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Features

e Also known as interesting points, salient points
or keypoints. Points that you can easily point
out their correspondences in multiple images
using only local information.
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Desired properties for features

e Distinctive: a single feature can be correctly
matched with high probability.

e |nvariant: invariant to scale, rotation, affine,
IHlumination and noise for robust matching
across a substantial range of affine distortion,
viewpoint change and so on. That is, It Is
repeatable.



Applications

e Object or scene recognition
e Structure from motion

e Stereo

e Motion tracking
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Components

e Feature detection locates where they are
e Feature description describes what they are

e Feature matching decides whether two are the
same one




Harris corner detector
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Moravec corner detector (1980)

e We should easily recognize the point by looking
through a small window

e Shifting a window In any direction should give a
large change in intensity




Moravec corner detector

flat



Moravec corner detector

flat



Moravec corner detector

flat edge



Moravec corner detector

corner
flat edge Isolated point
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Moravec corner detector

Change of intensity for the shift [u,V]:
E(u,v) = > w(x, )1 (x+u,y+v) = 1(x, y)[
X,y

window shifted intjnsity
function Intensity

1 in window, O outside

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}
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Problems of Moravec detector

e Noisy response due to a binary window function

e Only a set of shifts at every 45 degree IS
considered

e Only minimum of E is taken into account

= Harris corner detector (1988) solves these
problems.



Harris corner detector

Noisy response due to a binary window function
» Use a Gaussian function

(x’ +y2>]

Window function W( X,V ) =

Gaussian
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Harris corner detector

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’'s expansion
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Harris corner detector

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’'s expansion

E(u,v) =Y wix, y)[1(x+u,y+v)=1(x,y)]
= > w(X, y)[lxu + va+O(u2,v2)]2

E(u,v) = Au® + 2Cuv + Bv?
A= w(x y)I(xy)
X,y

B=Y w(x,y)I;(X,y)

C =2 wix, LI, (xY)
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Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear
approximation:

E(u,v)=[u v]M -

V

, where M Is a 2x2 matrix computed from image derivatives:

12,
M:Zw(x,y) - |zy
X,y y

X"y




Harris corner detector (matrix form) 22>

E(u) = ZW(X()) | 1(x4 +u) = 1(x,) B
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Harris corner detector

Only minimum of E is taken into account

»A new corner measurement by investigating the
shape of the error function

u' Mu represents a quadratic function; Thus, we
can analyze E’s shape by looking at the property
of M
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Harris corner detector

High-level idea: what shape of the error function
will we prefer for features?

corner
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Quadratic forms

e Quadratic form (homogeneous polynomial of
degree two) of n variables x;

n o n
; J ; J Cij iy

i=1 j=1
1<j

e Examples
4x% + 5x§ + 3x§ + 2x1x0 +4x123 + 62073
4 1 2 L1
3 L9
3 L3

=(x1 a2 x3)| 1 5
2 3
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Symmetric matrices

e Quadratic forms can be represented by a real

symmetric matrix A where ¢y it =7,
_ )l i<
a;; = { 5Cij W1<],
n n n n \ %cj’i lf Z > j
NN e, =3 Y ara
i=1 j=1 i=1 j=1
i<j
a1 ... QAin L1
— (Il Ln )
Unl coe Upn Ln
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Eigenvalues of symmetric matrices

suppose 4 € R"*" is symmetric, i.e., A = A
fact: the eigenvalues of A are real

SUppose Ay = )\"U, v # 0, v e Cn

o1 Av 2

v,

v (Av) =X0To =)
i=1

T

7l Av = (Av) v = ()\"U)T’U — XZ v, |
i=1

we have A =\, 7.e., A€ R

(hence, can assume v € R")
Brad Osgood
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Eigenvectors of symmetric matrices

suppose A € R"*" is symmetric, i.e., A = A'
fact: there is a set of orthonormal eigenvectors of A

A= OQAQT
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Eigenvectors of symmetric matrices

suppose A € R"*" is symmetric, i.e., A = A'
fact: there is a set of orthonormal eigenvectors of A
A=QAQ7T

T
X AX
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Harris corner detector

Intensity change in shifting window: eigenvalue analysis

E(U,V) = [U,V]M . 7\,1, Kz—eigenvalues of M

direction of the
fastest change direction of the

slowest change

Ellipse E(u,v) = const
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Visualize quadratic functions
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Visualize quadratic functions
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Visualize quadratic functions
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Harris corner detector

Classification of
Image points
using eigenvalues
of M:

Ay

A, and A, are small;

E is almost constant
in all directions

edge
Ay>> L1 /@ Corner

A, and A, are large,
M~ Ay

E increases in all
directions
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Harris corner detector

Only for reference
- —a,.)? ’
_ dgp T8y, T \/(aoo a,,)" +4a,ay you do not need

2 them to compute R
Measure of corner response.

