
ft   t    l  th  often necessary to remove or replace the 

pattern from the footage or utilize it in some 
ways…



Example of calibration



Example of calibration



Example of calibration

• Videos from GaTech
D T  M k Of• DasTatoo, MakeOf

• P!NG, MakeOf
• Work, MakeOf
• LifeInPaints  MakeOf• LifeInPaints, MakeOf



PhotoBook

M k Of

PhotoBook

MakeOf


