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Epipolar geometry & 
fundamental matrix



The epipolar geometry

epipolar geometry demo

C C’ x x’ and X are coplanarC,C ,x,x and X are coplanar



The epipolar geometry

What if only C C’ x are known?What if only C,C ,x are known?



The epipolar geometry

All points on  project on l and l’All points on  project on l and l



The epipolar geometry

Family of planes  and lines l and l’ intersect at eFamily of planes  and lines l and l intersect at e
and e’



The epipolar geometry

epipolar pole
= intersection of baseline with image plane 

epipolar geometry demo
= intersection of baseline with image plane 
= projection of projection center in other image

epipolar plane = plane containing baselineepipolar plane  plane containing baseline
epipolar line = intersection of epipolar plane with image



The fundamental matrix F

C C’

Rp p’

C
T=C’-C

T)-R(p'p 
Two reference frames are related via the extrinsic parameters

)(pp

0)()(  pTTp
The equation of the epipolar plane through X is 

0)()'(  pTpR0)()(  pTTp 0)()'( pTpR



The fundamental matrix F
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0'  Epp essential matrix0Epp essential matrix



The fundamental matrix F

0'  Epp pp

Let M and M’ be the intrinsic matrices, then

xMp 1 ''' 1 xMp 

0)()'( 11  xMExM' 0)()( xMExM
0' 1  xEMM'x 0xEMMx

0'  Fxx fundamental matrix



The fundamental matrix F

• The fundamental matrix is the algebraic 
representation of epipolar geometryrepresentation of epipolar geometry

Th  f d t l t i  ti fi  th  diti  • The fundamental matrix satisfies the condition 
that for any pair of corresponding points x↔x’ 
i  th  t  iin the two images

0Fxx'T   0l'x'T 0Fxx   0lx



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 
for all x↔x’for all x↔x

1. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)
2 Epipolar lines: l’ F  & l FT ’2. Epipolar lines: l’=Fx & l=FTx’
3. Epipoles: on all epipolar lines, thus e’TFx=0, x 

e’TF=0, similarly Fe=0e F 0, similarly Fe 0
4. F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
5. F is a correlation, projective mapping from a point x to 

a line l’=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

• It can be used for 
– Simplifies matching
– Allows to detect wrong matchesAllows to detect wrong matches



Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

0Fxx'
for any pair of matches x and x’ in two images.

 131211 fff
• Let x=(u,v,1)T and x’=(u’,v’,1)T,
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each match gives a linear equation

0'''''' 333231232221131211  fvfuffvfvvfuvfufvufuu



8-point algorithm

11
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• In reality, instead of solving            , we seek f

to minimize          subj.           . Find the vector 
0Af

Af 1fj
corresponding to the least singular value.



8-point algorithm

• To enforce that F is of rank 2, F is replaced by 
F’ that minimizes              subject to                 'FF 0'det FF  that minimizes              subject to                . 'FF  0'det F

• It is achieved by SVD. Let                , where  VUF Σy ,

 let 
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then                    is the solution.  VUF Σ''



8-point algorithm
% Build the constraint matrix

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...[ ( , ) ( , ) ( , ) ( , ) ( , )
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.p g g

F = reshape(V(:,9),3,3)';

% E f  k2 t i t % Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1 1) D(2 2) 0])*V';F = U diag([D(1,1) D(2,2) 0]) V ;



8-point algorithm

• Pros: it is linear, easy to implement and fast
C  ibl   i• Cons: susceptible to noise



Problem with 8-point algorithm

11
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!
Orders of magnitude difference
between column of data matrix 33  f

! between column of data matrix
 least-squares yields poor results



Normalized 8-point algorithm

1. Transform input by                ,
2 C ll 8 i              b i

ii Txx ˆ '
i

'
i Txx ˆ

'ˆˆ ˆ2. Call 8-point on           to obtain
3.

ii xx ˆ,ˆ
TFTF ˆΤ'

F

0Fxx' 0Fxx

0ˆ'ˆ 1  xFTTx'

F̂



Normalized 8-point algorithm

normalized least squares yields good results
T f  i   [ 1 1] [ 1 1]

(700,500)(0,500) (1,1)(-1,1)
 2

Transform image to ~[-1,1]x[-1,1]
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Normalized 8-point algorithm
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...