A

R = detM —k(traceM )°

detM = 14,
traceM = A, + 4,

(k - empirical constant, k = 0.04-0.06)
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Harris corner detector

uonouny asuodsar Jo spmijdure

...............

iso-response contours

e R



Another view

X derivative Input image patch

Y derivative

Linear Edg




Another view

The distribution of the x and v
derivatives is very different for
all three types of patches

Flat

il P 1
o1 02 03

‘e

]
o5

05

Corner

04

L
-
o3 o .
- . . .
™ - L ] - L]
02k

0.1

04

L]

Linear Edge




Another view

The distribution of x and y
derivatives can be characterized

<01

by the shape and size of the £
principal component ellipse i
N [R=10.25
| -l.’l:i D4 DA -{II2 01 Q LR 02 03 04 08
05+ % 05k ‘
N Corner Linear Edge
I 04t
O ost
FY
I
ot ool N
or o /,J
o1F osl h —
02t +0.2}
03 ~— B Lo.ab
*“ |R=28.07 “r R =0.3328
| “45 oa 03 07 Di B 61 62 03 i DbE | 0F 04 03 02 01 0 01 02 03 05 05




Summary of Harris detector

1. Compute x and y derivatives of image
| =G *| |, =G *|
2. Compute products of derivatives at every pixel
|, =1 -1 |, =1, -1 | =1 -1

3. Compute the sums of the products of
derivatives at each pixel

— —_ sk —
sz —Gau*lxz Sy2 Ga' Iy2 Sxy _GO"*Ixy



Summary of Harris detector

4. Define the matrix at each pixel

_SXZ (X1 y) Sxy (X1 y)_

MEW=Is y) s, (0 y)

5. Compute the response of the detector at each

Ixel
P R =detM —k(traceM )’

6. Threshold on value of R; compute nonmax
suppression.



Harris corner detector (input)




Corner response R
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Threshold on R




L ocal maximum of R




Harris corner detector
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Harris detector: summary

e Average intensity change in direction [u,Vv] can be
expressed as a bilinear form:

U

V

e Describe a point in terms of eigenvalues of M:
measure of corner response

R=A44, _k(ﬂi+ﬂ“2)2

e A good (corner) point should have a large intensity
change in all directions, i.e. R should be large
positive

E(u,v)=[u,v|M
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Now we know where features are

e But, how to match them?

e \What is the descriptor for a feature? The
simplest solution is the intensities of its spatial
neighbors. This might not be robust to
brightness change or small shift/rotation.

(W - )




Digi\Yl 2.4

Harris detector: some properties

e Partial invariance to affine intensity change

v Only derivatives are used =>
Invariance to intensity shift 1 > 1+ Db

v Intensity scale: | — all

RA
N ..

threshold = /.\
AN, AV

X (image coordinate) X (image coordinate)




Digi\Yl 2.4

Harris Detector: Some Properties

e Rotation invariance

N mﬂﬁ <
57 =

Ellipse rotates but its shape (i.e. eigenvalues) remains
the same

Corner response R is invariant to image rotation
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Harris Detector Is rotation invariant

Repeatability rate:

# correspondences
# possible correspondences

i Harris —— |
1.2 :
ImpHarris -+

o
g 08 |
=
%
= 06 |
g
o
04 |
02 |
D i ] | i Il | ] il i

0 20 40 60 80 100 120 140 160 180
rotation angle in degrees
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Harris Detector: Some Properties

e But: not invariant to image scale!

N
——
(I

All points will be Corner !
classified as edges



Harris detector: some properties

Digil.!

e Quality of Harris detector for different scale

changes
Repeatability rate:

# correspondences

# possible correspondences

repeatability rate

06

04

02

08

ImpHarris --+---

Harris —-—

1.5

2

25 3
scale factor

3.5

4 4.5
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Scale Invariant detection

e Consider regions (e.g. circles) of different sizes
around a point

e Regions of corresponding sizes will look the
same In both images
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Scale Invariant detection

e The problem: how do we choose corresponding
circles independently in each image?

e Aperture problem

[




SIFT

(Scale Invariant Feature Transform)



SIFT CIFTvex

e SIFT is an carefully designed procedure with
empirically determined parameters for the
Invariant and distinctive features.
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SIFT stages:
e Scale-space extrema detection
. . detector
e Keypoint localization
e Orientation assignment _
e Keypoint descriptor descriptor

local descriptor

A 500x500 image gives about 2000 features
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1. Detection of scale-space extrema

e For scale invariance, search for stable features
across all possible scales using a continuous
function of scale, scale space.

e SIFT uses DoG filter for scale space because it iIs
efficient and as stable as scale-normalized
Laplacian of Gaussian.



