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Image stitching

• Stitching = alignment + blending

geometrical photometric
registration registration



Applications of image stitching

• Video stabilization
Vid  i i• Video summarization

• Video compression
• Video matting
• Panorama creation• Panorama creation



Video summarization



Video compression



Object removal

input video



Object removal

remove foreground



Object removal

estimate background



Object removal

background estimation



Panorama creation



Why panorama?

• Are you getting the whole picture?
C t C  FOV  50  35°– Compact Camera FOV = 50 x 35°
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Why panorama?

• Are you getting the whole picture?
C t C  FOV  50  35°– Compact Camera FOV = 50 x 35°

– Human FOV                = 200 x 135°
P i  M i         360  180°– Panoramic Mosaic       = 360 x 180°



Panorama examples

• Like HDR, it is a topic of computational 
photography  seeking ways to build a better photography, seeking ways to build a better 
camera mostly in software.
M t   h    d• Most consumer cameras have a panorama mode

• Mars:
http://www.panoramas.dk/fullscreen3/f2_mars97.html

• Earth:
http://www.panoramas.dk/new-year-2006/taipei.html
http://www.360cities.net/http://www.360cities.net/



What can be globally aligned?

• In image stitching, we seek for a matrix to 
globally warp one image into another  Are any globally warp one image into another. Are any 
two images of the same scene can be aligned 
this way?this way?
– Images captured with the same center of 

j tiprojection
– A planar scene or far-away scene



A pencil of rays contains all views

real synthetic
camera

y
camera

Can generate any synthetic camera viewg y y
as long as it has the same center of projection!



Mosaic as an image reprojection

mosaic projection plane

• The images are reprojected onto a common plane
• The mosaic is formed on this planeThe mosaic is formed on this plane
• Mosaic is a synthetic wide-angle camera



Changing camera center

• Does it still work? synthetic PP

PP1

PP2



Planar scene (or a faraway one)
PP3

PP1

PP2

• PP3 is a projection plane of both centers of 
projection, so we are OK!

• This is how big aerial photographs are made



Motion models

• Parametric models as the assumptions on the 
relation between two images  relation between two images. 



2D Motion models



Motion models

Translation Affine Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns



A case study: cylindrical panorama

• What if you want a 360 field of view?

mosaic projection cylinder



Cylindrical panoramas

• Steps
– Reproject each image onto a cylinder
– Blend 
– Output the resulting mosaic



Cylindrical panorama

1. Take pictures on a tripod (or handheld)
2 W   li d i l di2. Warp to cylindrical coordinate
3. Compute pairwise alignments
4. Fix up the end-to-end alignment
5 Blending5. Blending
6. Crop the result and import into a viewer

It is required to do radial distortion 
correction for better stitching results!correction for better stitching results!



Taking pictures

K id  i  t i d h d Kaidan panoramic tripod head 



Translation model

Try to align this in PaintShop Pro



Where should the synthetic camera be

real synthetic
camera

y
camera

• The projection plan of some camera
• Onto a cylinder• Onto a cylinder



Cylindrical projection

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm



Cylindrical projection



Cylindrical projection

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm



Cylindrical projection

y

unwrapped cylinder
x
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Cylindrical projection
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Cylindrical projection

y

unwrapped cylinder

x

y

z
f

s=f gives less 
distortionf distortion

x



Cylindrical reprojection

top-down view Focal length – the dirty secretp Focal length – the dirty secret…

f = 180 (pixels) f = 380f = 280Image 384x300



A simple method for estimating f

w

d
f

p

f

Or, you can use other software, such as AutoStich, 
to help.to help.



