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Bilateral filtering
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[Ben Weiss, Siggraph 2006]

. . Digil24
Image Denoising

noisy image naive denoising better denoising
Gaussian blur edge-preserving filter

Smoothing an image without blurring its edges.

A Wide Range of Options =

» Diffusion, Bayesian, Wavelets...

- All have their pros and cons.

e Bilateral filter
- not always the best result [Buades 05] but often good

- easy to understand, adapt and set up




Basic denoising LIVE

Noisy input Median 5x5

Basic denoising
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Gaussian Blur

per-pixel multiplication
. * n
average




Equation of Gaussian Blur

Same idea: weighted average of pixels.

GH[I], =

geS

normalized
Gaussian function

Gaussian Profile

pixel
position

unrelated  uncertain related uncertain unrelated
pixels pixels pixels pixels pixels
Digi
Spatial Parameter How to set o

GBII], =ZG,(|| p-ql)l,

qesS
size of the window
_i_p i
small o large o

limited smoothing strong smoothing

e Depends on the application.

= Common strategy: proportional to image size
- e.g. 2% of the image diagonal
- property: independent of image resolution




Properties of Gaussian Blur

» Weights independent of spatial location
- linear convolution
- well-known operation

- efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

* Does smooth images

* But smoothes too much:
edges are blurred.
- Only spatial distance matters
- No edge term

GB[l]p:Z-lq

ges space

Blur Comes from Averaging across Ed

output

Same Gaussian kernel everywhere.

Bilateral Filter N&uricvﬁ,rsan%%%%%?s E(J@|

output

The kernel shape depends on the image content.




Same idea: weighted average of pixels.

new

not new
BF [1], = 8 > G, (I~ q||)*
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normalization space weight range weight

factor

lllustration a 1D Image

e 1D image = line of pixels

e Better visualized as a plot
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Bilateral filter
[Aurich 95, Smith 9OTomasi 98]
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Bilateral Filter on a Height Field
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Space and Range Parameters

BF [1], = Wi > 6, (lp-alc, (1,-1, 1)1,

SRR

Influence of Pixels

Only pixels close in space and in range are considered.

= space g, : spatial extent of the kernel, size of range
the considered neighborhood.
e range o; : “minimum” amplitude of an edge
Exploring the Parameter Space Varying the Range Parameter
Op = G =™
0,=0.25 (Gaussian blur) c,=0.1 0,=0.25 (Gaussian blur)

o,= 6

o,=18

o,=18







Varying the Space Parameter

Oy =®
0,=0.1 0,=0.25 (Gaussian blur)
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How to Set the Parameters

Depends on the application. For instance:

e space parameter: proportional to image size
- e.g., 2% of image diagonal

e range parameter: proportional to edge amplitude
- e.g., mean or median of image gradients

< independent of resolution and exposure

Iterating the Bilateral Filter

I(n+1) — BF[I (n)]

e Generate more piecewise-flat images

e Often not needed in computational photo, but
could be useful for applications such as NPR.




Advantages of Bilateral Filter

e Easy to understand
- Weighted mean of nearby pixels

« Easy to adapt
- Distance between pixel values

* Easy to set up
- Non-iterative




Hard to Compute

= Nonlinear BF [1], = ZGUS(IIp—qII)-'q
qesS

» Complex, spatially varying kernels
- Cannot be precomputed, no FFT...

i B K

» Brute-force implementation is slow > 10min

But Bilateral Filter is Nonlinear

« Slow but some accelerations exist:

- [Elad 02]: Gauss-Seidel iterations

= Only for many iterations

- [Durand 02, Weiss 06]: fast approximation
< No formal understanding of accuracy versus speed

* [Weiss 06]: Only box function as spatial kernel

A Fast Approximation
of the Bilateral Filter
using a Signal Processing
Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

CSAIL

DigiYl2d
Definition of Bilateral Filter

[Smith 97, Tomasi 98]

Smoothes an image
and preserves edges

Weighted average
of neighbors

Weights
- Gaussian on space distance
- Gaussian on range distance
- sumtol

1
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Contributions

= Link with linear filtering

- Fast and accurate approximation

Intuition on 1D Signal
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Intuition on 1D Signall
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Intuition on 1D Signal
Weighted Average of Neighbors
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« Near and similar pixels have influence.

s : e Far pixels have no influence.
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Handling the division with a projective space.




Formalization: Handling the Division Z2/™
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e Similar to homogeneous coordinates
in projective space

« Division delayed until the end

» Next step: Adding a dimension to make a

/

Link with Linear Filtering space: 1D Gaussian
2. Introducing a Convolution x range: 1D Gaussian
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Corresponds to a 3D Gaussian on a 2D image.

sum all values multiplied by kernel = convolution




Link with Linear Filtering

2. Introducing a Convolution

Link with Linear Filtering
2. Introducing a Convolution

result of the convolution

result of the convolution

Wt 15f Wy Iq Wq Iq
Wb - Z space-range Gaussian W bt = Z space-range Gaussian W
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Reformulation: Summary

linear: (W W) = g, . ® (wiiw)

u']'f(p.fp) .51‘{(1).1'],)

nonlinear: fll;i
wb (p, Ip)

1. Convolution in higher dimension
= expensive but well understood (linear, FFT, etc)

2. Division and slicing
< nonlinear but simple and pixel-wise

( Exact reformulation

)




Low-pass filter
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Accuracy versus Running Time
= Finer sampling increases accuracy.