DoG filtering

Convolution with a variable-scale Gaussian

L(x,y,0) = G(x,y,0)x I(v,y).
; 2 2 2
G(x,y,0) =1/12m0°) oxp @ TYT)/o
Difference-of-Gaussian (DoG) filter

G(‘I Y. k'O') o G(‘I Y. O-)

Convolution with the DoG filter
D(x,y,0) = (G(x,y,ko)—G(x,y,0))*1(z,y)
L(x,y,ko) — L(x,y,0).



Scale space

o doubles for

Digi\] 23
the next octave <22 I =
e | e
octave) E ///39 E
=== y

K=2(1/9)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Dividing into octave is for efficiency only.






Keypoint localization

A L L S S
L A
L S S

| LA A A A Ay,
Scale ST A T
AV A T
L AT

X 1s selected if it is larger or smaller than all 26 neighbors
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Decide scale sampling frequency

e |t Is Impossible to sample the whole space,
tradeoff efficiency with completeness.

e Decide the best sampling frequency by
experimenting on 32 real image subject to
synthetic transformations. (rotation, scaling,
affine stretch, brightness and contrast change,

adding noise...)
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Decide scale sampling frequency

3500

3000

2500 o

2000 ngff T  —
1500 e

1000 Total number of keypoints —

Nearest descriptor in database - )

Number of keypoints per image

500 d i i i i i
1 2 3 4 5 6 7 8

Number of scales sampled per octave




Decide scale sampling frequency
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Repeatability (%)

100

80

40

20

for detector,

I repeatability

&
-
&
x
’
Fl
BG -

| \ for descriptor,

distinctiveness

Matching location and scale ——
earest descriptor in database - 7 -
1 2 3 4 5 6 7 3

Number of scales sampled per octave

s=3 Is the best, for larger s, too many unstable features



Pre-smoothing

100
80 e
S
3 B0
E
©
©
I €
& Matching location and scale ——
Nearest descriptor in database -
20 | R e e .
0
1 1.2 1.4 1.6 1.8

Prior smoothing for each octave (sigma)

o =1.6, plus a double expansion



Scale Invariance

1 T ! I | 1
| —e— Harris-Laplacian
0.9 | == SIFT (Lowe) ]
o : | —= Harris
-
=
8 s
(O
I
% 05
| -

0.4

0.3

0.2

0.1
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2. Accurate keypoint localization

e Reject points with low contrast (flat) and
poorly localized along an edge (edge)

e Fit a 3D quadratic function for sub-pixel
maxima
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2. Accurate keypoint localization

e Reject points with low contrast (flat) and
poorly localized along an edge (edge)

e Fit a 3D quadratic function for sub-pixel

maxima 1 )
°3 F0)= 1(0)+ F'(Ox+-— 2
6 T~ B
7 i \. 5 f(X)z6+2x+—x2:6+2x_3X2
/ I \. 2
/0 N\
/ L A\
SR B 9
/ o N F'(0)=2-6x=0— X==
/ ! | \ , 3
/ : : : \ R
1* o | \ f(X)=6+2-£—3. 1 =6£
,/: ! ! | \‘ R 3 3 3
/ \ >
/-1 0 1 +1 \

3
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2. Accurate keypoint localization

e Taylor series of several variables

o0 oo gm gnd e ay)
T(Ila'”!rdjz z Z Srnl .. f{al. y (A,
1

n1=>0 ng=»0

] n {Il_ﬂ'l:]ni et {Td—ﬂ-d:]nd
dry® m!---ng

e Two variables

2 2 2
F(X,y) ~ f(o,0)+@_fx+ﬂyj+£(a s O O yz)
X

oy 2\ OXOX OXoy oyoy
o%f 8%f |
{4 B R W Fr
y 0 oXx oy|y| 2 1o0f o f ||y
| OXdy Oy |

of ' 1 .0
f(x)=~ f(0)+& X+EXT "

