Image stitching

Digital Visual Effects Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac

Stitching = alignment + blending
 geometrical photometric registration registration

Applications of image stitching

- Video stabilization
- Video summarization
- Video compression
- Video matting
- Panorama creation

Video summarization

Video compression

input video

remove foreground

estimate background

background estimation

Panorama creation

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

Why panorama?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$

Why panorama?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$

- Like HDR, it is a topic of computational photography, seeking ways to build a better camera mostly in software.
- Most consumer cameras have a panorama mode
- Mars:

http://www.panoramas.dk/fullscreen3/f2_mars97.html

• Earth:

http://www.panoramas.dk/new-year-2006/taipei.html http://www.360cities.net/

- In image stitching, we seek for a matrix to globally warp one image into another. Are any two images of the same scene can be aligned this way?
 - Images captured with the same center of projection
 - A planar scene or far-away scene

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has **the same center of projection**!

Mosaic as an image reprojection

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a *synthetic wide-angle camera*

Changing camera center

Planar scene (or a faraway one)

- PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

• Parametric models as the assumptions on the relation between two images.

2D Motion models

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

2 unknowns 6 unknowns 8 unknowns 3 unknowns

A case study: cylindrical panorama

• What if you want a 360° field of view?

Cylindrical panoramas

- Steps
 - Reproject each image onto a cylinder
 - Blend
 - Output the resulting mosaic

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinate
- 3. Compute pairwise alignments
- 4. Fix up the end-to-end alignment
- 5. Blending
- 6. Crop the result and import into a viewer

It is required to do radial distortion correction for better stitching results!

Taking pictures

Kaidan panoramic tripod head

Translation model

Try to align this in PaintShop Pro

Where should the synthetic camera be

- The projection plan of some camera
- Onto a cylinder

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm

Image 384x300

f = 180 (pixels)

f = 280

f = 380

Or, you can use other software, such as AutoStich, to help.

Input images

Cylindrical warping

• Why blending: parallax, lens distortion, scene motion, exposure difference

Blending

Blending

Assembling the panorama

• Stitch pairs together, blend, then crop

- Error accumulation
 - small errors accumulate over time

Problem: Drift

- add another copy of first image at the end
- there are a bunch of ways to solve this problem
 - add displacement of (y₁ y_n)/(n -1) to each image after the first
 - compute a global warp: y' = y + ax
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

Viewer: panorama

example: http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html

Viewer: texture mapped model

example: http://www.panoramas.dk/

Cylindrical panorama

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinate
- 3. Compute pairwise alignments
- 4. Fix up the end-to-end alignment
- 5. Blending
- 6. Crop the result and import into a viewer

Determine pairwise alignment?

- Feature-based methods: only use feature points to estimate parameters
- We will study the "Recognising panorama" paper published in ICCV 2003
- Run SIFT (or other feature algorithms) for each image, find feature matches.

Determine pairwise alignment

- p'=Mp, where M is a transformation matrix, p and p' are feature matches
- It is possible to use more complicated models such as affine or perspective
- For example, assume M is a 2x2 matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Find M with the least square error

$$\sum_{i=1}^n (Mp - p')^2$$

Determine pairwise alignment

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x_1 m_{11} + y_1 m_{12} = x_1$$

$$x_1 m_{21} + y_1 m_{22} = y_1$$

• Overdetermined system

$$\begin{pmatrix} x_1 & y_1 & 0 & 0 \\ 0 & 0 & x_1 & y_1 \\ x_2 & y_2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 0 & 0 \\ 0 & 0 & x_n & y_n \end{pmatrix} \begin{pmatrix} m_{11} \\ m_{12} \\ m_{21} \\ m_{22} \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ x_2 \\ \vdots \\ m_{21} \\ m_{22} \end{pmatrix}$$

Given an overdetermined system

$\mathbf{A}\mathbf{x} = \mathbf{b}$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$

Why?

*n*X*m*, *n* equations, *m* variables

$$E(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^2 = \sum_{i=1}^n \left[\left(\sum_{j=1}^m a_{ij} x_j \right) - b_i \right]^2$$
$$0 = \frac{\partial E}{\partial x_1} = \sum_{i=1}^n 2 \left[\left(\sum_{j=1}^m a_{ij} x_j \right) - b_i \right] a_{i1}$$
$$= 2 \sum_{i=1}^n a_{i1} \sum_{j=1}^m a_{ij} x_j - 2 \sum_{i=1}^n a_{i1} b_i$$

$$0 = \frac{\partial E}{\partial \mathbf{x}} = 2(\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{A}^{\mathsf{T}}\mathbf{b}) \rightarrow \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

$$(\mathbf{A}\mathbf{x} - \mathbf{b})^{2}$$

= $(\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$
= $((\mathbf{A}\mathbf{x})^{T} - \mathbf{b}^{T})(\mathbf{A}\mathbf{x} - \mathbf{b})$
= $(\mathbf{x}^{T}\mathbf{A}^{T} - \mathbf{b}^{T})(\mathbf{A}\mathbf{x} - \mathbf{b})$
= $\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - \mathbf{b}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{b} + \mathbf{b}^{T}\mathbf{b}$
= $\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - (\mathbf{A}^{T}\mathbf{b})^{T}\mathbf{x} - (\mathbf{A}^{T}\mathbf{b})^{T}\mathbf{x} + \mathbf{b}^{T}\mathbf{b}$
 $\frac{\partial E}{\partial \mathbf{x}} = 2\mathbf{A}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{T}\mathbf{b}$