Input images



Cylindrical warping



Blending

• Why blending: parallax, lens distortion, scene 
motion  exposure differencemotion, exposure difference



Blending



Blending



Blending



Assembling the panorama

• Stitch pairs together  blend  then crop• Stitch pairs together, blend, then crop



Problem: Drift

• Error accumulation
– small errors accumulate over time



Problem: Drift

(x1,y1)

(xn,yn)

• Solution • copy of first • Solution
– add another copy of first image at the end
– there are a bunch of ways to solve this problem

image

– there are a bunch of ways to solve this problem
• add displacement of (y1 – yn)/(n -1) to each image after 

the first
• compute a global warp:  y’ = y + ax
• run a big optimization problem, incorporating this 

constraint
– best solution, but more complicated
– known as “bundle adjustment”



End-to-end alignment and crop



Viewer: panorama

++

++

++

++

++

example: http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html



Viewer: texture mapped model

example: http://www.panoramas.dk/



Cylindrical panorama

1. Take pictures on a tripod (or handheld)
2 W   li d i l di2. Warp to cylindrical coordinate
3. Compute pairwise alignments
4. Fix up the end-to-end alignment
5 Blending5. Blending
6. Crop the result and import into a viewer



Determine pairwise alignment?

• Feature-based methods: only use feature points 
to estimate parametersto estimate parameters

• We will study the “Recognising panorama” 
paper published in ICCV 2003

• Run SIFT (or other feature algorithms) for each • Run SIFT (or other feature algorithms) for each 
image, find feature matches.



Determine pairwise alignment

• p’=Mp, where M is a transformation matrix, p 
and p’ are feature matchesand p  are feature matches

• It is possible to use more complicated models 
h  ffi   tisuch as affine or perspective

• For example, assume M is a 2x2 matrix
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Determine pairwise alignment
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Normal equation

Given an overdetermined system

bAx 
the normal equation is that which minimizes the 
sum of the square differences between left and sum of the square differences between left and 
right sides

bAAxA TT 
Why?



Normal equation 
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Normal equation
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Normal equation
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Normal equation

 bAx  2

   
   

bAxbAx 
TT

T

   
  bAxbAx

bAxbAx
TTT

 TT

  
bbbAxAxbAxAx

bAxbAx
TTTTTT 



    bbxbAxbAAxAx TTTTTTT 

bAAxA TT 22 

E

x



Determine pairwise alignment

• p’=Mp, where M is a transformation matrix, p 
and p’ are feature matchesand p  are feature matches

• For translation model, it is easier.
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• What if the match is false? Avoid impact of 
outliers.



RANSAC

• RANSAC = Random Sample Consensus
A  l i h  f  b  fi i  f d l  i  h  • An algorithm for robust fitting of models in the 
presence of many data outliers

• Compare to robust statistics

• Given N data points xi, assume that mjority of 
them are generated from a model with them are generated from a model with 
parameters , try to recover .



RANSAC algorithm

Run k times:
(1) d  l  d l

How many times?
How big? (1) draw n samples randomly

(2) fit parameters  with these n samples

How big? 
Smaller is better

(3) for each of other N-n points, calculate   
its distance to the fitted model  count the   its distance to the fitted model, count the   
number of inlier points, c

O t t  ith th  l t Output  with the largest c

How to define?
Depends on the problem.



How to determine k

p: probability of real inliers
P: probability of success after k trialsP: probability of success after k trials

knpP )1(1  pP )1(1
n samples are all inliers

a failure

f il  ft  k t i lfailure after k trials

)1l ( P
n p k

)1log(
)1log(

np
Pk




 3 0.5 35

6 0.6 97
for P=0.99

)1log( p
6 0.5 293



Example: line fitting



Example: line fitting

n=2n=2



Model fitting



Measure distances



Count inliers

c=3c=3



Another trial

c=3c=3



The best model

c=15c=15



RANSAC for Homography



RANSAC for Homography



RANSAC for Homography



Applications of panorama in VFX

• Background plates
I b d li h i• Image-based lighting



Troy (image-based lighting)

http://www.cgnetworks.com/story custom.php?story id=2195&page=4http://www.cgnetworks.com/story_custom.php?story_id 2195&page 4



Spiderman 2 (background plate)





Cylindrical projection

– Map 3D point (X,Y,Z) onto a 
unit cylinderunit cylinder

Y
XZ – Convert to cylindrical 

coordinates
unit cylinder

– Convert to cylindrical image 
di tcoordinates

unwrapped cylinder

cylindrical image



3D → 2D perspective projection

(Xc,Yc,Zc)( c, c, c)

ucf

u



Reference
• Richard Szeliski, Image Alignment and Stitching, unpublished draft, 

2005. 
• R. Szeliski and H.-Y. Shum. Creating full view panoramic image 

mosaics and texture-mapped models, SIGGRAPH 1997, pp251-258. 
M  Brown  D  G  Lowe  Recognising Panoramas  ICCV 2003• M. Brown, D. G. Lowe, Recognising Panoramas, ICCV 2003.



