
Features

Digital Visual Effectsg
Yung-Yu Chuang

with slides by Trevor Darrell Cordelia Schmid David Lowe Darya Frolova Denis Simakovwith slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, 
Robert Collins and Jiwon Kim

Outline

• Features
H i   d• Harris corner detector

• SIFT
• Extensions
• Applications• Applications

FeaturesFeatures

Features

• Also known as interesting points, salient points 
or keypoints  Points that you can easily point or keypoints. Points that you can easily point 
out their correspondences in multiple images 
using only local informationusing only local information.

?



Desired properties for features

• Distinctive: a single feature can be correctly 
matched with high probabilitymatched with high probability.

• Invariant: invariant to scale, rotation, affine, 
ill i ti  d i  f  b t t hi  illumination and noise for robust matching 
across a substantial range of affine distortion, 
i i t h  d   Th t i  it i  viewpoint change and so on. That is, it is 

repeatable.

Applications

• Object or scene recognition
S  f  i• Structure from motion

• Stereo
• Motion tracking
•• …

Components

• Feature detection locates where they are
F  d i i  d ib  h  h  • Feature description describes what they are

• Feature matching decides whether two are the 
same one

Harris corner detectorHarris corner detector



Moravec corner detector (1980)

• We should easily recognize the point by looking 
through a small windowthrough a small window

• Shifting a window in any direction should give a 
l  h i  i t itlarge change in intensity

Moravec corner detector
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Moravec corner detector

flat edge
corner

i l t d i tg isolated point

Moravec corner detector

Change of intensity for the shift [u,v]:
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Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)( ) ( ) ( ) ( ) ( )
Look for local maxima in min{E}

Problems of Moravec detector

• Noisy response due to a binary window function
O l    f hif    45 d  i  • Only a set of shifts at every 45 degree is 
considered

• Only minimum of E is taken into account

Harris corner detector (1988) solves these 
problemsproblems.

Harris corner detector

Noisy response due to a binary window function
U   G i  f iUse a Gaussian function



Harris corner detector

Only a set of shifts at every 45 degree is considered
C id  ll ll hif  b  T l ’  iConsider all small shifts by Taylor’s expansion

Harris corner detector

Only a set of shifts at every 45 degree is considered
C id  ll ll hif  b  T l ’  iConsider all small shifts by Taylor’s expansion
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Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear
i tiapproximation:
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Harris corner detector (matrix form)
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Harris corner detector

Only minimum of E is taken into account
A    b  i i i  h  A new corner measurement by investigating the 
shape of the error function

represents a quadratic function; Thus, we 
can analyze E’s shape by looking at the property 

MuuT

can analyze E s shape by looking at the property 
of M

Harris corner detector

High-level idea: what shape of the error function 
will we prefer for features?will we prefer for features?
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Quadratic forms

• Quadratic form (homogeneous polynomial of 
degree two) of n variables xdegree two) of n variables xi

• Examples

=

Symmetric matrices

• Quadratic forms can be represented by a real 
symmetric matrix A wheresymmetric matrix A where



Eigenvalues of symmetric matrices

Brad Osgood

Eigenvectors of symmetric matrices

Eigenvectors of symmetric matrices
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Harris corner detector

Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M  

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Visualize quadratic functions
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Harris corner detector

2 edge
Classification of 2

Corner
 and  are large

edge 
2 >> 1

image points 
using eigenvalues 
of M: 1 and 2 are large,

1 ~ 2;
E increases in all 

of M:

directions

1 and 2 are small;
E is almost constant edge flat

1

s a ost co sta t
in all directions 1 >> 2

flat

1

Harris corner detector

4)( 0110
2

11001100 aaaaaa 


Only for reference, 
you do not need 

Measure of corner response:
2

 you do not need 
them to compute R

Measure of corner response:
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Harris corner detector Another view



Another view Another view

Summary of Harris detector

1. Compute x and y derivatives of image

IGI x
x   IGI y

y  

2. Compute products of derivatives at every pixel
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3. Compute the sums of the products of 
derivatives at each pixel
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Summary of Harris detector

