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Epipolar geometry &
fundamental matrix
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The epipolar geometry

epipolar geometry demo

X
®

epipolar plane TC \

C,C’ x,x’ and X are coplanar



The epipolar geometry

What if only C,C’,x are known?



The epipolar geometry

All points on = project on | and I’



The epipolar geometry

Family of planes = and lines | and I’ intersect at e
and e’
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The epipolar geometry

epipolar pole epipolar geometry demo
= intersection of baseline with image plane
= projection of projection center in other image

N

e
\ baseline

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image



The fundamental matrix F

T=C’-C

Two reference frames are related via the extrinsic parameters

' __
p'=R(p-T)
The equation of the epipolar plane through X is

(p-T) (Txp)=0 mp(R'p") (Txp)=0



The fundamental matrix F

(R'p") (Txp)=0
Txp=Sp

S=| T, 0 -T
-T, T, 0

= (R'p)'(Sp)=0
= (p'|R)(Sp)=0
— p' =0  essential matrix




The fundamental matrix F

T
p" Ep=0
Let M and M’ be the intrinsic matrices, then

p= M—IX pv: Mv—l x'

= M 'x)EM 'x)=0
= XM TEM k=0

) x''IFx =0 fundamental matrix




The fundamental matrix F

e The fundamental matrix is the algebraic
representation of epipolar geometry

e The fundamental matrix satisfies the condition
that for any pair of corresponding points x«»Xx’
in the two images

xTFx=0  (x"I=0)



The fundamental matrix F
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W N

o1 b~

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0
for all x<x’

. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)

. Epipolar lines: '=Fx & |=F"x’
. Epipoles: on all epipolar lines, thus e’TFx=0, Vx

—=e’TF=0, similarly Fe=0

. Fhas7d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
. Fis a correlation, projective mapping from a point x to

a line ’=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

e |t can be used for
- Simplifies matching
- Allows to detect wrong matches



DIFTVFX

Estimation of F — 8-point algorithm

e The fundamental matrix F is defined by

1 T
x Fx=0
for any pair of matches x and x’ in two images.
| f11 f12 f13_
e Letx=(u,v,1)T and x’=(u’,v,1)T, F=|f, f, f,
f f f
131 32 33 |

each match gives a linear equation

ua'f,, +wu' f,+u' f,+uv' f,, +wW'f, +Vv' f,,+uf, +vf, +f,=0



8-point algorithm
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e In reality, instead of solving Af = (, we seek f
to minimize ||Af| subj. Hf\f: 1. Find the vector

corresponding to the least singular value.



8-point algorithm
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e To enforce that F is of rank 2, F is replaced by

F’ that minimizes HF —F'

subject to det F'=0.

e It is achieved by SVD. Let F = UXV ] where

o, 0
=10 o,
0 0

then F'= UX'V 'is the solution.
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8-point algorithm

% Build the constraint matrix
A=1[x2(1,).*x1(1,:)" x2(1,:).*x1(2,:) x2(1,:) ...
X2(2,:).*x1(1,:)" x2(2,:)'.*x1(2,:)" x2(2,:) ...
x1(1,:) x1(2,:) ones(npts,1) ;

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3);

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V’;
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8-point algorithm

e Pros: it is linear, easy to implement and fast
e Cons: susceptible to noise



Problem with 8-point algorithm

4

uu,” wvu,~ U’ UV, vy, v, UV,
u,u,” v,u,” u,” u,v,” V,v,o V,” u, V,

uu,~ v.u,’~ u’

n

uv,” vyv,’ Vv,&£€$ u, V

n n n

~10000 ~10000 ~100  ~10000  ~10000 ~100 ~100 ~100

Orders of magnitude difference
between column of data matrix

— least-squares yields poor results
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Normalized 8-point algorithm

1. Transform input by %X, = Tx,, %; = Tx,
2. Call 8-point on %.,X; to obtain F
3. F=T""FT
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Normalized 8-point algorithm

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]

(0,500) (700,500) L (-1,1) (1,1)

700
2 t
500

A 1

(0,0)

(0,0) (700,0) (-1,-1) (1,-1)



Normalized 8-point algorithm

[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);

A=[x2(1,:).*x1(1,:) x2(1,:).*x1(2,:)" x2(1,:)" ...
X2(2,:).*x1(1,:)" x2(2,:)'.*x1(2,:) x2(2,:) ...
x1(1,:) x1(2,:) ones(npts,1) ];

[U,D,V] = svd(A);
F = reshape(V(:,9),3,3)"