X
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Accurate keypoint localization

e Taylor expansion in a matrix form, x Is a vector,
f maps x to a scalar

Of 1, 0%f

f(X) = f+ ()_X X T §X ()?X Hessian matrix
VZ | | (often symmetric)
(o) ([ 0*f 0% 0% f
gradient | — >
OX, OX, OX,0X, OX,0X,,
of o° f o° f o° f
OX, OX,0%,  OX; OX, 0%
of ’f ot
L OX,, | OX, 0%, OX,0%, ox:

n



2D 1llustration

R R ey
fx)=f+5- x+5x 5-9x

f11| Jo1 | fia of

Eig = QfLO'—ef—LO)/Q
of

f—10]| foo | f1,0 ol (fou — fo—1)/2
Y

0? f
f-1,-1| fo,-1 | f1,-1 O
0 f

= Ji0—2fo0+ f-10

T = Joa1— 2f00+ fo1

0*f
afay

= (faaaa—far1—fia+ )4



2D example
N AR e |
f(x)_‘f+8_x X+§X Ix2

-17| -1 | -1

917 |7

|
O
%
g




Derivation of matrix form




Derivation of matrix form

h(x)=g'x ( oh )
(%, —
. oh | %
= (g, g,) : ==
ox | oh
\n/ o
n )

O

-
¢
>

N—







Derivation of matrix form

| ofT 1 L0
fx) =1+ 55 X+ 3% 55%
(@,
h(x) =x"Ax :(X1 Xn)l :
=D D &%X; \ o
=1 j=1
(oh) (< L )
- Za,lxi+2a1jxj
oh [ X |7 A
ox | oh| | L
87 ZainXi-I-Z&ij
\ n) \|=1 J=1 /

a, )\ X )

Aoy A\ Xn

— A'x+ Ax

= (A" + A)x



Derivation of matrix form

|l
4

of _of 1[a*f o | _of &f
ox oOx 2| ox° ox°

Pfof
0x? 0x

Xm —



e X IS a 3-vector

e Change sample point if offset is larger than 0.5
e Throw out low contrast (<0.03)



Accurate keypoint localization

e Throw out low contrast |D(x)|<0.03

T 2
pR) =D+ z+ix7 L P%
OX 2 OX
i
oD . 1 oD aD)| o°D[ °D D
=D+— x+-|——; —| ——
OX 2 OX OX OX OX OX

oD" . 10D" ?°D ' #2D &°D " 4D
=D+ — x+— > ——
OX 2 OX OX OX~ Ox OX

éD". 10D"°D D
OX 20x 0x° Ox

J



Digi\Yl 2.4

Eliminating edge responses

H = Dz Doy Hessian matrix at keypoint location
Dy Dy,

Tr(H) = Dy + Dy = o + .
Det(H) = Dy Dy — (Day)? = af.

Let « =13 Tr(H)?  (a+03)* (@p+3)?* (r+1)°

Det(H) a  r3? N r

TI(H)Z _ ('T‘—f—l)z
Det(H) ro

r=10

Keep the points with



Maxima in D
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Keypoint detector

‘ Ji i bl LR ERA AR PRI
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3. Orientation assignment

e By assigning a consistent orientation, the
keypoint descriptor can be orientation invariant.

e For a keypoint, L Is the Gaussian-smoothed
Image with the closest scale,

m(x,y) = V/(L(;r +1,y) — Lz —1,9))*+ (L(z.y +1) — L(z,y — 1))?

O(x,y) = tan '(L(x,y + 1) — L(x,y — 1)) /(L(z + 1,y) — L(z — 1, y)))
(LX, Ly)

orientation histogram (36 bins)



Orientation assignment

e

; .'-a"y-r_f AN
1‘&{: -l
B

| o gy

Dl
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Orientation assignment

*Keypoint location = extrema location
*Keypoint scale is scale of the DOG image



Orientation assignment

gaussian image
(at closest scale,
from pyramid)

sradient
magnitude

gradient
orientation




Orientation assignment

sradient weighted by 2D
magnitude gaussian Kernel

o=1.5*scale of
the keypoint

weighted gradient
magnitude



Orientation assignment

weighted gradient
magnitude

weighted orientation histogram.

Each bucket contains sum of weighted gradient
magnitudes corresponding to angles that fall within
that bucket.

|

grali
orie

1 1 1 1 ] Il
[n] 5 10 15 20 25 30 35

36 buckets

10 degree range of angles in each bucket, i.e.
0 <=ang<10 : bucket 1
10<=ang<20 : bucket 2
20<=ang<30 : bucket 3 ...




