Image warping/morphing

Digital Visual Effects

Yung-Yu Chuang

with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros

Image formation

Sampling and quantization
What is an image

- We can think of an image as a function, \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \):
 - \(f(x, y) \) gives the intensity at position \((x, y)\)
 - defined over a rectangle, with a finite range:
 - \(f: [a,b] \times [c,d] \rightarrow [0,1] \)

- A color image

 \[
 f(x, y) = \begin{bmatrix}
 r(x, y) \\
 g(x, y) \\
 b(x, y)
 \end{bmatrix}
 \]

A digital image

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are \(D \) apart, we can write this as:

 \[
 f[i,j] = \text{Quantize}\{ f(iD, jD) \}
 \]
- The image can now be represented as a matrix of integer values

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>176</td>
<td>135</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
</tr>
</tbody>
</table>

Image warping

image filtering: change range of image

\[g(x) = h(f(x)) \]

image warping: change domain of image

\[g(x) = f(h(x)) \]
Parametric (global) warping

Examples of parametric warps:
- translation
- rotation
- aspect
- affine
- perspective
- cylindrical

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar.
- Uniform scaling means this scalar is the same for all components:

\[
\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 2x \\ 2y \end{bmatrix}
\]

- Non-uniform scaling: different scalars per component:

\[
\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 2x \\ 0.5y \end{bmatrix}
\]

Transformation T is a coordinate-changing machine: \(p' = T(p) \)

What does it mean that \(T \) is global?
- Is the same for any point \(p \)
- Can be described by just a few numbers (parameters)

Represent \(T \) as a matrix: \(p' = M p \)

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}
\]
Scaling

- Scaling operation:
 \[x' = ax \]
 \[y' = by \]
- Or, in matrix form:
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 a & 0 \\
 0 & b
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

What's inverse of \(S \)?

2-D Rotation

- This is easy to capture in matrix form:
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]
 \[R \]
- Even though \(\sin(\theta) \) and \(\cos(\theta) \) are nonlinear to \(\theta \),
 - \(x' \) is a linear combination of \(x \) and \(y \)
 - \(y' \) is a linear combination of \(x \) and \(y \)
- What is the inverse transformation?
 - Rotation by \(-\theta\)
 - For rotation matrices, \(\det(R) = 1 \) so \(R^{-1} = R^T \)

2x2 Matrices

- What types of transformations can be represented with a 2x2 matrix?

 2D Identity?
 \[
 x' = x \\
 y' = y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

 2D Scale around (0,0)?
 \[
 x' = s_x \times x \\
 y' = s_y \times y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 s_x & 0 \\
 0 & s_y
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

 2D Rotate around (0,0)?
 \[
 x' = \cos(\theta) \times x - \sin(\theta) \times y \\
 y' = \sin(\theta) \times x + \cos(\theta) \times y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

 2D Shear?
 \[
 x' = x + s_{xy} \times y \\
 y' = s_{yx} \times x + y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & s_{xy} \\
 s_{yx} & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]
2x2 Matrices

- What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

\[
x' = -x \\
y' = y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

2D Mirror over (0,0)?

\[
x' = -x \\
y' = -y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

Translation

- Example of translation

Homogeneous Coordinates

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}
\]

Only linear 2D transformations can be represented with a 2x2 matrix
Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition
 - Models change of basis

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Projective Transformations

- Projective transformations ...
 - Affine transformations, and
 - Projective warps

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
 - Models change of basis

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Image warping

- Given a coordinate transform \(x' = T(x) \) and a source image \(I(x) \), how do we compute a transformed image \(I'(x') = I(T(x)) \)?

Forward warping

- Send each pixel \(I(x) \) to its corresponding location \(x' = T(x) \) in \(I'(x') \)
Forward warping

\[
\text{fwarp}(I, I', T) \\
\{ \\
\quad \text{for } (y=0; y<I.\text{height}; y++) \\
\quad \quad \text{for } (x=0; x<I.\text{width}; x++) \\
\quad \quad \quad (x', y') = T(x, y); \\
\quad \quad \quad I'(x', y') = I(x, y); \\
\quad \} \\
\}
\]

- Send each pixel \(I(x) \) to its corresponding location \(x' = T(x) \) in \(I'(x') \)
- What if pixel lands "between" two pixels?
- Will be there holes?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse warping

- Get each pixel \(I'(x') \) from its corresponding location \(x = T^{-1}(x') \) in \(I(x) \)
Inverse warping

\[\text{iwarp}(I, I', T) \]
\[
\{
\text{for (y=0; y<I'.height; y++)}
\text{for (x=0; x<I'.width; x++)} \}
\]
\[
(x, y) = T^{-1}(x', y');
\]
\[
I'(x', y') = I(x, y);
\]

Inverse warping

- Get each pixel \(I'(x') \) from its corresponding location \(x = T^{-1}(x') \) in \(I(x) \)

- What if pixel comes from “between” two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

Sampling

\[\text{Sampling}(\text{band limited}) \]
The reconstructed function is obtained by interpolating among the samples in some manner.

