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Features LIEIVEX

« Also known as interesting points, salient points
or keypoints. Points that you can easily point
out their correspondences in multiple images
using only local information.
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Desired properties for features

= Distinctive: a single feature can be correctly
matched with high probability.

= |nvariant: invariant to scale, rotation, affine,
illumination and noise for robust matching
across a substantial range of affine distortion,
viewpoint change and so on. That is, it is
repeatable.

Applications

Object or scene recognition
Structure from motion
Stereo

Motion tracking

Components e

e Feature detection locates where they are
e Feature description describes what they are

e Feature matching decides whether two are the
same one

Harris corner detector




Moravec corner detector (1980) Moravec corner detector
» We should easily recognize the point by looking
through a small window
» Shifting a window in any direction should give a
large change in intensity
flat
Digil[24 Digil[24

Moravec corner detector

flat

Moravec corner detector

flat edge




Moravec corner detector

corner
isolated point

flat edge

Digi24
Moravec corner detector .

Change of intensity for the shift [u,Vv]:

Eu,v) =Y wix V[I(x+u,y+v) - 1(x, y)f

|

function intensity

Window function W( x,y) =

. . 1 in window, O outside

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}

Problems of Moravec detector

» Noisy response due to a binary window function

e Only a set of shifts at every 45 degree is
considered

e Only minimum of E is taken into account

= Harris corner detector (1988) solves these
problems.

. Digil24
Harris corner detector .

Noisy response due to a binary window function
» Use a Gaussian function

Ww(x, ) = exp(— %}

Window function W{ x,y) =

Gaussian




Harris corner detector

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’s expansion

Harris corner detector

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’s expansion

Eu,v) =D w(x, )1 (x+u,y+v) = I1(x, Y[
= > w(x, y)[lxu + va+O(u2,v2)]2

E(u,v) = Au? + 2Cuv + Bv?
A= wix V) (xY)
X,y

B= ZW(X! y)l;(x, y)

C =2 wix YL, (x Y1, (% Y)

Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear
approximation:

E(u,v)=[u v]M{ }

u
\Y

, Where M is a 2x2 matrix computed from image derivatives:

Xy
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Harris corner detector (matrix form)

E(u) = 1(x, +u)—1(x,) |2
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Harris corner detector

Only minimum of E is taken into account

»A new corner measurement by investigating the
shape of the error function

u' Mu represents a quadratic function; Thus, we
can analyze E’s shape by looking at the property
of M

. il
Harris corner detector

High-level idea: what shape of the error function
will we prefer for features?

corner

Quadratic forms

e Quadratic form (homogeneous polynomial of
degree two) of n variables x;

T T
E E Cij iy

i=1 j=1

= Examples =
4y + 53 + 315 + 2x 119 + 41y 13 + 6T073
4 1 2 Wis}
= ( r1 To T3 ) 1 5 3 i)
2 3 3 X3

Symmetric matrices

e Quadratic forms can be represented by a real

symmetric matrix A where cij ifi=j,
_ | e -
(.’._;J' — E(i,‘j li < s
non n %C‘ji ifi> 7.
Z Z Cijilj = Z Z QT
i=1 j=1 i=1j=1
i<j
a1 e Qg T
=(x; ... x,)
Ap1  --- Onpn L
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Eigenvalues of symmetric matrices

suppose A € R"*" is symmetric, i.e., A = A"
fact: the eigenvalues of A are real

suppose Av = \v, v #0, v e C"
Tl Av =T (Av) = A\olv = )\Z |v;|?