Direct vs feature-based

• Direct methods use all information and can be 
very accurate  but they depend on the fragile very accurate, but they depend on the fragile 
“brightness constancy” assumption

• Iterative approaches require initialization• Iterative approaches require initialization
• Not robust to illumination change and noise 

imagesimages
• In early days, direct method is better.

• Feature based methods are now more robust 
and potentially fasterand potentially faster

• Even better, it can recognize panorama without 
initializationinitialization



TODO

• Bundle adjustment
LM h d• LM method

• Direct method vs feature-based method 

• Frame-rate image alignment for stabilization• Frame rate image alignment for stabilization

Ri k’  CGA 1995 ? LM th d• Rick’s CGA 1995 paper? LM method



Project #2 Image stitching

• camera availability
T i d?• Tripod?

• http://www.tawbaware.com/maxlyons/
• http://www.cs.washington.edu/education/cou

rses/cse590ss/CurrentQtr/projects.htmQ p j
• http://www.cs.ubc.ca/~mbrown/panorama/pa

norama htmlnorama.html



blending

• Alpha-blending
Ph• Photomontage

• Poisson blending
• Adelson’s pyramid blending
• Hdr?• Hdr?



3D interpretation
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Cylindrical warping

• Given focal length f and 
image center (xc,yc)

(X Y Z)

Y

(X,Y,Z)

(sin,h,cos)

X

Y
Z

( )



Cylindrical projection

– Map 3D point (X,Y,Z) onto 
cylindercylinder

Y
XZ – Convert to cylindrical 

coordinates
unit cylinder

– Convert to cylindrical image 
di tcoordinates

unwrapped cylinder

cylindrical image



Cylindrical reprojection

• How to map from a cylinder to a planar image?

– Apply camera projection matrix
• w = image width, h = image height 

X
Y

Z

side view
Convert to image coordinates– Convert to image coordinates

• divide by third coordinate (w)

top-down view
image coords



Cylindrical projection

Y
XZ

unit cylinder



Levenberg-Marquardt Method 



Alignment

• a rotation of the camera is a translation of the 
cylinder!cylinder!

  


  yxIyxJIIII 2 ),(),( 

 

















































y

yx
x

yyx

yx
yx

yx
x

yxIyxJI

yxIyxJI

v
u

III

III
,

2
,,

),(),(

),(),(

 yxyxyx ,,,



LucasKanadeStep
void LucasKanadeStep(CByteImage& img1, CByteImage& img2, float t[2]) {

// Transform the image
Translation(img2  img2t  t);Translation(img2, img2t, t);

// Compute the gradients and summed error by comparing img1 and img2t
double A[2][2]  b[2];double A[2][2], b[2];
for (int y = 1; y < height-1; y++)  {     // ignore borders

for (int x = 1; x < width-1; x++) {
// If both have full alphas, then compute and accumulate the error// If both have full alphas, then compute and accumulate the error
double e = img2t.Pixel(x, y, k) - img1.Pixel (x, y, k);
// Accumulate the matrix entries
double gx = 0.5*(img2t.Pixel(x+1, y, k) - img2t.Pixel(x-1, y, k));g ( g ( , y, ) g ( , y, ));
double gy = 0.5*(img2t.Pixel(x, y+1, k) - img2t.Pixel(x, y-1, k));

