
High dynamic range imaging

Digital Visual Effectsg
Yung-Yu Chuang

with slides by Fredo Durand, Brian Curless, Steve Seitz, Paul Debevec and Alexei Efros

Camera is an imperfect device

• Camera is an imperfect device for measuring 
the radiance distribution of a scene because it the radiance distribution of a scene because it 
cannot capture the full spectral content and 
dynamic rangedynamic range.

• Limitations in sensor design prevent cameras 
f  t i  ll i f ti  d b  lfrom capturing all information passed by lens.
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Real-world response functions

In general, the response function is not provided
by camera makers who consider it part of theirby camera makers who consider it part of their
proprietary product differentiation. In addition,
they are beyond the standard gamma curvesthey are beyond the standard gamma curves.

The world is high dynamic range
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The world is high dynamic range Real world dynamic range
• Eye can adapt from ~ 10-6 to 106 cd/m2

Of  1    100 000 i   • Often 1  :  100,000 in a scene
• Typical 1:50, max 1:500 for pictures
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Short exposure
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Camera is not a photometer

• Limited dynamic range
P h   lti l  ? Perhaps use multiple exposures?

• Unknown, nonlinear response 
 Not possible to convert pixel values to radiance

• Solution:
– Recover response curve from multiple exposures, 

then reconstruct the radiance map

Varying exposure

• Ways to change exposure
Sh  d– Shutter speed

– Aperture
– Neutral density filters



Shutter speed

• Note: shutter times usually obey a power 
series each “stop” is a factor of 2series – each stop  is a factor of 2

• ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 
1/1000 sec

Usually really is:Usually really is:

¼  1/8  1/16  1/32  1/64  1/128  1/256  1/512  ¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 
1/1024 sec

Varying shutter speeds

HDRI capturing from multiple exposures 

• Capture images with multiple exposures
I  li  (  if   i d  i  i  • Image alignment (even if you use tripod, it is 
suggested to run alignment)

• Response curve recovery
• Ghost/flare removal

Image alignment

• We will introduce a fast and easy-to-implement 
method for this task  called Median Threshold method for this task, called Median Threshold 
Bitmap (MTB) alignment technique.
C id  l  i t l t l ti  It i  h • Consider only integral translations. It is enough 
empirically. 

• The inputs are N grayscale images. (You can 
either use the green channel or convert into 
grayscale by Y=(54R+183G+19B)/256)

• MTB is a binary image formed by thresholding y g y g
the input image using the median of intensities.



Why is MTB better than gradient?

• Edge-detection filters are dependent on image 
exposuresexposures

• Taking the difference of two edge bitmaps 
ld t i   d i di ti  f h  th  would not give a good indication of where the 

edges are misaligned.

Search for the optimal offset

• Try all possible 
offsetsoffsets.

• Gradient descent
• Multiscale technique

• log(max_offset) levels
• Try 9 possibilities for • Try 9 possibilities for 

the top level
S l  b  2 h  • Scale by 2 when 
passing down; try its 9 

i hbneighbors

Threshold noise
ignore pixels that are 
close to the thresholdclose to the threshold

exclusion bitmap



Efficiency considerations

• XOR for taking difference
AND i h l i  • AND with exclusion maps

• Bit counting by table lookup

Results

Success rate = 84%. 10% failure due to rotation. 
3% for excessive motion and 3% for too much 3% for excessive motion and 3% for too much 
high-frequency content.

Recovering response curve

12 bits 8 bits

Recovering response curve

• We want to obtain the inverse of the response 
curvecurve 255

0



Recovering response curve
Image seriesImage series
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Idea behind the math

ln2

Idea behind the math

Each line for a scene point.p
The offset is essentially 
determined by the 
unknown Eiunknown Ei



Idea behind the math

Note that there is a shift 
that we can’t recover

Basic idea 
• Design an objective function 

O i i  i• Optimize it

Math for recovering response curve Recovering response curve

• The solution can be only up to a scale, add a 
constraint constraint 

• Add a hat weighting function



Recovering response curve

• We want 
If P 11  N 25 ( i ll  50 i  d)If P=11, N~25 (typically 50 is used)

• We prefer that selected pixels are well 
distributed and sampled from constant regions. 
They picked points by hand.

• It is an overdetermined system of linear 
equations and can be solved using SVDq g

How to optimize?

1. Set partial derivatives zero
22.
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Questions

• Will g(127)=0 always be satisfied? Why or why 
not?not?

• How to find the least-square solution for an 
d t i d t ?over-determined system?



Least-square solution for a linear system

bAx 
nm n m
nm 

They are often mutually incompatible. We instead find x to 
minimize the norm              of the residual vector           .bAx bAx 
If there are multiple solutions, we prefer the one with the
minimal length     .

bAx

x

Least-square solution for a linear system

If we perform SVD on A and rewrite it as 

TUΣA V
then                     is the least-square solution.bUVΣx Tˆ

pseudo inverse
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Libraries for SVD

• Matlab
GSL• GSL

• Boost
• LAPACK
• ATLAS• ATLAS

Matlab code

Matlab code
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z 1)*size(Z 2)+n+1 n+size(Z 1));A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1;              %% Include the data-fitting equations
for i=1:size(Z 1)for i=1:size(Z,1)
for j=1:size(Z,2)

wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;k k+1;

end
end
A(k,129) = 1;       %% Fix the curve by setting its middle value to 0( , ) ; y g
k=k+1;
for i=1:n-2         %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end
x = A\b;            %% Solve the system using SVD
g = x(1:n);
lE = x(n+1:size(x,1));

Recovered response function



Constructing HDR radiance map

combine pixels to reduce noise and obtain a more combine pixels to reduce noise and obtain a more 
reliable estimation

Reconstructed radiance map

What is this for?