7l Av = (A"L‘)T"L‘ = )\v v )\Z v |

we have A =\, i.e., A€ R

(hence, can assume v € R")

- - - IV
Eigenvectors of symmetric matrices

suppose A € R"*™ is symmetric, i.c., A = AT
fact: there is a set of orthonormal eigenvectors of A

A =QAQT

Brad Osgood

Eigenvectors of symmetric matrices

suppose A € R"*" is symmetric, s.e., A = AT
fact: there is a set of orthonormal eigenvectors of A

A=QAQT
X AX
_ A ez zEl
YQAQ' Vi [l A
:( TX) A( TX) l{/’/ = \L/’i/
_ TAy \//
1\ 1 I XTX :1
:(Azy) (AZY)
T

Harris corner detector

Intensity change in shifting window: eigenvalue analysis
u -
E(u,v) = [U , V] M |: :| A1, A, —eigenvalues of M
\

direction of the

Ellipse E(u,v) = const
P (u.v) fastest change

direction of the
slowest change




Visualize quadratic functions
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Visualize quadratic functions
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Visualize quadratic functions
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Harris corner detector

DigiY2%

Classification of
image points
using eigenvalues
of M:

Aq and A, are small;

E is almost constant
in all directions

Ay

edge
A, >>\ /@ Corner

Aq and A, are large,
7&1 -~ }\42,
E increases in all
directions

- Digill24
Harris corner detector

n o2 Only for reference,
1= oo + 8y —\/(aoo a,;)" +4a,8, you do not need

2 them to compute R
Measure of corner response:

R = detM —k(traceM )’

detM = A4,
traceM =4 + 4,

(k - empirical constant, k = 0.04-0.06)

Harris corner detector

CIFTVEX

iso-response contours

CotamS Lo
amplitude of response function

Another view RIEIVFX

Linear Edge Flat Corner

X derivative Input image patch

Y derivative

Ry A A
Y ?}‘1_ iy

T ATRDY:




Another view

Another view

Summary of Harris detector

o Flat : !
The distribution of the x and y The distribution of x and y : . ]
derivatives is very different for derivatives can be characterized g
all three types of patches N by the shape and size of the
/ principal component ellipse i Flat
' MIR=025
B I N L [T I L | | 4894 43 A3 @1 0 61 83 03 04 04 |
. Corner [l & Linear Edge o Corner [| i Linear Edge l]
/ .y e I nj J . ..‘; -_. nu.v r’\
o |
. # it OO Lo i ’r loz
1 Rl e a3 ) 3
. ‘r, (s "hes \‘-5: ,‘ L, - & t }: = .
N x|l v x | R =28.07 “ |R=03328
- 3 1 o5 a9 B3 81 B 61 o3 03 84 8% .lfu'i B B3 B3 @1 b 81 o3 B3 wi 88
Digi24 Digill2

Summary of Harris detector

1. Compute x and y derivatives of image
| =G} =l Iy:Gg*I
2. Compute products of derivatives at every pixel

I, =1 -1 l,=1 -1 I, =11

x2 T Tx o x y2 Ty y xy — 'xly

3. Compute the sums of the products of
derivatives at each pixel

_ — * _
S.=G,.xl, S.=G.xl, S =G_xI,

4. Define the matrix at each pixel
SX2 (Xl y) Sxy (X1 y)

M(X,y)=
=15 xy) 5,009
5. Compute the response of the detector at each

ixel
P R = det M —k(traceM )’

6. Threshold on value of R; compute nonmax
suppression.




Corner response R

AV LN TY R

Local maximum of R

Harris corner detector (input)

Threshold on R
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Harris corner detector

Corner detection demo RIEIVFX

http://www.cim.mcgill.ca/~dparks/CornerDetector/mainApplet.htm

Harris detector: summary e

« Average intensity change in direction [u,v] can be
expressed as a bilinear form:

u
E(u,v)=[u,v]M
Vv
« Describe a point in terms of eigenvalues of M:
measure of corner response

R=44,—k(4+4,)

= A good (corner) point should have a large intensity
change in all directions, i.e. R should be large
positive

|:Eﬂ- WVFX
Now we know where features are

« But, how to match them?

e What is the descriptor for a feature? The
simplest solution is the intensities of its spatial
neighbors. This might not be robust to
brightness change or small shift/rotation.

