# Graph Cut

Digital Visual Effects, Spring 2009

Yung-Yu Chuang

2009/5/21

with slides by Fredo Durand, Ramesh Raskar



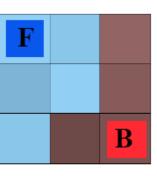
# **Graph cut**



# Graph cut



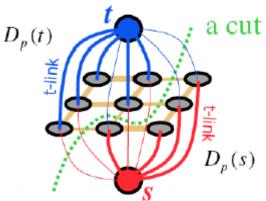
- Interactive image segmentation using graph cut
- Binary label: foreground vs. background
- User labels some pixels
  - similar to trimap, usually sparser
- Exploit
  - Statistics of known Fg & Bg
  - Smoothness of label
- Turn into discrete graph optimization
  - Graph cut (min cut / max flow)



F F B

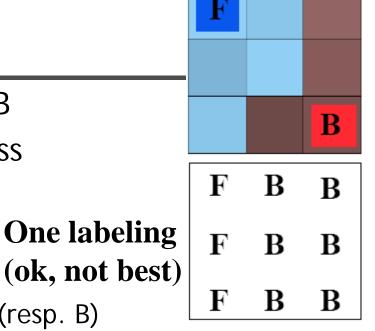
F F B

F B B

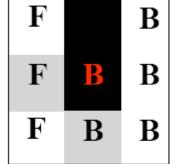


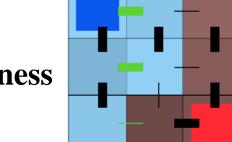
# **Energy function**

- Labeling: one value per pixel, F or B
- Energy(labeling) = data + smoothness
  - Very general situation
  - Will be minimized
- Data: for each pixel
  - Probability that this color belongs to F (resp. B)
  - Similar in spirit to Bayesian matting
- Smoothness (aka regularization): per neighboring pixel pair
  - Penalty for having different label
  - Penalty is downweighted if the two pixel colors are very different
  - Similar in spirit to bilateral filter





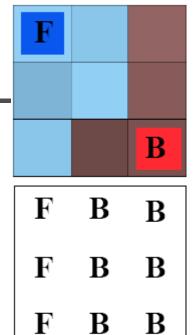


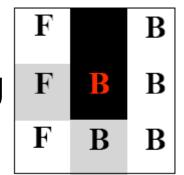


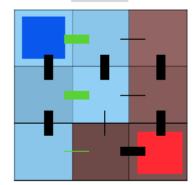
**Smoothness** 

#### Data term

- A.k.a regional term (because integrated over full region)
- $D(L)=\sum_{i} -\log h[L_{i}](C_{i})$
- Where i is a pixel
   L<sub>i</sub> is the label at i (F or B),
   C<sub>i</sub> is the pixel value
   h[L<sub>i</sub>] is the histogram of the observed Fg
   (resp Bg)
- Note the minus sign



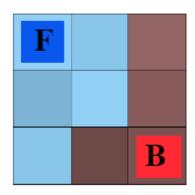




#### Hard constraints



- The user has provided some labels
- The quick and dirty way to include constraints into optimization is to replace the data term by a huge penalty if not respected.
- D(L\_i)=0 if respected
- D(L\_i)=K if not respected
  - e.g. K=- #pixels



#### **Smoothness term**



В

В

F

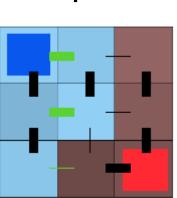
F

F

В

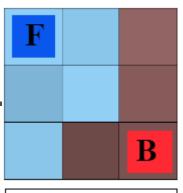
В

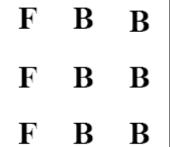
- a.k.a boundary term, a.k.a. regularization
- $S(L)=\sum_{\{j,i\} \text{ in } N} B(C_i,C_j) \delta(L_i-L_j)$
- Where i,j are neighbors
  - e.g. 8-neighborhood (but I show 4 for simplicity)
- $\delta(L_i-L_j)$  is 0 if  $L_i=L_j$ , 1 otherwise
- B(C<sub>i</sub>,C<sub>j</sub>) is high when C<sub>i</sub> and C<sub>j</sub> are similar, low if there is a discontinuity between those two pixels
  - e.g.  $\exp(-||C_i-C_j||^2/2\sigma^2)$
  - where  $\sigma$  can be a constant or the local variance
- Note positive sign