Determine pairwise alignment

- p'=Mp, where M is a transformation matrix, p and p' are feature matches
- For translation model, it is easier.

$$E = \sum_{i=1}^{n} \left[\left(m_1 + x_i - x_i^{'} \right)^2 + \left(m_2 + y_i - y_i^{'} \right)^2 \right]$$

$$0 = \frac{\partial E}{\partial m_1}$$

• What if the match is false? Avoid impact of outliers.

- RANSAC = Random Sample Consensus
- An algorithm for robust fitting of models in the presence of many data outliers
- Compare to robust statistics
- Given N data points x_i, assume that mjority of them are generated from a model with parameters Θ, try to recover Θ.

RANSAC algorithm

Depends on the problem.

p: probability of real inliers

P: probability of success after k trials

$$P = 1 - (1 - p^{n})^{k}$$
n samples are all inliers
a failure
failure after k trials
$$k = \frac{\log(1 - P)}{\log(1 - p^{n})}$$
 for $P = 0.99$
$$\frac{n}{6} \frac{p}{0.5} \frac{k}{293}$$

Example: line fitting

Example: line fitting

Model fitting

Measure distances

Count inliers

Another trial

The best model

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Applications of panorama in VFX

- Background plates
- Image-based lighting

http://www.cgnetworks.com/story_custom.php?story_id=2195&page=4

Spiderman 2 (background plate)

Cylindrical projection

Reference

- Richard Szeliski, <u>Image Alignment and Stitching</u>, unpublished draft, 2005.
- R. Szeliski and H.-Y. Shum. <u>Creating full view panoramic image</u> mosaics and texture-mapped models, SIGGRAPH 1997, pp251-258.
- M. Brown, D. G. Lowe, <u>Recognising Panoramas</u>, ICCV 2003.

- Direct methods use all information and can be very accurate, but they depend on the fragile "brightness constancy" assumption
- Iterative approaches require initialization
- Not robust to illumination change and noise images
- In early days, direct method is better.
- Feature based methods are now more robust and potentially faster
- Even better, it can recognize panorama without initialization

TODO

- Bundle adjustment
- LM method
- Direct method vs feature-based method
- Frame-rate image alignment for stabilization
- Rick's CGA 1995 paper? LM method

Project #2 Image stitching

- camera availability
- Tripod?
- http://www.tawbaware.com/maxlyons/
- http://www.cs.washington.edu/education/cou rses/cse590ss/CurrentQtr/projects.htm
- <u>http://www.cs.ubc.ca/~mbrown/panorama/pa</u> <u>norama.html</u>

blending

- Alpha-blending
- Photomontage
- Poisson blending
- Adelson's pyramid blending
- Hdr?

3D interpretation

Cylindrical warping

Given focal length *f* and image center (*x_c*, *y_c*)

 $\theta = (x_{cyl} - x_c)/f$ $h = (y_{cyl} - y_c)/f$

$$\hat{x} = \sin \theta$$

$$\hat{y} = h$$

- $\hat{z} = \cos \theta$
- $x = f\hat{x}/\hat{z} + x_c$
- $y = f\hat{y}/\hat{z} + y_c$

Cylindrical projection

Z) - Map 3D point (X,Y,Z) onto cylinder

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)$$

 Convert to cylindrical coordinates

 $(\sin\theta, h, \cos\theta) = (\hat{x}, \hat{y}, \hat{z})$

- Convert to cylindrical image coordinates

 $(\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)$

• How to map from a cylinder to a planar image?

top-down view

Apply camera projection matrix

• *w* = image width, *h* = image height

$$\begin{bmatrix} wx'\\wy'\\w \end{bmatrix} = \begin{bmatrix} -f & 0 & w/2 & 0\\ 0 & -f & h/2 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \hat{x}\\ \hat{y}\\ \hat{z}\\ 1 \end{bmatrix}$$

- Convert to image coordinates
 - divide by third coordinate (w)

Cylindrical projection

Alignment

• a rotation of the camera is a translation of the cylinder!

$$\begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_{x,y} I_x (J(x,y) - I(x,y)) \\ \sum_{x,y} I_y (J(x,y) - I(x,y)) \end{bmatrix}$$

LucasKanadeStep

void LucasKanadeStep(CByteImage& img1, CByteImage& img2, float t[2]) {
 // Transform the image
 Translation(img2, img2t, t);

// Compute the gradients and summed error by comparing img1 and img2t double A[2][2], b[2];

```
for (int y = 1; y < height-1; y++) { // ignore borders
```

```
for (int x = 1; x < width-1; x++) {
```

// If both have full alphas, then compute and accumulate the error double e = img2t.Pixel(x, y, k) - img1.Pixel (x, y, k);

// Accumulate the matrix entries

```
double gx = 0.5^*(img2t.Pixel(x+1, y, k) - img2t.Pixel(x-1, y, k));
```

```
double gy = 0.5^{(img2t.Pixel(x, y+1, k) - img2t.Pixel(x, y-1, k)));
```

```
A[0][0] += gx^*gx; A[0][1] += gx^*gy; A[1][0] += gx^*gy; A[1][1] += gy^*gy;
```

```
b[0] += e*gx; b[1] += e*gy;
```

LucasKanadeStep (cont.)