(A B - [ - )




Harris detector: some properties

» Partial invariance to affine intensity change

v Only derivatives are used =>
invariance to intensity shift | > I +b

v  Intensity scale: | - all

SR

threshold / w / \/ v

Harris Detector: Some Properties

e Rotation invariance

™ ﬂﬂ:>/\
& B

Ellipse rotates but its shape (i.e. eigenvalues) remains
the same

Corner response R is invariant to image rotation

X (image coordinate) X (image coordinate)

- - - - - -o VFX - - JIVFX
Harris Detector is rotation invariant 22 Harris Detector: Some Properties 2
Repeatability rate: . . .

ep:a abitiy rare e But: not invariant to image scale!
correspondences
# possible correspondences ] .
12 Harris -=— |
’ ImpHartis -+--
1
E R T Hf_;}"
FE I =) &
% 086
= 04 |
02 F
0 All points will be Corner !

0 20 40 80 80 100 120 140 160 180
rotation angle in degrees

classified as edges
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Harris detector: some properties Scale invariant detection
e Quality of Harris detector for different scale » Consider regions (e.g. circles) of different sizes
changes around a point
Repeatability rate: ‘ T e = Regions of corresponding sizes will look the
# correspondences . ImpHarris -+

same in both images

# possible correspondences o8 | %

06 |

repeatability rate

04

=

02

s
e S
——
74\\\0_ T
—- T
. s ——

0 . .

1 15 2 25 3 35 4 45
scale factor

DigilY[24

Scale invariant detection

» The problem: how do we choose corresponding
circles independently in each image?

e Aperture problem

SIFT
(Scale Invariant Feature Transform)




SIFT

e SIFT is an carefully designed procedure with
empirically determined parameters for the
invariant and distinctive features.

SIFT stages:
e Scale-space extrema detection
: . detector
e Keypoint localization
= Orientation assignment _
» Keypoint descriptor descriptor

local descriptor

A 500x500 image gives about 2000 features

1. Detection of scale-space extrema

DoG filtering

» For scale invariance, search for stable features
across all possible scales using a continuous
function of scale, scale space.

e SIFT uses DoG filter for scale space because it is
efficient and as stable as scale-normalized
Laplacian of Gaussian.

Convolution with a variable-scale Gaussian

L(‘I Y, J) — G(l Y. U) * I(l y)
; 2.2y, 2
G(z,y.0) =1/(2m0?) exp @ Hy)/o
Difference-of-Gaussian (DoG) filter

(;(‘1 Y, ko—) - G(I Y. J)

Convolution with the DoG filter
D(x,y.0) = (G(zr,y.ko) —G(r,y,0))*1(x.y)




DigilV 24
Scale space

o doubles for

the next octave = M
.ﬁ

Scale
(next

e ,ﬁg:’ﬁ

4
K=2/s)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Dividing into octave is for efficiency only.

doilododss

>

Keypoint localization DigiY[24

Decide scale sampling frequency =~ 2

X is selected if it is larger or smaller than all 26 neighbors

e It is impossible to sample the whole space,
tradeoff efficiency with completeness.

= Decide the best sampling frequency by
experimenting on 32 real image subject to
synthetic transformations. (rotation, scaling,
affine stretch, brightness and contrast change,
adding noise...)




Decide scale sampling frequency Decide scale sampling frequency
3500 100 for detector,
|| | repeatability
% 3000 — 80 : s —— S )
E o S \ for descriptor,
g 2500 — > 60 distinctiveness
£ : 2
o
S 2000 g 40
[H] []
= e
S 1500 s Matching location and scale ——
2 Ve 20 earest descriptor in database = "]
g 1000 Total number of keypoints —+— |
z Nearest descriptor in database ——— 0
500 £ 1 2 3 4 5 6 7 8
1 2 3 4 5 8 7 8 Number of scales sampled per octave
Number of scales sampled per octave .
s=3 is the best, for larger s, too many unstable features
Pre-smoothing Scale invariance
1, . : . . '
100 T T T T —e— Harris-Laplacian
R — —#— SIFT (Lowe)
T & ® | —— Harris
L ®
:§ - 1 S— J’S
o w
S : g
o 40 b | E— ] o
2 Matching location and scale + >
Nearest descriptor in database
20 |
0 L i
1 1.2 1.4 1.6 1.8 2 é i
Prior smoaothing for each octave (sigma)
01‘ 15 2 25 3 35 4 45
— : scale
o =1.6, plus a double expansion