A[0][0] += gx*gx; A[0][1] += gx*gy;[ ][ ] g g ; [ ][ ] g gy;
A[1][0] += gx*gy; A[1][1] += gy*gy;

b[0] += e*gx; b[1] += e*gy;
}

}



LucasKanadeStep (cont.)
// Solve for the update At=b and update the vector

double det  1 0 / (A[0][0]*A[1][1] A[1][0]*A[1][0]);double det = 1.0 / (A[0][0]*A[1][1] - A[1][0]*A[1][0]);

t[0] += (A[1][1]*b[0] - A[1][0]*b[1]) * det;
t[1] += (A[0][0]*b[1] - A[1][0]*b[0]) * det;t[1] += (A[0][0] b[1] - A[1][0] b[0])  det;

}



PyramidLucasKanade
void PyramidalLucasKanade(CByteImage& img1, CByteImage& img2, float t[2],

int nLevels, int nLucasKanadeSteps)
{{

CBytePyramid p1(img1);     // Form the two pyramids
CBytePyramid p2(img2);

// Process in a coarse-to-fine hierarchy
for (int l = nLevels-1; l >= 0; l--)
{{

t[0] /= (1 << l);   // scale the t vector
t[1] /= (1 << l);
CByteImage& i1 = p1[l];y g p [ ];
CByteImage& i2 = p2[l];

for (int k = 0; k < nLucasKanadeSteps; k++)( ; p ; )
LucasKanadeStep(i1, i2, t);

t[0] *= (1 << l);   // restore the full scaling
t[1] *= (1 << l);

}        
}



Gaussian pyramid



2D Motion models
• translation: x’ = x + t x = (x,y)

i ’ R   t• rotation: x’ = R x + t
• similarity: x’ = s R x + t
• affine: x’ = A x + t
• perspective: x’  H x x = (x y 1)• perspective: x   H x x = (x,y,1)

(x is a homogeneous coordinate)
• These all form a nested group (closed under • These all form a nested group (closed under 

composition w/ inv.)



Video matting

alpha matte
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Recognising Panoramas

• 1D Rotations ()• 1D Rotations ()
– Ordering  matching images

• 2D Rotations (q, f)
– Ordering  matching imagesOrdering  matching images



Probabilistic model for verification
• Compare probability that this set of RANSAC 

inliers/outliers was generated by a inliers/outliers was generated by a 
correct/false image match

• Choosing values for p1, p0 and pmin



Recognising Panoramas



Overview

• SIFT Feature Matching
I  M hi• Image Matching

• Bundle Adjustment
• Multi-band Blending



Nearest Neighbour Matching

• Find k-NN for each feature
k b  f l i  i  (   k  4)– k  number of overlapping images (we use k = 4)

• Use k-d tree
– k-d tree recursively bi-partitions data at mean in the 

dimension of maximum variance
A   hb  f d  O l  – Approximate nearest neighbours found in O(nlogn) 



Overview

• SIFT Feature Matching
I  M hi• Image Matching
– For each image, use RANSAC to select inlier features 

f  6 i  ith t f t  t hfrom 6 images with most feature matches

• Bundle Adjustment
• Multi-band Blending



Finding the panoramas
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Overview

• SIFT Feature Matching
I  M hi• Image Matching

• Bundle Adjustment
• Multi-band Blending



Homography for Rotation
• Parameterise each camera by rotation and 

focal lengthfocal length

• This gives pairwise homographies



Error function
• Sum of squared projection errors

– n = #imagesn  #images
– I(i) = set of image matches to image i
– F(i, j) = set of feature matches between images i,jF(i, j)  set of feature matches between images i,j
– rij

k = residual of kth feature match between images 
i,j,j

• Robust error function• Robust error function



Overview

• SIFT Feature Matching
I  M hi• Image Matching

• Bundle Adjustment
• Multi-band Blending



Multi-band Blending
• Burt & Adelson 1983

Bl d f  b d    – Blend frequency bands over range  



2-band Blending

Low frequency ( > 2 pixels)

High frequency ( < 2 pixels)



Linear Blending



2-band Blending



Results



Distortion

No distortion Pin cushion Barrel

• Radial distortion of the image
Ca sed b  imperfect lenses– Caused by imperfect lenses

– Deviations are most noticeable for rays that pass 
through the edge of the lensthrough the edge of the lens



Radial correction

• Correct for “bending” in wide field of view 
llenses