• Human perception
• Vision/graphics applications

Automatic ghost removal

before after



Weighted variance

Moving objects and high-contrast edges render high variance.

Region masking

Thresholding; dilation; identify regions;   

Best exposure in each region Lens flare removal

before after



Easier HDR reconstruction

raw image  raw image = 
12-bit CCD snapshot

Easier HDR reconstruction

Exposure (X)

Xij=Ei* ΔtΔtjj

ΔtΔtΔtΔt

Portable floatMap (.pfm)

• 12 bytes per pixel, 4 for each channel

sign exponent mantissa

T t h d  i il  t  J ff P k ’  
PF
768 512

Text header similar to Jeff Poskanzer’s .ppm
image format:

768 512
1
<binary image data>

Floating Point TIFF similarFloating Point TIFF similar

Radiance format (.pic, .hdr, .rad)

32 bits/pixel

Red Green Blue Exponent

(145, 215, 87, 149)  =

(145 215 87) * 2^(149 128)

(145, 215, 87, 103)  =

(145 215 87) * 2^(103 128)(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994Ward, Greg. Real Pixels,  in Graphics Gems IV, edited by James Arvo, Academic Press, 1994



ILM’s OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

Several lossless compression options  2:1 typical• Several lossless compression options, 2:1 typical
• Compatible with the “half” datatype in NVidia's Cg
• Supported natively on GeForce FX and Quadro FXSupported natively on GeForce FX and Quadro FX

• Available at http://www.openexr.net/

Radiometric self calibration

• Assume that any 
response function response function 
can be modeled 
as a high order as a high-order 
polynomial
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exposure time in p
advance. Useful 
for cheap Zp
cameras

Mitsunaga and Nayar 
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Mitsunaga and Nayar

• Again, we can only solve up to a scale. Thus, 
add a constraint f(1) 1  It reduces to M add a constraint f(1)=1. It reduces to M 
variables.
H  t  l  it?• How to solve it?



Mitsunaga and Nayar

• We solve the above iteratively and update the 
exposure ratio accordinglyexposure ratio accordingly
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up the one with the minimal error. Notice that 
you prefer to have the same order for all 
h l  U  th  bi d channels. Use the combined error.

Robertson et. al.
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Robertson et. al.
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Space of response curves

Space of response curves HDR Video
• High Dynamic Range Video

Sing Bing Kang  Matthew Uyttendaele  Simon Sing Bing Kang, Matthew Uyttendaele, Simon 
Winder, Richard Szeliski
SIGGRAPH 2003SIGGRAPH 2003

video



Assorted pixel Assorted pixel 

Assorted pixel Assignment #1 HDR image assemble

• Work in teams of two
T ki  i• Taking pictures

• Assemble HDR images and optionally the 
response curve.

• Develop your HDR using tone mappingp y g pp g



Taking pictures

• Use a tripod to take multiple photos with 
different shutter speeds  Try to fix anything different shutter speeds. Try to fix anything 
else. Smaller images are probably good enough.
Th   t  t  f t t i  il bl   • There are two sets of test images available on 
the web.

• We have tripods and a Canon PowerShot G7 for 
you to borrow starting from the next week.

• Try not touching the camera during capturing. 
But, how?,

1. Taking pictures

• Use a laptop and a remote capturing program. 
PSRemote– PSRemote

– AHDRIA (obsolete since 2007)
• PSRemote• PSRemote

– Manual (can use auto-bracket mode)
– Not freeNot free
– Supports both jpg and raw
– Support most Canon’s PowerShot camerasSupport most Canon s PowerShot cameras

• AHDRIA
– AutomaticAutomatic
– Free
– Only supports jpgy pp jpg
– Support less models

2. HDR assembling

• Write a program to convert the captured 
images into a radiance map and optionally to images into a radiance map and optionally to 
output the response curve. 
W  ill id  i  I/O lib  hi h • We will provide image I/O library which 
supports many traditional image formats such 

 j  d  d fl t i t i  h as .jpg and .png, and float-point images such 
as .hdr and .exr.

• Paul Debevec’s method. You will need SVD for 
this method.

• Recover from CCD snapshots. You will need 
dcraw.c. 

3. Tone mapping

• Apply some tone mapping operation to develop 
your photographyour photograph.
– Reinhard’s algorithm (HDRShop plugin)

Ph t ti– Photomatix
– LogView

F  Bil l (  Li  l )– Fast Bilateral (.exr Linux only)
– PFStmo (Linux only)

pfsin a.hdr | pfs_fattal02 | pfsout o.hdr



Bells and Whistles

• Other methods for HDR assembling algorithms
I l   i  l i h• Implement tone mapping algorithms

• Implement MTB alignment algorithm
• Others

Submission

• You have to turn in your complete source, the 
executable  a html report  pictures you have executable, a html report, pictures you have 
taken, HDR image, and an artifact (tone-
mapped image)mapped image).

• Report page contains:
description of the project, what do you learn, algorithm, 
implementation details, results, bells and whistles…

• The class will have vote on artifacts.
• Submission mechanism will be announced later.

Reference software

• Photomatix
AHDRIA/AHDRIC• AHDRIA/AHDRIC

• HDRShop
• RASCAL

Assignment #1 HDR image assemble
• It is for warming up and considered easier; it is 

suggested that you implement at least one suggested that you implement at least one 
bonus (MTB/tone mapping/other HDR 
construction)construction)

• You have a total of 10 days of delay without 
lt  f  i t  ft  th t  1 i t penalty for assignments; after that, -1 point 

per day applies in your final grade until 
hi   f  h j treaching zero for each project.
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