2. Accurate keypoint localization

e Reject points with low contrast (flat) and
poorly localized along an edge (edge)

e Fit a 3D quadratic function for sub-pixel

2. Accurate keypoint localization

e Reject points with low contrast (flat) and
poorly localized along an edge (edge)

e Fit a 3D quadratic function for sub-pixel

maxima maxima 61 f''(0)
3 f(x)zf(0)+f'(0)x+72 X2
6 VARERS 6 /1’\\ B
;/T\i\\\\\ 5 /T N f(x)z6+2x+—6x2:6+2x—3x2
AT VAR R N 2
/7 P /o AN
/A N S N , . 1
2 N B SN P=2-6x=0— R=3
/ A / R B 1. (1Y 1
y IR 1y I f()“():6+2-—3-[) —6-
/ A S / I S 3 \3) 3
7 \ I \
/
/-1 0 +1 \ /-1 ol +1 \
3

2. Accurate keypoint localization

e Taylor series of several variables

T(rl""'rd,):Z--.z g gnd f(a_l!...‘ad)

T I
o z0 071 93¢ ny!--nyg!

(z1—ay)™ -~ (zg—ag)™

e Two variables

2 2 2
f(x,y)zf(0,0)+(gx+@y}1(8 f X2+26 f y+a f 2J
X

oy 2 OXOx oxoy X oyoy y
’f o
G- GlME SL A5 &5
y 0 ox oy|y| 2 o°f ﬂ y
oxoy oyoy

Accurate keypoint localization

e Taylor expansion in a matrix form, x is a vector,
f maps x to a scalar
| Coft 1 L0 f
f(x)=f+ Ix T 5% 52X Hessian matrix
' - (often symmetric)

_ of o’f  0*f o’ f
gradient | — > ..
OX, OX; OX,0X, OX%,0X,,
o ’f &t &f
OX, OX,0%,  OX5 OX,0X,,
of ’f &t &
OX, OX.OX,  OX_ OX, ox2




2D illustration 2D example
| oft 1 L0 . oft 1 L O*f
fo1a | foux | A, of - - -
° o % = (fio— f—].u)ﬁ 17 1 1
foro| foo | fro % = (fou = fo1)/2 9|7 |7
Pf R _
foi-1| fo-1| f1,1 Ox? = S &t 9|7 7
(.)_'.f, = foa —2fo0 + Jo—1
Ny
% = (fo.aa—far— i+ fia)/d
Derivation of matrix form Derivation of matrix form PIFTVEX
| oft 1 L0 f | oft 1 L0
f(x)_f_l_(f}_x X+§X FX 'f(x)_’f+i)—x X+§X EX
oh
h(x)=g'x P h(x)=g'x oh
X X h a_Xl g,
= (g, g,) Zo| =g
ox | ¢oh
Xn — gn
n 8Xn




of of 1(0°f 82f of o0°f
T Ao e T KT Ao TR
Ox o0x 2| 0x 15). Ox OX

O*f T of
Xm —— ——= p—
ox?2  0Ox

Derivation of matrix form Derivation of matrix form
())‘ 1 J()f ())‘ 1 Jf)f
Jo) =T+ Ox +2 ()x Jx) =T+ Ox +2 ()x
Ay A, | %
h(X) X h(X)—XTAX :()(1 e X . " . :
a, - a,\X
_Zzau iX; nl nn n
i=1l j=1
Ll Zailxi+za1jxj
oh o | % = .
— = —=| : |= = ATx+ Ax
19). Ox oh
g Zam |+Zanj i Z(AT+A)X
Derivation of matrix form Accurate keypoint localization
| oft 1,0 . Oft 1 0
1) = 1+ L sr b Ly 160 = £+ 2L s L T
ox 2 ()x ox 2 ()x