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V;

% Denormalise
F=T2"FT1;



Normalization

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)); % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).”2 + newp(2,:)."2));
scale = sqrt(2)/meandist;

=[scale 0 -scale*c(1)
0 scale -scale*c(2)
0 0 1 1;
newpts = T*pts;



RANSAC Digill2s

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until I'(#inliers,#samples)>95% or too many times

compute F based on all inliers



Results (ground truth)

m Ground truth with standard stereo calibration




Results (8-point algorithm)

m 8-point algorithm
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Results (normalized 8-point algorithn{@

B Normalized 8-point algorithm




Structure from motion



Structure from motion

Unknown
\ camera
\ viewpoints

-

o L8

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self
calibration technique and called automatic camera tracking
or matchmoving.
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Applications

e For computer vision, multiple-view shape
reconstruction, novel view synthesis and
autonomous vehicle navigation.

e For film production, seamless insertion of CGl
into live-action backgrounds



Matchmove
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example #1 example #2 example #3 example #4




Structure from motion

2D feature
tracking

3D estimation

.| optimization

(bundle adjust)

ﬁ

SFM pipeline

geometry
fitting




Structure from motion

e Step 1: Track Features
- Detect good features, Shi & Tomasi, SIFT

- Find correspondences between frames
e Lucas & Kanade-style motion estimation
« window-based correlation
e SIFT matching




KLT tracking EIFvFx

http://www.ces.clemson.edu/~stb/klt/
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Structure from Motion

e Step 2: Estimate Motion and Structure
- Simplified projection model, e.g., [Tomasi 92]
- 2 or 3 views at a time [Hartley 00]

- #
ln".."



Structure from Motion

e Step 3: Refine estimates
— “Bundle adjustment” in photogrammetry
- Other iterative methods
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Structure from Motion

e Step 4: Recover surfaces (image-based
triangulation, silhouettes, stereo...)




Factorization methods
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Problem statement
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Notations

e n 3D points are seen in m views
e g=(u,v,1): 2D image point
e P=(X,Y,2,1): 3D scene point

e II: projection matrix
e 7. projection function

e (;; is the projection of the I-th point on image ]
* 4; projective depth of g;

q; :”(iji)

(X, Y,2)=(X/2,y/17)
/1” =7
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Structure from motion

e Estimate Hjand P; to minimize

eI, I, Py, Py) = Zzwij log P(z(I1;p;);q;)

j=1 i=I

ij —

1 1if p, 1s visible in view j
0 otherwise

o Assume isotropic Gaussian noise, it is reduced to

e(,,---, T0_,p,,,p,) = Zm:iwij“ﬂ(njpi)_Qijuz

j=1 i=1

o Start from a simpler projection model



Orthographic projection

e Special case of perspective projection
‘he PP is infinite

O O+
OO
o OO
= O O

— | Y
1

R N S 8
|

T

= (z,y)

- Also called “parallel projection”: (X, Yy, z) = (X, Y)
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SFM under orthographic projection

2D i Orthographic projection image
'mage incorporating 3D rotation 3D scene offset
PR / point
. 2x1 2x33x1 2x1
e Trick

- Choose scene origin to be centroid of 3D points
- Choose image origins to be centroid of 2D points
- Allows us to drop the camera translation:

q=1lp
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factorization (Tomasi & Kanade)

projection of n features in one Image:

[‘h q, - qn]:H[pl P, - pn]

2Xn 2x3 3Ixn
projection of n features in m images
99 4 - Yy I1,
q:zl q:zz qzzn = l_fz [pl P pn]
3xn
A D2 7 Q| _Hm_
2mxn 2mx3

W measurement M motion S shape

Key Observation: rank(W) <=3




Factorization

known—— W M S—solvefor

mxn 2mx3 3xn

e Factorization Technique
- W is at most rank 3 (assuming no noise)
- We can use singular value decomposition to factor W:

W =M'S'

2m Xn 2mx3 3xn

- S’ differs from S by a linear transformation A:
W =M'S'= (MA )(AS)

- Solve for A by enforcing metric constraints on M



Metric constraints Digil/[

e Orthographic Camera M - {1 0}
- Rows of IT are orthonormal: 10 1
e Enforcing “Metric” Constraints

- Compute A such that rows of M have these
properties

M'A=M

Trick (not in original Tomasi/Kanade paper, but in followup work)
« Constraints are linear in AAT :

Ll) ﬂ =TII" =IT'A(ATI') =II'GII" where G = AA'

« Solve for G first by writing equations for every IT, in M
« Then G = AAT by SVD (since U = V)



Factorization with noisy data

W =M S + E

2m xn 2mx3 3xn 2mxn

e SVD gives this solution
- Provides optimal rank 3 approximation W’ of W

W =W'+ E
2m xn 2m xn 2mxn
e Approach
- Estimate W’, then use noise-free factorization of W’
as before

- Result minimizes the SSD between positions of image
features and projection of the reconstruction
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Results
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Extensions to factorization methods

e Projective projection
o With missing data
e Projective projection with missing data




Bundle adjustment
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Levenberg-Marqguardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton’s
method.