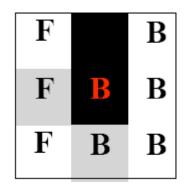


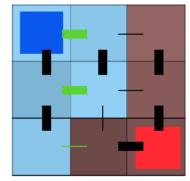
# **Optimization**

- $E(L)=D(L)+\lambda S(L)$
- λ is a black-magic constant
- Find the labeling that minimizes E
- In this case, how many possibilities?
  - 2<sup>9</sup> (512)
  - We can try them all!
  - What about megapixel images?





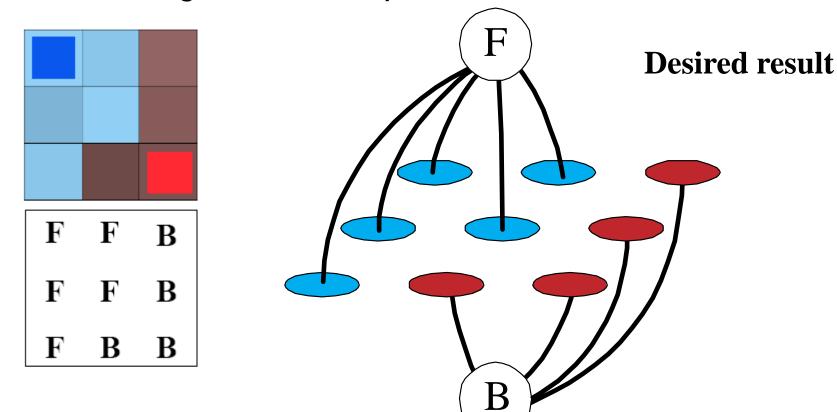






# Labeling as a graph problem

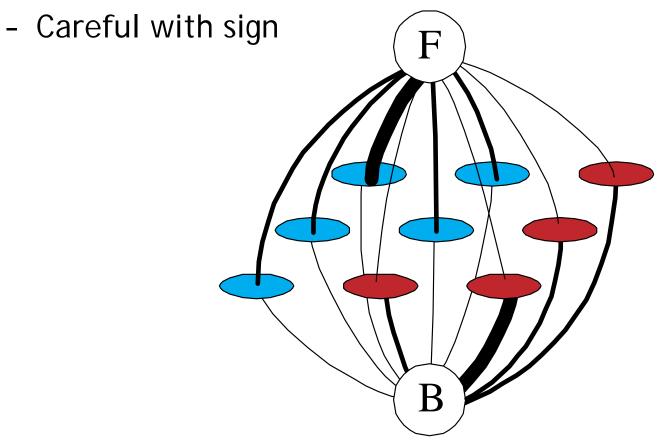
- Each pixel = node
- Add two nodes F & B
- Labeling: link each pixel to either F or B



#### Data term



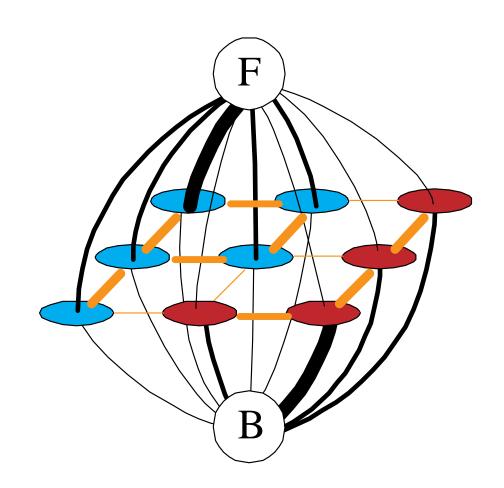
- Put one edge between each pixel and F & G
- Weight of edge = minus data term
  - Don't forget huge weight for hard constraints