4. Define the matrix at each pixel 
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5 Compute the response of the detector at each 
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5. Compute the response of the detector at each 
pixel

 2tracedet MkMR 

6. Threshold on value of R; compute nonmax 
i
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suppression.



Harris corner detector (input) Corner response R

Threshold on R Local maximum of R



Harris corner detector Corner detection demo

http://www cim mcgill ca/ dparks/CornerDetector/mainApplet htmhttp://www.cim.mcgill.ca/~dparks/CornerDetector/mainApplet.htm

Harris detector: summary

• Average intensity change in direction [u,v] can be 
expressed as a bilinear form: expressed as a bilinear form: 
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• Describe a point in terms of eigenvalues of M:

  






v

vuvuE   ,),( M

p g
measure of corner response

 22121   kR
• A good (corner) point should have a large intensity 

change in all directions  i e  R should be large 

 2121  kR

change in all directions, i.e. R should be large 
positive

Now we know where features are

• But, how to match them?
Wh  i  h  d i  f   f ? Th  • What is the descriptor for a feature? The 
simplest solution is the intensities of its spatial 

i hb  Thi  i ht t b  b t t  neighbors. This might not be robust to 
brightness change or small shift/rotation. 

1 2 3

4 5 6

7 8 9
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7 8 9

( )1 2 3 4 5 6 7 8 9



Harris detector: some properties
• Partial invariance to affine intensity change

 Only derivatives are used => 
invariance to intensity shift I  I + b

 Intensity scale: I  a I

R RR
threshold

R

x (image coordinate) x (image coordinate)

Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains 
the samethe same

Corner response R is invariant to image rotation

Harris Detector is rotation invariant

Repeatability rate:
# correspondences# correspondences

# possible correspondences

Harris Detector: Some Properties

• But: not invariant to image scale!

All points will be 
l ifi d  d

Corner !
classified as edges



Harris detector: some properties

• Quality of Harris detector for different scale 
changeschanges

Repeatability rate:
# d# correspondences

# possible correspondences

Scale invariant detection

• Consider regions (e.g. circles) of different sizes 
around a pointaround a point

• Regions of corresponding sizes will look the 
 i  b th isame in both images

Scale invariant detection

• The problem: how do we choose corresponding 
i l  i d d tl i  h i ?circles independently in each image?

• Aperture problem

SIFT 
(Scale Invariant Feature Transform)



SIFT
• SIFT is an carefully designed procedure with 

empirically determined parameters for  the empirically determined parameters for  the 
invariant and distinctive features.

SIFT stages:

• Scale-space extrema detection
K i  l li i

detector
• Keypoint localization
• Orientation assignment

detector

d i t• Keypoint descriptor descriptor

( )( )
local descriptor 

A 500 500 i  i  b  2000 fA 500x500 image gives about 2000 features

1. Detection of scale-space extrema

• For scale invariance, search for stable features 
across all possible scales using a continuous across all possible scales using a continuous 
function of scale, scale space.
SIFT  D G filt  f  l   b  it i  • SIFT uses DoG filter for scale space because it is 
efficient and as stable as scale-normalized 
L l i  f G iLaplacian of Gaussian.

DoG filtering

Convolution with a variable-scale Gaussian

Difference-of-Gaussian (DoG) filter

Convolution with the DoG filter



Scale space
 doubles for 
the next octavethe next octave

K=2(1/s)

Dividing into octave is for efficiency only.

Detection of scale-space extrema

Keypoint localization

X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency

• It is impossible to sample the whole space, 
tradeoff efficiency with completenesstradeoff efficiency with completeness.

