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Sampling and quantization



What is an image

• We can think of an image as a function, f: R2R:
f(  ) i  th  i t it t iti  (  ) – f(x, y) gives the intensity at position (x, y) 

– defined over a rectangle, with a finite range:
f  [ b] [ d]  [0 1]• f: [a,b]x[c,d]  [0,1]
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A digital image

• We usually operate on digital (discrete) images:
S l th  2D    l  id– Sample the 2D space on a regular grid

– Quantize each sample (round to nearest integer)

f l h• If our samples are D apart, we can write this as:
f[i ,j] = Quantize{ f(i D, j D) }

• The image can now be represented as a matrix 
of integer valueso  tege  values



Image warping

image filtering: change range of image
( )  h(f( ))g(x) = h(f(x))
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image warping: change domain of image
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Image warping

image filtering: change range of image
( )  h(f( ))
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g(x) = h(f(x))
h(y)=0.5y+0.5
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image warping: change domain of image
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Parametric (global) warping

Examples of parametric warps:Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Parametric (global) warping

TT

p = (x,y) p’ = (x’,y’)
• Transformation T is a coordinate-changing 

machine: p’ = T(p)

p  (x,y) p  (x ,y )

machine: p  T(p)
• What does it mean that T is global?

Is the same for any point p– Is the same for any point p
– can be described by just a few numbers (parameters)

R t T   t i  ’  M*• Represent T as a matrix: p’ = M*p
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Scaling

• Scaling a coordinate means multiplying each of 
its components by a scalarits components by a scalar

• Uniform scaling means this scalar is the same 
for all components:for all components:
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Scaling

• Non-uniform scaling: different scalars per 
component:    'component:
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Scaling

• Scaling operation: axx '
byy '

• Or, in matrix form:
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scaling matrix Sscaling matrix S
What’s inverse of S?



2-D Rotation

• This is easy to capture in matrix form:
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cossin
sincos
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• Even though sin() and cos() are nonlinear to ,
’ i   li  bi ti  f  d 

R

– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

Wh  i  h  i  f i ?• What is the inverse transformation?
– Rotation by –

T1– For rotation matrices, det(R) = 1 so TRR 1



2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?represented with a 2x2 matrix?

2D Identity?
'  xx 01'
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2D Scale around (0,0)?
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?represented with a 2x2 matrix?

2D Rotate around (0,0)?
*i*'    i

yxy
yxx

*cos*sin'
*sin*cos'
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2D Shear?
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?represented with a 2x2 matrix?

2D Mirror about Y axis?
'  xx 01'
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2D Mirror over (0,0)?
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All 2D Linear Transformations

• Linear transformations are combinations of …
Scale– Scale,

– Rotation,
– Shear  andShear, and
– Mirror

• Properties of linear transformations:• Properties of linear transformations:
– Origin maps to origin
– Lines map to linesLines map to lines
– Parallel lines remain parallel
– Ratios are preserved  xbax'p
– Closed under composition
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2x2 Matrices

• What types of transformations can not be 
represented with a 2x2 matrix?represented with a 2x2 matrix?

2D Translation?
t'
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NO!

Only linear 2D transformations 
b t d ith 2 2 t ican be represented with a 2x2 matrix



Translation

• Example of translation
Homogeneous Coordinates
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Affine Transformations

• Affine transformations are combinations of …
Li  f i  d– Linear transformations, and

– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Projective Transformations
• Projective transformations …

Affine transformations  and– Affine transformations, and
– Projective warps

P ti  f j ti  t f ti• Properties of projective transformations:
– Origin does not necessarily map to origin

l– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition
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Image warping

• Given a coordinate transform x’ = T(x) and a 
source image I(x)  how do we compute a source image I(x), how do we compute a 
transformed image I’(x’) = I(T(x))?

T(x)

I(x) I’(x’)x x’

(x)

I(x) I (x )



Forward warping

• Send each pixel I(x) to its corresponding 
location x’ T(x) in I’(x’)location x’ = T(x) in I’(x’)

T(x)

I(x) I’(x’)x x’

(x)

I(x) I (x )



Forward warping
fwarp(I, I’, T)
{{
for (y=0; y<I.height; y++)
for (x=0; x<I width; x++) {for (x=0; x<I.width; x++) {
(x’,y’)=T(x,y);
I’(x’ y’) I(x y);I’(x’,y’)=I(x,y);

}
}} I I’

T

x

x’



Forward warping

• Send each pixel I(x) to its corresponding 
location x’ T(x) in I’(x’)location x’ = T(x) in I’(x’)

• What if pixel lands “between” two pixels?p p
• Will be there holes?
• Answer: add “contribution” to several pixels• Answer: add contribution  to several pixels, 

normalize later (splatting)

h(x)

f(x) g(x’)x x’

(x)

f(x) g(x )



Forward warping
fwarp(I, I’, T)
{{
for (y=0; y<I.height; y++)
for (x=0; x<I width; x++) {for (x=0; x<I.width; x++) {
(x’,y’)=T(x,y);
Splatting(I’ x’ y’ I(x y) kernel);Splatting(I’,x’,y’,I(x,y),kernel);

}
}} I I’

T

x

x’



Inverse warping

• Get each pixel I’(x’) from its corresponding 
location x T-1(x’) in I(x)location x = T 1(x’) in I(x)

T-1(x’)

I(x) I’(x’)x x’

(x )

I(x) I (x )



Inverse warping
iwarp(I, I’, T)
{{
for (y=0; y<I’.height; y++)
for (x=0; x<I’ width; x++) {for (x=0; x<I’.width; x++) {
(x,y)=T-1(x’,y’);
I’(x’ y’) I(x y);I’(x’,y’)=I(x,y);