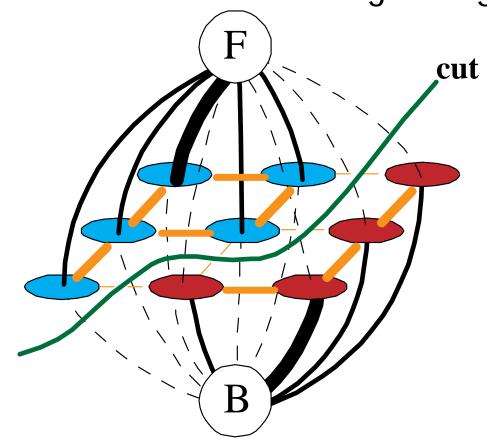
- Add an edge between each neighbor pair
- Weight = smoothness term



#### Min cut



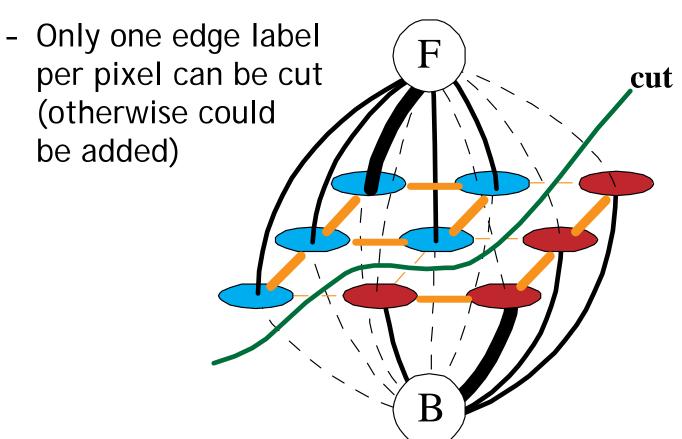
- Energy optimization equivalent to min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight





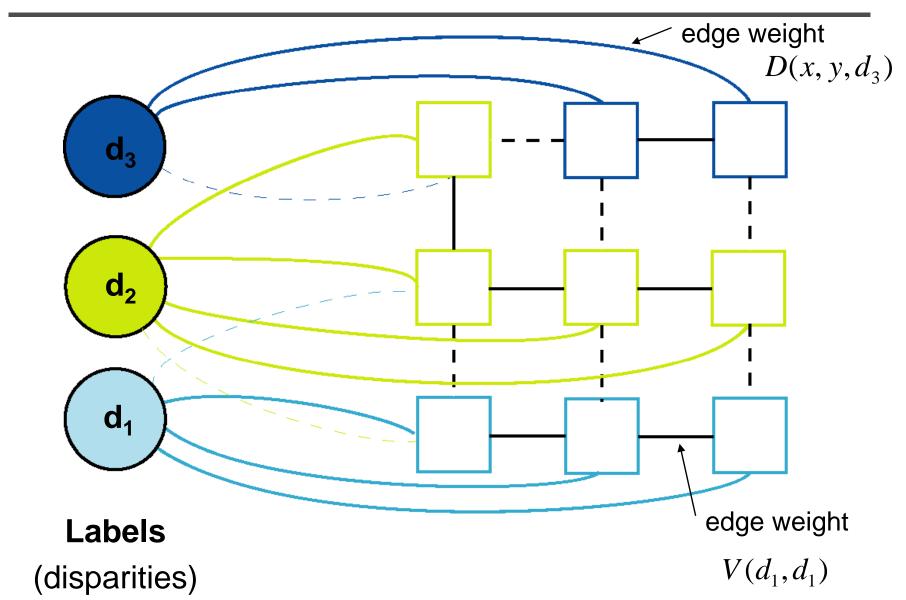
# Min cut <=> labeling

- In order to be a cut:
  - For each pixel, either the F or G edge has to be cut
- In order to be minimal