Reconstruction (interpolation)

- Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k
 \[p = \frac{\sum q_i k(q_i)}{\sum q_i} \]

  ```
  color=0;
  weights=0;
  for all q’s dist < width
    d = dist(p, q);
    w = kernel(d);
    color += w*q.color;
    weights += w;
  p.Color = color/weights;
  ```

Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc (optimal reconstruction)
Bilinear interpolation (triangle filter)

- A simple method for resampling images

\[f(x, y) = (1 - a)(1 - b) f[i, j] + a(1 - b) f[i + 1, j] + ab f[i + 1, j + 1] + (1 - a)b f[i, j + 1] \]

Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)

Non-parametric image warping

- Mappings implied by correspondences
- Inverse warping

\[P = w_A A + w_B B + w_C C \]

\[P' = w_A A' + w_B B' + w_C C' \]

Barycentric coordinate
Barycentric coordinates

\[P = t_1 A_1 + t_2 A_2 + t_3 A_3 \]
\[t_1 + t_2 + t_3 = 1 \]

Non-parametric image warping

\[P = w_A A + w_B B + w_C C \]
\[P' = w_A A' + w_B B' + w_C C' \]

Barycentric coordinate

Non-parametric image warping

- Gaussian: \(\rho(r) = e^{-r^2} \)
- Thin plate spline: \(\rho(r) = r^2 \log(r) \)

\[\Delta P = \frac{1}{K} \sum_i k_x (P') \Delta X_i \]

Demo

- Warping is a useful operation for mosaics, video matching, view interpolation and so on.
Image morphing

The goal is to synthesize a fluid transformation from one image to another.

Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

Artifacts of cross-dissolving

Why ghosting?
• Morphing = warping + cross-dissolving
 - shape (geometric)
 - color (photometric)

http://www.salavon.com/
Image morphing

- **image #1**
- **cross-dissolving**
- **image #2**

Face averaging by morphing

- create a morphing sequence: for each time t
 1. Create an intermediate warping field (by interpolation)
 2. Warp both images towards it
 3. Cross-dissolve the colors in the newly warped images

- average faces

Morphing sequence
An ideal example (in 2004)

Warp specification (mesh warping)

- How can we specify the warp?
 1. Specify corresponding spline control points

 interpolate to a complete warping function

 easy to implement, but less expressive

Warp specification

- How can we specify the warp
 2. Specify corresponding points

 interpolate to a complete warping function
Solution: convert to mesh warping

1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

Warp specification (field warping)

- How can we specify the warp?
 3. Specify corresponding vectors
 - interpolate to a complete warping function
 - The Beier & Neely Algorithm

Beier&Neely (SIGGRAPH 1992)

- Single line-pair PQ to P’Q’:

\[
\begin{align*}
 u &= \frac{(X-P) \cdot (Q-P)}{\|Q-P\|^2} \\
 v &= \frac{(X-P) \cdot \text{Perpendicular}(Q-P)}{\|Q-P\|} \\
 X' &= P' + u \cdot (Q' - P') + v \cdot \text{Perpendicular}(Q' - P') / \|Q' - P'\|
\end{align*}
\]

Algorithm (single line-pair)

- For each X in the destination image:
 1. Find the corresponding u,v
 2. Find X’ in the source image for that u,v
 3. \(\text{destinationImage}(X) = \text{sourceImage}(X') \)

- Examples:
 - Affine transformation
Multiple Lines

\[D_i = X'_i - X_i \]

\[\text{weight}[i] = \left(\frac{\text{length}[i]^p}{a + \text{dist}[i]} \right)^b \]

Length = length of the line segment,
Dist = distance to line segment

The influence of \(a, p, b \). The same as the average of \(X'_i \).

Full Algorithm

\[
\text{WarpImage(SourceImage, L'[...], L[...])}
\]

\[
\begin{align*}
&\text{begin} \\
&\hspace{1cm} \text{foreach destination pixel X do} \\
&\hspace{2cm} \text{XSum} = (0,0) \\
&\hspace{2cm} \text{WeightSum} = 0 \\
&\hspace{2cm} \text{foreach line L[i] in destination do} \\
&\hspace{3cm} \text{X}'[i] = \text{X transformed by (L[i], L'[i])} \\
&\hspace{3cm} \text{weight}[i] = \text{weight assigned to X[i]} \\
&\hspace{3cm} \text{XSum} = \text{Xsum} + \text{X}'[i] \times \text{weight}[i] \\
&\hspace{3cm} \text{WeightSum} += \text{weight}[i] \\
&\hspace{2cm} \text{end} \\
&\hspace{1cm} \text{X'} = \text{Xsum}/\text{WeightSum} \\
&\hspace{1cm} \text{DestinationImage(X)} = \text{SourceImage(X')} \\
&\text{end} \\
&\text{return Destination} \\
\end{align*}
\]

Resulting warp

Comparison to mesh morphing

- Pros: more expressive
- Cons: speed and control
Warp interpolation

- How do we create an intermediate warp at time t?
 - linear interpolation for line end-points
 - But, a line rotating 180 degrees will become 0 length in the middle
 - One solution is to interpolate line mid-point and orientation angle

$$
\begin{align*}
 \text{Warp}_{0} & = \text{WarpImage} (\text{Image}_0, L_0[...], L[...]) \\
 \text{Warp}_{1} & = \text{WarpImage} (\text{Image}_1, L_1[...], L[...]) \\
 \text{FinalImage}(p) & = (1-t) \text{Warp}_{0}(p) + t \text{Warp}_{1}(p)
\end{align*}
$$

Animation

GenerateAnimation(Image$_0$, $L_0[...], Image_1, L_1[...]$)
begin
 foreach intermediate frame time t do
 for $i=1$ to number of line-pairs do
 $L[i]$ = line t-th of the way from $L_0[i]$ to $L_1[i]$.
 end
 $\text{Warp}_0 = \text{WarpImage} (\text{Image}_0, L_0[...], L[...])$
 $\text{Warp}_1 = \text{WarpImage} (\text{Image}_1, L_1[...], L[...])$
 foreach pixel p in FinalImage do
 FinalImage(p) = $(1-t)\text{Warp}_0(p) + t\text{Warp}_1(p)$
 end
 end
end

Animated sequences

- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

Results

Michael Jackson’s MTV “Black or White”
Multi-source morphing

References