}
}} I I’T-1
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Inverse warping

• Get each pixel I’(x’) from its corresponding 
location x T-1(x’) in I(x)location x = T 1(x’) in I(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from• Answer: resample color value from 

interpolated (prefiltered) source image

f(x) g(x’)x x’f(x) g(x )



Inverse warping
iwarp(I, I’, T)
{{
for (y=0; y<I’.height; y++)
for (x=0; x<I’ width; x++) {for (x=0; x<I’.width; x++) {
(x,y)=T-1(x’,y’);
I’(x’ y’) Reconstruct(I x y kernel);I’(x’,y’)=Reconstruct(I,x,y,kernel);

}
}} I I’T-1
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Sampling
band limited



Reconstruction

The reconstructed function is obtained by interpolating The reconstructed function is obtained by interpolating 
among the samples in some manner



Reconstruction

• Reconstruction generates an approximation to 
the original function  Error is called aliasingthe original function. Error is called aliasing.

l  l
sampling reconstruction

sample value

l  i isample position



Reconstruction

• Computed weighted sum of pixel neighborhood; 
output is weighted average of input  where output is weighted average of input, where 
weights are normalized values of filter kernel k

 qqk )(

color=0;



i i

i ii

qk
qqk

p
)(
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color=0;
weights=0;
for all q’s dist < width

width

d

q
d = dist(p, q);
w = kernel(d);

p

d color += w*q.color;
weights += w;

p Color = color/weights;
q

p.Color = color/weights;



Reconstruction (interpolation)

• Possible reconstruction filters (kernels):
t i hb– nearest neighbor

– bilinear
bi bi  – bicubic 

– sinc (optimal reconstruction)



Bilinear interpolation (triangle filter)

• A simple method for resampling images



Non-parametric image warping

• Specify a more detailed warp function
S li  h  i l fl  ( i l i )• Splines, meshes, optical flow (per-pixel motion)



Non-parametric image warping

• Mappings implied by correspondences
I  i• Inverse warping

P’?



Non-parametric image warping

'''' CwBwAwP CBA 
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Barycentric coordinate
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Non-parametric image warping

'''' CwBwAwP CBA CwBwAwP 
Barycentric coordinate

CwBwAwP CBA 



Non-parametric image warping
2
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Demo

• http://www.colonize.com/warp/warp04-2.php
W i  i   f l i  f  i  id  • Warping is a useful operation for mosaics, video 
matching, view interpolation and so on.



Image morphingImage morphing



Image morphing

• The goal is to synthesize a fluid transformation 
from one image to anotherfrom one image to another.

• Cross dissolving is a common transition between 
cuts, but it is not good for morphing because of 
the ghosting effects.

i g  #1 image #2di l i gimage #1 image #2dissolving



Artifacts of cross-dissolving

http://www.salavon.com/



Image morphing

• Why ghosting?
M hi   i   di l i• Morphing = warping + cross-dissolving

shape
(geometric)

color
(photometric)(geometric) (photometric)



Image morphing

cross-dissolvingimage #1 image #2

morphingwarp warp



Morphing sequence



Face averaging by morphing

average faces



Image morphing

create a morphing sequence: for each time t
1 C t   i t di t  i  fi ld (b  1. Create an intermediate warping field (by 

interpolation)
2 Warp both images towards it2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped 

imagesimages

t=0 t=1t=0.33



An ideal example (in 2004)

t=0 t=1t=0.25t=0.5t=0.75morphing



An ideal example

middle face (t=0.5)t=0 t=1



Warp specification (mesh warping)

• How can we specify the warp?
1  S if  di  li  t l i t1. Specify corresponding spline control points

interpolate to a complete warping function

easy to implement  but less expressiveeasy to implement, but less expressive



Warp specification

• How can we specify the warp
2  S if  di  i t2. Specify corresponding points

• interpolate to a complete warping function



Solution: convert to mesh warping

1 D fi   t i l  h  th  i t1. Define a triangular mesh over the points
– Same mesh in both images!

N   h  i l i l  d– Now we have triangle-to-triangle correspondences
2. Warp each triangle separately from source to destination

– How do we warp a triangle?
– 3 points = affine warp!
– Just like texture mapping



Warp specification (field warping)

• How can we specify the warp?
3 S if  di  t3. Specify corresponding vectors

• interpolate to a complete warping function
• The Beier & Neely Algorithm• The Beier & Neely Algorithm



Beier&Neely (SIGGRAPH 1992)

• Single line-pair PQ to P’Q’:



Algorithm (single line-pair)

• For each X in the destination image:
1 Fi d th  di  1. Find the corresponding u,v
2. Find X’ in the source image for that u,v
3 d ti ti I (X)  I (X’)3. destinationImage(X) = sourceImage(X’)

• Examples:

Affine transformationAffine transformation



Multiple Lines

XXD '
iii XXD 

length = length of the line segment, 
dist = distance to line segment
The influence of a, p, b.  The same as the average of Xi’



Full Algorithm



Resulting warp



Comparison to mesh morphing

• Pros: more expressive 
C  d d l• Cons: speed and control



Warp interpolation

• How do we create an intermediate warp at 
time t?time t?
– linear interpolation for line end-points

B t   li  t ti  180 d  ill b  0 – But, a line rotating 180 degrees will become 0 
length in the middle
One solution is to interpolate line mid point and – One solution is to interpolate line mid-point and 
orientation angle

t=0

t=1t=1



Animation



Animated sequences

• Specify keyframes and interpolate the lines for 
the inbetween framesthe inbetween frames

• Require a lot of tweaking



Results

Michael Jackson’s MTV “Black or White”



Multi-source morphing



Multi-source morphing
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