}

// Solve for the update At=b and update the vector

```
double det = 1.0 / (A[0][0]*A[1][1] - A[1][0]*A[1][0]);
```

```
t[0] += (A[1][1]*b[0] - A[1][0]*b[1]) * det;
t[1] += (A[0][0]*b[1] - A[1][0]*b[0]) * det;
```

PyramidLucasKanade

{

void PyramidalLucasKanade(CByteImage& img1, CByteImage& img2, float t[2], int nLevels, int nLucasKanadeSteps)

```
CBytePyramid p1(img1); // Form the two pyramids CBytePyramid p2(img2);
```

```
// Process in a coarse-to-fine hierarchy
for (int I = nLevels-1; I >= 0; I--)
{
    t[0] /= (1 << I); // scale the t vector
    t[1] /= (1 << I);
    CByteImage& i1 = p1[I];
    CByteImage& i2 = p2[I];</pre>
```

```
for (int k = 0; k < nLucasKanadeSteps; k++)
    LucasKanadeStep(i1, i2, t);
t[0] *= (1 << I); // restore the full scaling
t[1] *= (1 << I);</pre>
```


Gaussian pyramid

DigiVFX

2D Motion models

- translation: x' = x + t x = (x, y)
- rotation: x' = R x + t
- similarity: x' = s R x + t
- affine: x' = A x + t
- perspective: $\underline{x}' \cong H \underline{x}$ $\underline{x} = (x, y, 1)$ (\underline{x} is a *homogeneous* coordinate)
- These all form a nested group (closed under composition w/ inv.)

Video matting

alpha matte

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (q, f)
 - Ordering Amatching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (q, f)
 - Ordering Amount matching images

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images

- 2D Rotations (q, f)
 - Ordering Amatching images

Probabilistic model for verification

- Compare probability that this set of RANSAC inliers/outliers was generated by a correct/false image match
- Choosing values for $p_1, \ p_0 \ and \ p_{min}$

 $n_i > 5.9 + 0.22n_f$

Overview

- SIFT Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending

Nearest Neighbour Matching

- Find k-NN for each feature
 - $k \approx$ number of overlapping images (we use k = 4)
- Use k-d tree
 - k-d tree recursively bi-partitions data at mean in the dimension of maximum variance
 - Approximate nearest neighbours found in O(nlogn)

Overview

- SIFT Feature Matching
- Image Matching
 - For each image, use RANSAC to select inlier features from 6 images with most feature matches
- Bundle Adjustment
- Multi-band Blending

Finding the panoramas

Finding the panoramas

Finding the panoramas

Finding the panoramas

Overview

- SIFT Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending

Homography for Rotation

Parameterise each camera by rotation and focal length

$$\mathbf{R}_{i} = e^{[\boldsymbol{\theta}_{i}]_{\times}}, \quad [\boldsymbol{\theta}_{i}]_{\times} = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix}$$
$$\mathbf{K}_{i} = \begin{bmatrix} f_{i} & 0 & 0 \\ 0 & f_{i} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• This gives pairwise homographies

$$\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$$
, $\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$

Error function

• Sum of squared projection errors

$$e = \sum_{i=1}^{n} \sum_{j \in \mathcal{I}(i)} \sum_{k \in \mathcal{F}(i,j)} f(\mathbf{r}_{ij}^k)^2$$

- n = #images
- I(i) = set of image matches to image i
- F(i, j) = set of feature matches between images i, j
- r_{ij}^k = residual of kth feature match between images
 i,j

• Robust
$$\operatorname{err}_{f(\mathbf{x})} = \begin{cases} |\mathbf{x}|, & \text{if } |\mathbf{x}| < x_{max} \\ x_{max}, & \text{if } |\mathbf{x}| \ge x_{max} \end{cases}$$

Overview

- SIFT Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending

Multi-band Blending

- Burt & Adelson 1983
 - Blend frequency bands over range $\propto \lambda$

2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Results

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Radial correction

 Correct for "bending" in wide field of view lenses

 $\hat{r}^2 = \hat{x}^2 + \hat{y}^2$ $\hat{x}' = \hat{x}/(1+\kappa_1\hat{r}^2+\kappa_2\hat{r}^4)$ $\hat{y}' = \hat{y}/(1+\kappa_1\hat{r}^2+\kappa_2\hat{r}^4)$ $x = f\hat{x}'/\hat{z} + x_c$ $y = f\hat{y}'/\hat{z} + y_c$