# Energy minimization via graph cuts





#### Energy minimization via graph cuts

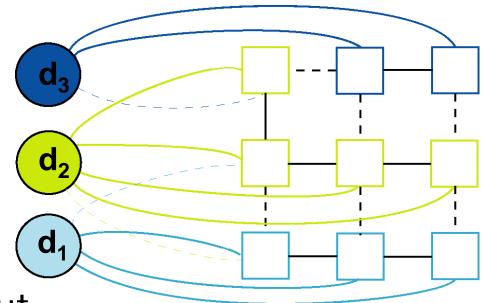


#### Graph Cost

- Matching cost between images
- Neighborhood matching term
- Goal: figure out which labels are connected to which pixels



#### Energy minimization via graph cuts



- Graph Cut
  - Delete enough edges so that
    - each pixel is (transitively) connected to exactly one label node
  - Cost of a cut: sum of deleted edge weights
  - Finding min cost cut equivalent to finding global minimum of energy function

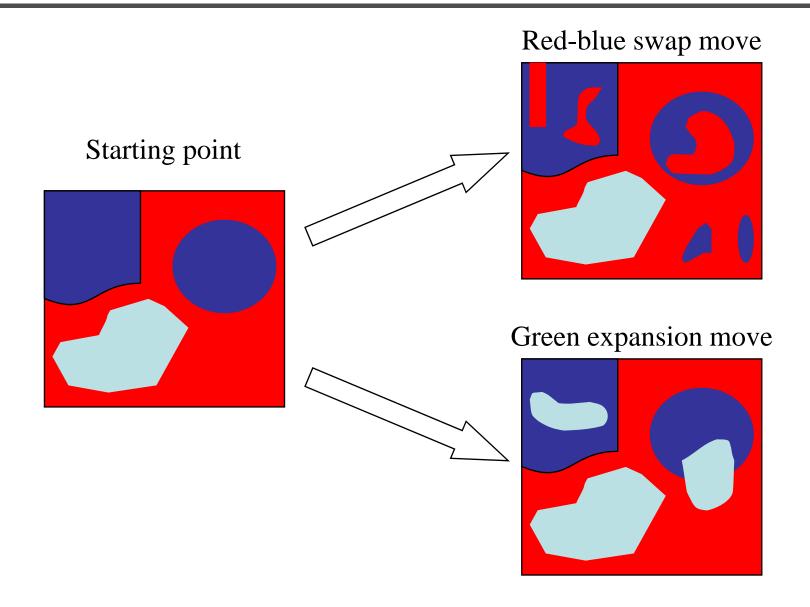


### Computing a multiway cut

- With 2 labels: classical min-cut problem
  - Solvable by standard flow algorithms
    - polynomial time in theory, nearly linear in practice
  - More than 2 terminals: NP-hard [Dahlhaus *et al.*, STOC '92]
- Efficient approximation algorithms exist
  - Within a factor of 2 of optimal
  - Computes local minimum in a strong sense
    - even very large moves will not improve the energy
  - Yuri Boykov, Olga Veksler and Ramin Zabih, <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

# Move examples

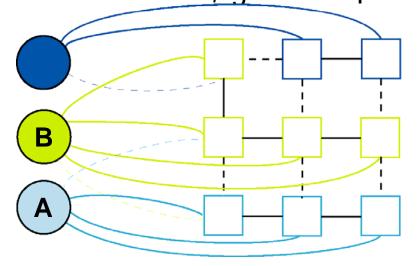




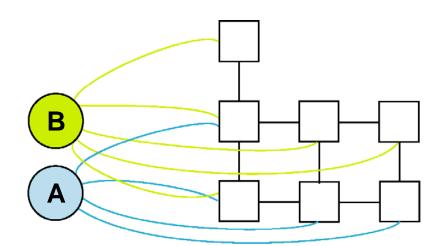


#### The swap move algorithm

- 1. Start with an arbitrary labeling
- 2. Cycle through every label pair (A,B) in some order
  - 2.1 Find the lowest *E* labeling within a single *AB*-swap
  - 2.2 Go there if *E* is lower than the current labeling
- 3. If *E* did not decrease in the cycle, we're done Otherwise, go to step 2



Original graph



AB subgraph (run min-cut on this graph)