• Decide the best sampling frequency by 
i ti   32 l i  bj t t  experimenting on 32 real image subject to 

synthetic transformations. (rotation, scaling, 
ffi  t t h  b i ht  d t t h  affine stretch, brightness and contrast change, 

adding noise…)



Decide scale sampling frequency Decide scale sampling frequency

for detector, 
repeatabilityrepeatability

for descriptor, p ,
distinctiveness

s=3 is the best  for larger s  too many unstable featuress=3 is the best, for larger s, too many unstable features

Pre-smoothing

 =1 6  plus a double expansion =1.6, plus a double expansion

Scale invariance



2. Accurate keypoint localization

• Reject points with low contrast (flat) and 
poorly localized along an edge (edge)poorly localized along an edge (edge)

• Fit a 3D quadratic function for sub-pixel 
imaxima
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2. Accurate keypoint localization

• Reject points with low contrast (flat) and 
poorly localized along an edge (edge)poorly localized along an edge (edge)

• Fit a 3D quadratic function for sub-pixel 
imaxima
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2. Accurate keypoint localization

• Taylor series of several variables

• Two variables
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Accurate keypoint localization

• Taylor expansion in a matrix form, x is a vector, 
f maps x to a scalar f maps x to a scalar 

Hessian matrix
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2D illustration 2D example
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Derivation of matrix form
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Derivation of matrix form
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Derivation of matrix form
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Accurate keypoint localization

• x is a 3-vector
• Change sample point if offset is larger than 0 5• Change sample point if offset is larger than 0.5
• Throw out low contrast (<0.03)
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Eliminating edge responses

Hessian matrix at keypoint locationyp

L tLet

r=10Keep the points with 

Maxima in D Remove low contrast and edges



Keypoint detector

233x89 832 extrema

729 after con-
t t filt i

536 after cur-
trast filtering vature filtering

3. Orientation assignment

• By assigning a consistent orientation, the 
keypoint descriptor can be orientation invariantkeypoint descriptor can be orientation invariant.

• For a keypoint, L is the Gaussian-smoothed 
i  ith th  l t limage with the closest scale,

(Lx Ly)(Lx, Ly)

m

θ

orientation histogram (36 bins)

Orientation assignment Orientation assignment



Orientation assignment Orientation assignment

σ=1.5*scale of 
the keypointy

Orientation assignment Orientation assignment



Orientation assignment
accurate peak position 
is determined by fittingy g

Orientation assignment

36-bin orientation histogram over 360°  36 bin orientation histogram over 360 , 
weighted by m and 1.5*scale falloff
Peak is the orientationPeak is the orientation
Local peak within 80% creates multiple 

orientationsorientations
About 15% has multiple orientations 

and they contribute a lot to stability

0 2

y y

0 2

SIFT descriptor 4. Local image descriptor
• Thresholded image gradients are sampled over 16x16 

array of locations in scale space
• Create array of orientation histograms (w.r.t. key 

orientation)
8 orientations x 4x4 histogram array  128 dimensions• 8 orientations x 4x4 histogram array = 128 dimensions

• Normalized, clip values larger than 0.2, renormalize

σ=0.5*width



Why 4x4x8? Sensitivity to affine change

Feature matching

• for a feature x, he found the closest feature x1
and the second closest feature x  If the and the second closest feature x2. If the 
distance ratio of d(x, x1) and d(x, x1) is smaller 
than 0 8  then it is accepted as a match  than 0.8, then it is accepted as a match. 

SIFT flow



Maxima in D Remove low contrast

Remove edges SIFT descriptor



Estimated rotation

• Computed affine transformation from rotated 
image to original image:image to original image:
0.7060   -0.7052  128.4230
0 7057    0 7100 128 94910.7057    0.7100 -128.9491

0            0      1.0000

• Actual transformation from rotated image to 
i i l ioriginal image:

0.7071   -0.7071  128.6934
0.7071    0.7071 -128.6934

0            0      1.0000

SIFT extensionsSIFT extensions

PCA



PCA-SIFT

• Only change step 4
P   i  f  l l di  • Pre-compute an eigen-space for local gradient 
patches of size 41x41

• 2x39x39=3042 elements
• Only keep 20 componentsy p p
• A more compact descriptor

GLOH (Gradient location-orientation histogram)

SIFTSIFT

17 location bins17 location bins
16 orientation bins
Analyze the 17x16=272-d Analyze the 17x16 272 d 
eigen-space, keep 128 components

SIFT is still considered the best.