* x IS a 3-vector
e Change sample point if offset is larger than 0.5
e Throw out low contrast (<0.03)




Accurate keypoint localization

e Throw out low contrast |D(x)|<0.03

2
D(x) = D+a—Dx 1AT6|23A
ox 27 ox
.
D" . 1 #*D'aD) #*D( &*°D D
—D+— X+— Y= A 2| T A2 A~
ox 2 ox ox | oOx ox ox
D', 107D &’D D" oD
x| 20x ox*  ox? oxt oOx
. D’ 1aD aZD D
6x Zax 6x 6X
aD". 1oD"
=D+ ——( X)
6x 2 Ox
D1
2 ox

|

Eliminating edge responses

H= [ Daz Doy } Hessian matrix at keypoint location
Dﬂ?y Dyy

TI'(H) = DII + Dyy =a+ 3{3:
Det(H) = DuwDyy — (Dag)? = alf.

Leta=rg T(H)? _(a+9)? _ (8+3)°> _ (r+1)?
Det(H) a3 3 7

r=10

Tr(H? _ (r+1)?

Keep the points with
Det(H) r

Maxima in D

g o
+++ ++ + + i
Iy + &, e




Keypoint detector

3. Orientation assignment

= By assigning a consistent orientation, the
keypoint descriptor can be orientation invariant.

« For a keypoint, L is the Gaussian-smoothed
image with the closest scale,

m(r,y) = \/(L(ﬂf +1y) = Lz —1,9)* + (L{z,y +1) = Lz, y = 1))?
O(x,y) = tan " ((L(r,y + 1) = L(z,y —1))/(L(z + 1,y) = L(z = 1,y)))
(Lx, Ly)

orientation histogram (36 bins)

Orientation assignment

*Keypoint location = extrema location
*Keypoint scale is scale of the DOG image




Orientation assignment

gradient
magnitude

*_ J

gaussian image
(at closest scale,
from pyramid)

Orientation assignment

gradient weighted by 2D weighted gradient
magnitude gaussian kernel magnitude

6=1.5*scale of

eradient the keypoint
orientation
- - - IV - - - IV
Orientation assignment “Tved Orientation assignment “Tved

weighted gradient
magnitude

weighted orientation histogram.

Each bucket contains sum of weighted gradient
magnitudes corresponding to angles that fall within
that bucket.

36 buckets

10 degree range of angles in each bucket, i.e.
0 <=ang=<10 : bucket 1
10<=ang<20 : bucket 2
20<=ang<30 : bucket 3 ...

weighted gradient
magnitude

weighted orientation histogram.

4 ;:mak
80% of peak value

gradlient
orientation - : ;

20-30 degrees
Orientation of keypoint
is approximately 25 degrees




Orientation assignment = Orientation assignment =
There may be multiple orientations. accurate peak pOSiti on
is determined by fitting
R ey
. second peak
o % s 80% of peak value 36-bin orientation histogram over 360°,
. I.’ weighted by m and 1.5*scale falloff
- Peak is the orientation
o Local peak within 80% creates multiple
w ! N orientations
AR About 15% has multiple orientations

lll.t]liﬁ cfise, generate duplicate keypoints, one with and they contribute a lot to Stablllty
orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of T
possible multiple peals to two. 0

SIFT descriptor — 4. Local image descriptor —

» Thresholded image gradients are sampled over 16x16
array of locations in scale space

» Create array of orientation histograms (w.r.t. key
orientation)

= 8 orientations x 4x4 histogram array = 128 dimensions

= Normalized, clip values larger than 0.2, renormalize

'/._'fx :-\-\
VLt A S
ﬁ - > 71 .4-).}
\‘\tn - ou o=
T = S o )
- [
L e e |k 0=0.5*width
eI PR
. .