Orientation assignment

weighted gradient
magnitude

weighted orientation histogram.

A peak

80%o of peak value

oray
orie

20-30 degrees
Orientation of keypoint
is approximately 25 degrees
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Orientation assignment

accurate peak position
IS determined by fitting

There may be multiple orientations.

P[5l peak
20 | A Second peak

b | 5% 80% of peak value

G50}
.'
50t | )

<40 | I| I'
20 | | II

ol 1 1 1 1 1 1 1
o 5 10 15 20 25 30 35

In this case, generate duplicate keypoints, one with
orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of
possible multiple peaks to two.



Orientation assignment

36-bin orientation histogram over 360,
/ weighted by m and 1.5*scale falloff
Peak Is the orientation

Local peak within 80% creates multiple
orientations

About 15% has multiple orientations
. and they contribute a lot to stability

o 1* 2m




SIFT descriptor
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4. Local image descriptor

e Thresholded image gradients are sampled over 16x16
array of locations in scale space

e Create array of orientation histograms (w.r.t. key
orientation)

e 8 orientations x 4x4 histogram array = 128 dimensions
e Normalized, clip values larger than 0.2, renormalize

Ct, -
'AENE R, /A k ': ;
6=0.5*width ::[E :>I<‘ :

Image gradients Keypoint descriptor




Why 4x4x8?

BO |-

5O [

40 |

30

20

Correct nearest descriptor (%)

e mn mmm e e e mmm s mme s mme s mmees mmeee mme—e m——— :}---- memes mmmes memes semes semee se——e ————— -:-.-::_--xw-“mw-w --------- -z -_—x
i . * P *
H e
' =
g -~
SE
‘0 -
----------------------------------------------- (e B R
H—
¥
-
ra
&

............................................................................................................................................ —]

With 16 orientations

+

Width n of descriptor (angle 50 deg, noise 4%)




100

80

O
o

Correctly matched (%)
B
=

20

Viewpoint angle (degrees)

50

{ e S
& T -~ —
_ J
Keypoint location ——
Location & orientation =
i Nearest descriptor —* §
° 10 20 30 40
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Feature matching

e for a feature x, he found the closest feature x,
and the second closest feature Xx,. If the
distance ratio of d(x, x,) and d(x, x,) is smaller
than 0.8, then it is accepted as a match.



SIFT flow




Maxima in D
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Remove low contrast

Digil.!




Remove edges

Digil.!




SIFT descriptor
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Estimated rotation

e Computed affine transformation from rotated
Image to original image:

0.7060 -0.7052 128.4230
0.7057 0.7100 -128.9491
0 0 1.0000

e Actual transformation from rotated image to
original image:
0.7071 -0.7071 128.6934
0.7071 0.7071 -128.6934

0 0 1.0000



SIFT extensions
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PCA

Average face:

Top ten etgentaces (left = hughest etgenvalue, nght = lowest elgenvalue):




PCA-SIFT Fvex

e Only change step 4

e Pre-compute an eigen-space for local gradient
patches of size 41x41

e 2x39x39=3042 elements
e Only keep 20 components
e A more compact descriptor



GLOH (Gradient location-orientation histo VSX

sired

el ™ 17 location bins
F — _-".. - - -
/ E/\;H 16 orientation bins

A ) .
“ w Analyze the 17x16=272-d
“ﬁ %Eﬁ ,,f' elgen-space, keep 128 components

SIFT is still considered the best.
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Multi-Scale Oriented Patches

e Simpler than SIFT. Designed for image matching.
[Brown, Szeliski, Winder, CVPR’2005]

e Feature detector
- Multi-scale Harris corners
- Orientation from blurred gradient
- Geometrically invariant to rotation

e Feature descriptor
- Bias/gain normalized sampling of local patch (8x8)

- Photometrically invariant to affine changes in
Intensity
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Multi-Scale Harris corner detector

Py, y) = (2, y)
147 Level 0: 1x1
Pl(x,y) = Pix,y)*go,(v,y) ZZ7 “iware
Pra(x,y) = Fi(se,sy) A e

S=2 o0,=10 LZZzzzzz

/////////

e |Image stitching is mostly concerned with
matching images that have the same scale, so
sub-octave pyramid might not be necessary.
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Multi-Scale Harris corner detector

Hy(2.y) = Vo, P2, y)Ve, P2, y)" * go, (2. y)