< Downsampling cuts frequencies = More precise than previous work.
above Nyquist limit
- Less data to process

Fast Convolution by Downsampling

PSNR as function of Running Time

- But induces error “ Digital
E2 i
0 SppIOYiTLN photograph
] ] ] o 1 1200 x 1600
» Evaluation of the approximation =
. . . = ol _ Straightforward
- Precision versus running time & mplementation is
. [ 18 Dwrand-Dorsey approximation ]
- Visual accuracy z over 10 minutes
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Visual Results

e Comparison with previous work [Durand 02]
- running time = 1s for both techniques

b 57). F £l
1200 x 1600

input exact BF our result  prev. work

. DigiY2%
Conclusions

C higher dimension = “better’” computation >

Practical gain Theoretical gain

< Interactive running time e Link with linear filters

= Visually similar results = Separation linear/nonlinear

o1 < Simple to code (100 lines) = Signal processing framework
difference =
with exact
computation
(intensities in [0:1])
Digi[2% Digi[2%

Two-scale Tone Management
for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand
MIT CSAIL

Ansel Adams

Ansel Adams, Clearing Winter Storm




An Amateur Photographer

A Variety of Looks

Goals RiEvFX

= Control over photographic look
e Transfer “look” from a model photo

For example,

we want _
with the look of &S

» Subject choice
e Framing and composition
=>» Specified by input photos

e Tone distribution and contrast
=>Modified based on model photos




Tonal Aspects of Look LIVE

Ansel Adams

Tonal aspects of Look - Global Contralf™

Ansel Adams Kenro lzu

High Global Contrast Low Global Contrast

Tonal aspects of Look - Local ContrasZ2™

Ansel Adams Kenro lzu

Variable amount of texture Texture everywhere

Overview pioi

Input Image Result

« Transfer look between photographs
- Tonal aspects




Overview Global contrast

- _l:"-”UFX
Overview
Global contras
i Careful
Spl combination
Post-
Result process
Local contrast U
= Separate global and local contrast Local contrast
Result
Overview Global contrast DiaiTDT

Split Global vs. Local Contrast

« Naive decomposition: low vs. high frequency
- Problem: introduce blur & halos

Low frequency High frequency

Global contrast Local contrast




Bilateral Filter

Digi

= Edge-preserving smoothing [Tomasi 98]
« We build upon tone mapping [Durand 02]

After bilateral filtering
Global contrast

Residual after filtering
Local contrast

Digi

Bilateral Filter

= Edge-preserving smoothing [Tomasi 98]
= We build upon tone mapping [Durand 02]

BASE layer

DETAIL layer

Residual after filtering
Local contrast

After bilateral filtering
Global contrast

Global contrast

Bilateral
Filter

DigiYla4

Local contrast

Global contrast T




Global Contrast PIFTVFX

= Intensity remapping of base layer

Global Contrast (Model Transfer)

e Histogram matching

- Remapping function given
input and model histogram

Remapped
intensity
Input base Input intensity After remapping
Global contrast DX
Intensity i
matching

Local contrast




Local Contrast: Detail Layer LIVE

e Uniform control:
- Multiply all values in the detail layer

| Ba+ - ' Da|

The amount of local contrast

iIs_hot-uniform

Smooth region

Textured region

Local Contrast Variation PIFTVEX

» We define “textureness”: amount of local
contrast
- at each pixel based on surrounding region

Smooth region

= Low textureness

Textured region
= High textureness

“Textureness™: 1D Example

Textured region

= Large high-frequency
Smooth region Low pass of |H]
= Small high-frequency [Li 05, Su 05]

Textured region i
g \—’

= Hiah texturencss

= |[ :J - :J —

~ oo

P

= Low textureness

.

Input signal High frequency H Amplitude |H| Edge-preserving
filter




Textureness

Digi

Textureness Transfer

Step 1: Model
Histogram transfer textureness
Input Desired
textureness | Hist. transfer textureness

Digi

Step 2: x0.5
Scaling detail layer x 2.7
(per pixel) to match
Input Textureness desired textureness 3
X 4.
Input detall Output detail
= Global contrast =

Textureness
matching

Local contrast

Careful
combination

Local contrast




A Non Perfect Result

e Decoupled and large modifications (up to 6x)
=>Limited defects may appear

result after
global and local adjustments

input (HDR)

Intensity Remapping

« Some intensities may be outside displayable
range.