Nonlinear least square

Given a set of measurements X, try to find

the best parameter vector p so that the

squared distance €' ¢ is minimal. Here,

£=x—%, with % = f(p).
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Levenberg-Marqguardt method

For a small ||dp|[, f(p+dp) = f(p) + Jdp

J is the Jacobian matrix B—QLP:'

it is required to find the d, that minimizes the quantity

= flp+0p)ll = [lx = f(p) — Jopl| = [[e = Jop||
J' 36, = T
Nop = Je

N;; = _ITL + [JTJ]H

damping term



Levenberg-Marqguardt method

e u=0 — Newton’s method
e U—= — steepest descent method

e Strategy for choosing p
- Start with some small p

- If error is not reduced, keep trying larger py until it
does

- If error is reduced, accept it and reduce p for the
next iteration
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Bundle adjustment

e Bundle adjustment (BA) is a technique for
simultaneously refining the 3D structure and
camera parameters

|t is capable of obtaining an optimal
reconstruction under certain assumptions on
image error models. For zero-mean Gaussian
image errors, BA is the maximum likelihood
estimator.



Bundle adjustment RiEIVE

e n 3D points are seen in m views

* X;; 1s the projection of the i-th point on image ]
* a; is the parameters for the j-th camera

e b, is the parameters for the i-th point

e BA attempts to minimize the projection error

rri

2
1’111115 E d(Q(a;, b;), xij)

a;,;b i=1 j=1 \
predicted projection

Euclidean distance
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Bundle adjustment
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Bundle adjustment

3 views and 4 points P = (a7, a,7, a;”, bi”, by, bs’, b,")T

X = (xn?, xi2?, x137, xo17, %007, xo3?, xs1?, x327, x337, xa?, xao?, xuz?)!
A 0 0 By 0 0 0 3
0 Ao 0 Bi» 0 0 0
0 0 A;; By 0 0 0
A,y 0 ©0 ©0 By 0 0
0 Ay O 0 By 0 0
X B 0 0 Aay 0D By 0 0
0P | Ay 0 0 0 0 By 0
0 Ay, 0O 0 O By 0
0 0 Aszy O 0 Dy 0
Ay, 0 0 ©0 0 0 By
0 Ao ] 0 ] D Bais
0 0 Asz O 0 0 Bus/



Typical Jacobian




Block structure of normal equation
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Bundle adjustment
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Bundle adjustment

Multiplied by (I ~W v*‘l)
0 I

(U*—Wv*‘le 0 ) (ﬁa) B (EE—WVH Eh)



Issues In SFM

e Track lifetime
e Nonlinear lens distortion
e Degeneracy and critical surfaces

e Prior knowledge and scene constraints
e Multiple motions



Track lifetime

every 50th frame of a 800-frame sequence



Track lifetime

Frame number
I A
o o
(-] (-]
1 1
] ]

)]
o
o
T
I

ll“ll .

0 500 1000 1500 2000 2500 3000 3500
Track index

800

lifetime of 3192 tracks from the previous sequence



Track lifetime

10
10
10
10

20

40 60 80

track length histogram

|
100



Nonlinear lens distortion

R

L




Nonlinear lens distortion

effect of lens distortion
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Prior knowledge and scene constrami@

add a constraint that several lines are parallel
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Prior knowledge and scene constrami@

add a constraint that it is a turntable sequence



Applications of matchmove



Jurassic park




2d3 boujou “g

Enemy at the Gate, Double Negative
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2d3 boujou “g i

Enemy at the Gate, Double Negative
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Photo Tourism

Photo Tourism

Exploring photo collections in 3D




VideoTrace

http://www.acvt.com.au/research/videotrace/
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Project #3 MatchMove

e It is more about using tools in this project

e You can choose either calibration or structure
from motion to achieve the goal

e Calibration
 Voodoo/Icarus

e Examples from previous classes, #1, #2
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