[ , ] p ( );

x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U D V]  svd(A);[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';F  reshape(V(:,9),3,3) ;

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;



Normalization
function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')';   % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.p( , ) p ( , ) ( ); g
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

T = [scale      0    -scale*c(1)
0     scale  -scale*c(2)
0         0            1      ];

t   T* tnewpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until (#inliers,#samples)>95% or too many times ( , p ) y

compute F based on all inliers



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



Structure from motionStructure from motion



Structure from motion

UnknownUnknownUnknownUnknown
cameracamera

viewpointsviewpoints

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self 
calibration technique and called automatic camera trackingcalibration technique and called automatic camera tracking
or matchmoving.



Applications

• For computer vision, multiple-view shape 
reconstruction  novel view synthesis and reconstruction, novel view synthesis and 
autonomous vehicle navigation.
F  fil  d ti  l  i ti  f CGI • For film production, seamless insertion of CGI 
into live-action backgrounds



Matchmove

example #1 example #2 example #3 example #4



Structure from motion

2D feature
tracking 3D estimation optimization

(bundle adjust)
geometry 

fitting

SFM pipelineSFM pipeline



Structure from motion

• Step 1:  Track Features
Detect good features  Shi & Tomasi  SIFT– Detect good features, Shi & Tomasi, SIFT

– Find correspondences between frames
• Lucas & Kanade-style motion estimationy
• window-based correlation
• SIFT matching



KLT tracking

http://www ces clemson edu/~stb/klt/http://www.ces.clemson.edu/ stb/klt/



Structure from Motion
• Step 2:  Estimate Motion and Structure

Si lifi d j ti  d l    [T i 92]– Simplified projection model, e.g.,  [Tomasi 92]
– 2 or 3 views at a time  [Hartley 00]



Structure from Motion
• Step 3:  Refine estimates

“B dl  dj t t” i  h t t– “Bundle adjustment” in photogrammetry
– Other iterative methods



Structure from Motion
• Step 4:  Recover surfaces (image-based 

triangulation  silhouettes  stereo )triangulation, silhouettes, stereo…)

Good meshGood mesh



Factorization methodsFactorization methods



Problem statement



Notations

• n 3D points are seen in m views
( 1)  2D i  i• q=(u,v,1): 2D image point

• p=(x,y,z,1): 3D scene point
• : projection matrix
• : projection function• : projection function
• qij is the projection of the i-th point on image j
 j ti  d th f • ij projective depth of qij

)( pq  )//()( zyzxzyx )( ijij pq  )/,/(),,( zyzxzyx 
zij 



Structure from motion

• Estimate      and     to minimizej ip
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• Assume isotropic Gaussian noise, it is reduced top ,
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• Start from a simpler projection model• Start from a simpler projection model



Orthographic projection
• Special case of perspective projection

Di t  f  th  COP t  th  PP i  i fi it– Distance from the COP to the PP is infinite

Image World

– Also called “parallel projection”:  (x, y, z) → (x, y)



SFM under orthographic projection

2D image 
Orthographic projection
incorporating 3D rotation 3D scene

image
offsetpoint

incorporating 3D rotation 3D scene
point

offset

tΠ tΠpq 
12 32 13 1212 32 13 12

• Trick
– Choose scene origin to be centroid of 3D pointsg p
– Choose image origins to be centroid of 2D points
– Allows us to drop the camera translation:Allows us to drop the camera translation:

Πpq  pq



factorization (Tomasi & Kanade)

   
projection of n features in one image:
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W measurement M motion S shape

Key Observation:  rank(W) <= 3



Factorization

3322
 SMWknown solve for

• Factorization Technique

n33m2n2m 

Factorization Technique
– W is at most rank 3 (assuming no noise)
– We can use singular value decomposition to factor W:

3322
'' SMW

We can use singular value decomposition to factor W:

n33m2n2m 

– S’ differs from S by a linear transformation A:

))(('' ASMASMW 1

– Solve for A by enforcing metric constraints on M



Metric constraints

• Orthographic Camera
R  f   th l 
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01T

– Rows of  are orthonormal:

• Enforcing “Metric” Constraints
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– Compute A such that rows of M have these 
properties

MAM ' MAM '
Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in AAT :

  TTTT where AAGGAA 







''''

10
01

• Solve for G first by writing equations for every i in M
• Then G = AAT by SVD (since U = V)
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Then G AA by SVD (since U  V)



Factorization with noisy data

 ESMW
nm2n33m2n2m 

• SVD gives this solutiong
– Provides optimal rank 3 approximation W’ of W

'  EWW
nm2n2mn2m 

 EWW

• Approach
– Estimate W’, then use noise-free factorization of W’

as before
– Result minimizes the SSD between positions of image 

features and projection of the reconstruction



Results



Extensions to factorization methods

• Projective projection
Wi h i i  d• With missing data

• Projective projection with missing data



Bundle adjustmentBundle adjustment



Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method  steepest descent and the Newton method. 
When the current solution is far from the 
correct one  the algorithm behaves like a correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge  When the current solution is close to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
methodmethod.



Nonlinear least square 

 find  try to, tsmeasuremen ofset  aGiven x

Hereminimalisdistancesquared
  that theso vector parameter best  the p

T
).(ˆ with ,ˆ

Here,minimal.isdistance squared
pxxx f





Levenberg-Marquardt method



Levenberg-Marquardt method

• μ=0 → Newton’s method
  d  h d• μ→∞ → steepest descent method

• Strategy for choosing μ
– Start with some small μStart with some small μ
– If error is not reduced, keep trying larger μ until it 

does
– If error is reduced, accept it and reduce μ for the 

next iteration 



Bundle adjustment

• Bundle adjustment (BA) is a technique for 
simultaneously refining the 3D structure and simultaneously refining the 3D structure and 
camera parameters
It i  bl  f bt i i   ti l • It is capable of obtaining an optimal 
reconstruction under certain assumptions on 
i   d l  F   G i  image error models. For zero-mean Gaussian 
image errors, BA is the maximum likelihood 

ti testimator.



Bundle adjustment

• n 3D points are seen in m views
i  h  j i  f h  i h i   i  j• xij is the projection of the i-th point on image j

• aj is the parameters for the j-th cameraj

• bi is the parameters for the i-th point
• BA attempts to minimize the projection error• BA attempts to minimize the projection error

Euclidean distance

predicted projection

Euclidean distance



Bundle adjustment



Bundle adjustment

3 views and 4 points



Typical Jacobian



Block structure of normal equation



Bundle adjustment



Bundle adjustment

Multiplied by



Issues in SFM

• Track lifetime
N li  l  di i• Nonlinear lens distortion

• Degeneracy and critical surfaces
• Prior knowledge and scene constraints
• Multiple motions• Multiple motions



Track lifetime

every 50th frame of a 800-frame sequencey q



Track lifetime

lifetime of 3192 tracks from the previous sequencep q



Track lifetime

track length histogramg g



Nonlinear lens distortion



Nonlinear lens distortion

effect of lens distortion



Prior knowledge and scene constraints

add a constraint that several lines are parallelp



Prior knowledge and scene constraints

add a constraint that it is a turntable sequenceq



Applications of matchmoveApplications of matchmove



Jurassic park



2d3 boujou

Enemy at the Gate, Double Negative 



2d3 boujou

Enemy at the Gate, Double Negative 



Photo Tourism



VideoTrace

http://www.acvt.com.au/research/videotrace/



Project #3 MatchMove

• It is more about using tools in this project
Y   h  i h  lib i    • You can choose either calibration or structure 
from motion to achieve the goal

• Calibration 
• Voodoo/Icarus

• Examples from previous classes  #1  #2• Examples from previous classes, #1, #2
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