=>» Compress histogram to fit visible range.

initial remapped
result intensities

Preserving Details e

1. In the gradient domain:
- Compare gradient amplitudes of input and current
- Prevent extreme reduction & extreme increase

2. Solve the Poisson equation.

remapped corrected
intensities result

Effect of Detail Preservation iz

uncorrected result corrected result




Global contrast oY

Constrained
Poisson

DigiY2%

Post-
process
Local contrast s %
Result
Additional Effects model DigiVI24

= Soft focus (high frequency manipulation)
= Film grain (texture synthesis [Heeger 95])
e Color toning (chrominance = f (luminance))

after
effects

before
effects

Soft focus
Toning
Grain

Result




Recap Global contrast Digil 3%

Intensity
matching

B.ilateral Constrained
Filter Poisson
Soft focus
Toning
Grain

Textureness
matching

Results pioi

User provides input and model photographs.
=>» Our system automatically produces the result.

Running times:
- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels

= multi-grid Poisson solver and fast bilateral filter [paris
06]




Comparison with Naive Histogram Matchigg

""Model
Snapshot, Alfred Stieglitz

: Ourgresult
Local contrast, sharpness unfaithful

Comparison with Naive Histogram Matchigg

. ™

Histogram Matching
Local contrast too low

i _—

Model
Cleéfiﬁg-':V\@.n;er Storm, Ansel
Adams e :

“OUr'Resulif <+ -

Color Images Ve

e Lab color space: modify only luminance

Output




Limitations Conclusions
« Noise and JPEG artifacts e Transfer “look” from a model photo
- amplified defects
e Two-scale tone management
- Global and local contrast
- New edge-preserving textureness
e Can lead to unexpected - Constrained Poisson reconstruction
results if the image content is - Additional effects
too different from the model
- Portraits, in particular, can
suffer
Video Enhancement Using Digil[33

Per Pixel Exposures (Bennett, 06)
From this video:

ASTA: Adaptive
Spatio-
Temporal
Accumulation Filter

Joint bilateral filtering

Jp = X:lpr—Mng%—%m

kp geQ

Z:%

kp qgeQ

(lp = all) s(llfp —14])




Flash / No-Flash Photo Improvement
(Petschnigg04) (Eisemann04)

Merge best features: warm, cozy candle light (no-flash)
low-noise, detailed flash image

Overview

Basic approach of both flash/noflash papers

Remove noise + details
from image A,

Keep as image A Lighting |

No-—_ffgsh

Obtain noise-free details
from image B,

Discard Image B Lighting Result

Petschnigg:
e Flash

Petschnigg:
* No Flash,




Petschnigg: Our Approach
= Result Registration
no-flash
flash
Our Approach e Decomposition e

Decomposition

intensity

7oy

color

intensity

Color / Intensity:

‘:’_'}__- _;:'- e
original intensit color




Our Approach = Our Approach —
Decomposition Decoupling
intensity
A <3
color ; ‘tr:letatl;zwl
intensity
Decoupling = Large-scale Layer —

e Lighting : Large-scale variation
e Texture : Small-scale variation

Lighting Texture

 Bilateral filter — edge preserving filter

Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002

I




Digi

Large-scale Layer

« Bilateral filter

Digi

Cross Bilateral Filter

= Similar to joint bilateral filter by Petschnigg et
al.

* When no-flash image is too noisy

= Borrow similarity from flash image

» edge stopping from flash image

Digi

Recombination

; =
Detail Layer =
\i'(.‘a_ .I
o Ay
& 4 |50
<k ,,.jf 2
Intensity Large-scale Detail

Recombination: Large scale * Detail = Intensity

I/'»:!
Yo, N
3 I’\_ - —
f__,"f'f ¥ \i_..:*- _
A :\& J, o
Large-scale Detail Intensity
No-flash Flash Result

Recombination: Large scale * Detail = Intensity




Recombination Our Approach
shadows
—_—~
— no-flash
intensity
Intensity Color Result D %
Result Flash s
color detail
Recombination: Intensity * Color = Original F - -
intensity
Our Approach Results
Shadow

Detection/Treatment

No-flash

-

shadow
treatment




Joint bilateral upsampling

Z Iy fp=all) &(llp = 14l])

kp qgeQ

== Y 1y £l —all) gl ~ )
p qell

Z Sqr JUlpy =y 1) g, = I4l)
g,

,D kp

Joint bilateral upsampling

Upsampled Result

Joint Bilateral Ground Truth

Upsampled Result




- - - D' i . . . D. =
Joint bilateral upsampling = Joint bilateral upsampling =
bl
Nearest Neighbor Upsampling Down?mplcd
.
Input Solution
S
Joint Bilateral Upsampling
Input Images
Digi Digi

Joint bilateral upsampling

1441

Nearest Neighbor Bicubic Gaussian Joint Bilateral

Joint bilateral upsampling

Upsampled Result