Multi-Scale Oriented Patches
• Simpler than SIFT. Designed for image matching. 

[Brown  Szeliski  Winder  CVPR’2005][Brown, Szeliski, Winder, CVPR 2005]
• Feature detector

– Multi-scale Harris corners
– Orientation from blurred gradient
– Geometrically invariant to rotation

• Feature descriptor
– Bias/gain normalized sampling of local patch (8x8)
– Photometrically invariant to affine changes in y g

intensity

Multi-Scale Harris corner detector

2s

• Image stitching is mostly concerned with g g y
matching images that have the same scale, so 
sub-octave pyramid might not be necessary.py g y



Multi-Scale Harris corner detector

smoother version of gradients

Corner detection function:

Pick local maxima of 3x3 and larger than 10

Keypoint detection function

Experiments show roughly 
h   fthe same performance.

Non-maximal suppression

• Restrict the maximal number of interest points, 
but also want them spatially well distributedbut also want them spatially well distributed

• Only retain maximums in a neighborhood of 
di  radius r.

• Sort them by strength, decreasing r from 
infinity until the number of keypoints (500) is 
satisfied.

Non-maximal suppression



Sub-pixel refinement Orientation assignment

• Orientation = blurred gradient

Descriptor Vector
• Rotation Invariant Frame

S l  iti  (   )  i t ti  ()– Scale-space position (x, y, s) + orientation ()

MOPS descriptor vector
• 8x8 oriented patch sampled at 5 x scale. See TR 

for details  for details. 
• Sampled from                                     with 

i 5 spacing=5 

8 pixels



MOPS descriptor vector
• 8x8 oriented patch sampled at 5 x scale. See TR 

for details  for details. 
• Bias/gain normalisation:  I’ = (I – )/
• Wavelet transform

8 pixels

Detections at multiple scales

Summary

• Multi-scale Harris corner detector
S b i l fi• Sub-pixel refinement

• Orientation assignment by gradients
• Blurred intensity patch as descriptor

Feature matching
• Exhaustive search

f  h f t  i   i  l k t ll th  th  – for each feature in one image, look at all the other 
features in the other image(s)

Hashing• Hashing
– compute a short descriptor from each feature vector, 

or hash longer descriptors (randomly)or hash longer descriptors (randomly)

• Nearest neighbor techniques
– k-trees and their variants (Best Bin First)



Wavelet-based hashing
• Compute a short (3-vector) descriptor from an 

8x8 patch using a Haar “wavelet”8x8 patch using a Haar wavelet

• Quantize each value into 10 (overlapping) bins • Quantize each value into 10 (overlapping) bins 
(103 total entries)
[B  S li ki  Wi d  CVPR’2005]• [Brown, Szeliski, Winder, CVPR’2005]

Nearest neighbor techniques
• k-D tree

andand

• Best Bin
First
(BBF)

Indexing Without Invariants in 3D Object Recognition, Beis and Lowe, PAMI’99

ApplicationsApplications

Recognition

SIFT Features



3D object recognition 3D object recognition

Office of the past

Video of desk Images from PDF Internal representation

Track & 
recognizerecognize

Desk Desk

T T+1Scene Graph

Image retrieval

…
> 5000 5000
images

change in viewing angle



Image retrieval

22 correct matches

Image retrieval

…
> 5000 5000
images

change in viewing anglechange in viewing angle
+ scale change

Robot location Robotics: Sony Aibo

SIFT is used for
 Recognizing  Recognizing 

charging station
 Communicating g

with visual cards
 Teaching object 

recognition

 soccer



Structure from Motion

• The SFM Problem
Reconstruct scene geometry and camera motion – Reconstruct scene geometry and camera motion 
from two or more images

Track
2D Features EstimateEstimate

3D Optimize
(Bundle Adjust) Fit Surfaces

SFM Pipelinep

Structure from Motion

Poor mesh Good mesh

Augmented reality Automatic image stitching



Automatic image stitching Automatic image stitching

Automatic image stitching Automatic image stitching