A e
Image gradients Keypoint descriptor

u\f

/4
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Why 4x4x8? Sensitivity to affine change
60 100

£ 50 S

2 N & T

= - o *.

G 40 .

8 ) B el

ke o 6

2 30 7 g

g , With 16 orientations —+ T 40

5 20 ,_-;f - W!th 8 Or!entat!ons ) 7 g Keypoint location ——

2 ’ With 4 orientations - Location & orientation =

=] 20 ¢ Nearest descriptor -

O 10

o o 1 1 1 L
0 0 10 20 30 40 50
1 2 3 4 5 Viewpoint angle (degrees)
Width n of descriptor (angle 50 deg, noise 4%)
: Digil[24 Digil[24

Feature matching SIFT flo

= for a feature x, he found the closest feature x;

and the second closest feature x,. If the

distance ratio of d(x, x;) and d(x, X,) is smaller

than 0.8, then it is accepted as a match.
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Maxima in D
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Remove edges

SIFT descriptor




Estimated rotation

e Computed affine transformation from rotated
image to original image:
0.7060 -0.7052 128.4230
0.7057 0.7100 -128.9491
0 0 1.0000

e Actual transformation from rotated image to
original image:
0.7071 -0.7071 128.6934
0.7071 0.7071 -128.6934
0 0 1.0000

SIFT extensions

PCA

Average face;

g

Top ten eigenfaces (left = highest eigenvalue, right = lowest eigenvalus):

Lt P =




PCA-SIFT

Only change step 4

Pre-compute an eigen-space for local gradient
patches of size 41x41

2x39x39=3042 elements
Only keep 20 components
A more compact descriptor

/,fi|::-~\ 17 location bins
/ f><f < 16 orientation bins

[ Analyze the 17x16=272-d

;X,f eigen-space, keep 128 components

SIFT is still considered the best.

Multi-Scale Oriented Patches

« Simpler than SIFT. Designed for image matching.
[Brown, Szeliski, Winder, CVPR’2005]

= Feature detector
- Multi-scale Harris corners
- Orientation from blurred gradient
- Geometrically invariant to rotation

e Feature descriptor
- Bias/gain normalized sampling of local patch (8x8)

- Photometrically invariant to affine changes in
intensity

Multi-Scale Harris corner detector 2™
Po(x,y) = I(x,y)
,47 Level 0: 1x1
Pl(x,y) = Plx.y)* go,(x,y) el 120
“5“"”’ "~
Poi(r.y) = P/(sx.sy) ’5;1’1"! Level 24
S=2 o0,=10
/)'/ Level n: 2" x2°

/

e Image stitching is mostly concerned with
matching images that have the same scale, so
sub-octave pyramid might not be necessary.




Multi-Scale Harris corner detector LIEIVEX

H, (2, y) = Vo, P, y) Vo, Pi(2,y)" # go, (2, y)

Vof(x,y) £ Vi(x,y)*gs(2.y)

smoother version of gradients

g, = 1.5 Oq = 1.0
Corner detection function:

o det Hy(x,y) Mo
fHﬂf(mf y) - ty H((:Us y) o /\1 + /\2

Pick local maxima of 3x3 and larger than 10

- . . |]!0”UFX
Keypoint detection function
Hartis  fir = AAs— 0040 + A)2 = det H — 0.04(tr H)?
Harmonie mean  fyy = MAs/ (A + Ag) = det H/tr H

Shi-Tomasi  fgp = min( Ay, As)

... Experiments show roughly
~ the same performance.