Vof(x,y) = V(e y)* gs(x,y)

smoother version of gradients

g; — 1.5 Oq4 — 1.0
Corner detection function:
det H;(z,y) A1 Ao
tr Hy(x, y) VY
Pick local maxima of 3x3 and larger than 10

fan(v,y) =
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Keypoint detection function

Harris  fgr = MMy —0.04(\; +X3)? = det H—0.04(tr H)?
Harmonic mean fyy = AAa/ (A1 4 Ag) = det H/tr H

Shi-Tomasi  fqr = min( A, As)

e S
' -—_-—_—Eg;r:lfonicmean
T ESURRE EN N S L L ;L shi-Tomasi |
ot Experimentsshow roughly
. = the same performance.
A S S _ _________ S — ________ ________
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Non-maximal suppression

e Restrict the maximal number of interest points,
but also want them spatially well distributed

e Only retain maximums in a neighborhood of
radius r.

e Sort them by strength, decreasing r from
Infinity until the number of keypoints (500) is
satisfied.



Non-maximal suppression
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(c) ANMS 250, r = 24

(d) ANMS 500, r = 16



Sub-pixel refinement
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Orientation assignment

e Orientation = blurred gradient
w(z,y) = Ve, Bz, y)

o, =4.5

cosf,sinf| = u/|u



Descriptor Vector

e Rotation Invariant Frame
- Scale-space position (X, y, S) + orientation (0)
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MSOP descriptor vector

e 38x8 oriented patch sampled at 5 x scale. See TR
for details.

 Sampled from Fj(x,y) * goxo, (7, y) with
spacing=>5
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MSOP descriptor vector

e 38x8 oriented patch sampled at 5 x scale. See TR
for details.

e Bias/gain normalisation: I' = (I — u)/c
e Wavelet transform
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Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.



summary

e Multi-scale Harris corner detector

e Sub-pixel refinement

e Orientation assignment by gradients
e Blurred intensity patch as descriptor



Feature matching

e Exhaustive search

- for each feature in one image, look at all the other
features in the other image(s)

e Hashing

- compute a short descriptor from each feature vector,
or hash longer descriptors (randomly)

e Nearest neighbor technigues
- k-trees and their variants (Best Bin First)



Wavelet-based hashing Digillax

e Compute a short (3-vector) descriptor from an
8x8 patch using a Haar “wavelet”

e Quantize each value into 10 (overlapping) bins
(103 total entries)

e [Brown, Szeliski, Winder, CVPR2005]



Nearest neighbor techniques
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e k-D tree
and

e Best Bin
First
(BBF)
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Figure 6: kd-tree with 8 data points labelled A-H, dimension of space k=2. On the right is the full tree, the leaf
nodes containing the data points. Internal node information consists of the dimension of the cut plane and the value
of the cut in that dimension. On the left is the 2D feature space carved into various sizes and shapes of bin, according
to the distributionof the data points. The two representations are isomorphic. The situation shown on the left is after
initial tree traversal to locate the bin for query point “+” (contains point D). In standard search, the closest nodes in
the tree are examined first (starting at C). In BBF search, the closest bins to query point g are examined first (starting
at B). The latter is more likely to maximize the overlap of (i) the hypersphere centered on ¢ with radius D,,,,., and
(i1) the hyperrectangle of the bin to be searched. In this case, BBF search reduces the number of leaves to examine,
since onee point B is discovered, all other branches can be pruned.

Indexing Without Invariants in 3D Object Recognition, Beis and Lowe, PAMI'99



Applications



Recognition

SIFT Features



3D object recognition




3D object recognition




Office of the past

Images from PDF

Track &
recognize

~_

Scene Graph

Internal representation




Image retrieval

B 5000
iImages

change in viewing angle




Image retrieval

22 correct matches



Image retrieval

> 5000
| images

change in viewing angle
+ scale change




Robot location




Robotics: Sony Aibo

SIFT iS used for AIBO? Entertainment Robot
. . Official U.5. Resources and Online Destinations
» Recognizing
charging station
» Communicating
with visual cards|=  *
> Teaching object [ A¢~
recognition

w,

> soccer



Structure from Motion

e The SFM Problem
- Reconstruct scene geometry and camera motion

from two or more images

Track
2D Features

N\

Estimate
3D

N\

Optimize
(Bundle Adjust)

\

SFM Pipeline

Fit Surfaces




Structure from Motion

Poor mesh

Good mesh



Augmented reality










Automatic image stitching
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