. - |:"0”UFX
Non-maximal suppression

e Restrict the maximal number of interest points,
but also want them spatially well distributed

e Only retain maximums in a neighborhood of
radius r.

e Sort them by strength, decreasing r from
infinity until the number of keypoints (500) is
satisfied.

CIFTVEX

(a) Strongest 250 (b) Strongest 500

(¢) ANMS 250, 7 = 24 (d) ANMS 500, r = 16




Sub-pixel refinement

oft 1 L0

—1
°fof
ox? 0Ox
% = (fro—Jf-10)/2
9 f
farp| Jox | fia % = (foa— Jo-1)/2
P f
f—l,_O foo fl.O (‘)\sz - fl.U - ng.U + .f—l.i]
.)2 .
{.) J; = Joa = 2fo0+ fo-1
Ay
foaal fo-1 | f1-1 a2 f
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Orientation assignment TRV

e Orientation = blurred gradient
11,;(([), y) — VUOB((E, U)

o, =4.5

[cos @, sinf] = u/|u]

Descriptor Vector

MOPS descriptor vector

e Rotation Invariant Frame
- Scale-space position (X, y, s) + orientation (0)

» 8x8 oriented patch sampled at 5 x scale. See TR
for details.

= Sampled from P(x,y) * goxe, (2, y) With
spacing=5




MOPS descriptor vector LIVE

» 8x8 oriented patch sampled at 5 x scale. See TR
for details.

e Bias/gain normalisation: I'= (I — n)/c
- Wavelet transform

Detections at multiple scales 2™

Figure 1. Multi-scale Oriented Patches (MOPS) extracted ar five pyramid levels from one of the Matier images. The
boxes show the feature erientation and the region from which the descriptor vector is sampled.

Summary e

Multi-scale Harris corner detector
Sub-pixel refinement

Orientation assignment by gradients
Blurred intensity patch as descriptor

Feature matching Ve

e Exhaustive search

- for each feature in one image, look at all the other
features in the other image(s)

= Hashing

- compute a short descriptor from each feature vector,
or hash longer descriptors (randomly)

« Nearest neighbor techniques
- k-trees and their variants (Best Bin First)




Wavelet-based hashing e Nearest neighbor techniques ~ Z0'™
e Compute a short (3-vector) descriptor from an e k-D tree
8x8 patch using a Haar “wavelet” and
e Best Bin
First
(BBF)

e Quantize each value into 10 (overlapping) bins
(103 total entries)

e [Brown, Szeliski, Winder, CVPR'2005]

Recognition

Applications

SIFT Features




3D object recognition

DigiY2%

3D object recognition

DigiY2%

Office of the past

CIFTVEX

Video of desk Images from PDF
o ]
Track &
recognize

~_

Scene Graph

Internal representation

"
<L

T

N

o
3

T+1

Image retrieval

CIFTVEX

change in viewing angle




Image retrieval LIVE

22 correct matches

Image retrieval

DigiY2%

change in viewing angle

+ scale change

=4 > 5000
¥ images

Robot location RIEIVFX

Robotics: Sony Aibo

CIFTVEX

S|FT iS used fOf AIBO® Entertainment Robot
R Official U.S. Resources and Online Destinations
» Recognizing

charging station e

» Communicating
with visual cards|=

» Teaching object
recognition

> soccer

srder Now!

Generation

ER -7 with:
Wiralass LAN
AIBO MIND software
Energy Station
AIBOnE

Pink Ball

AIBD Cards (15)
WLAH Manager €0
Battery & AC Adapter
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Structure from Motion - Structure from Motion

e The SFM Problem

- Reconstruct scene geometry and camera motion
from two or more images

Track
2D Features | \_ | Estimate
3D .| Optimize N
(Bundle Adjust) Fit Surfaces
SFM Pipeline

Poor mesh . Good mesh

[=]

igi

E

Augmented reality = Automatic image stitching




Automatic image stitching

DigilI2Y DigilI2Y

Automatic image stitching Automatic image stitching