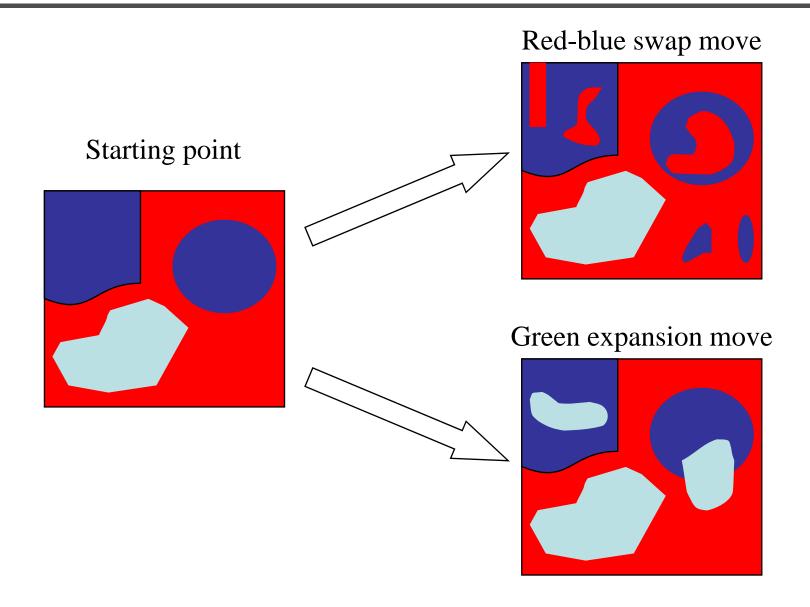


#### The expansion move algorithm

- 1. Start with an arbitrary labeling
- 2. Cycle through every label A in some order
  - 2.1 Find the lowest *E* labeling within a single *A*-expansion
  - 2.2 Go there if it *E* is lower than the current labeling
- 3. If *E* did not decrease in the cycle, we're done Otherwise, go to step 2

# Move examples







# GrabCut Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother Valorian Colmogorov Andrew Blake



Microsoft Research Cambridge-UK

#### Demo



• <u>video</u>

# Interactive Digital Photomontage Digivex



Combining multiple photos

Find seams using graph cuts

Combine gradients and integrate

























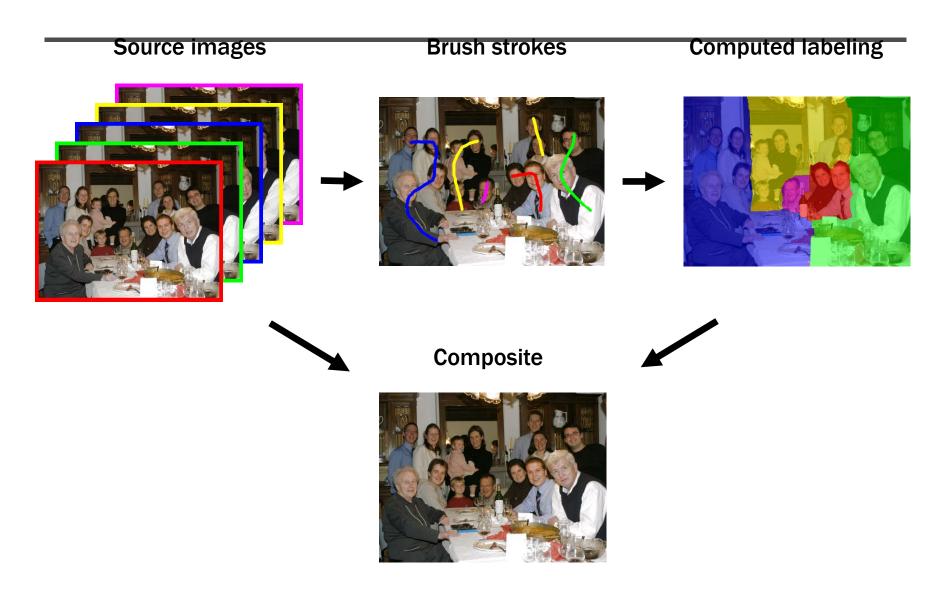




set ofaotiginals

**photeimed** tage







#### **Brush strokes**



#### **Computed labeling**





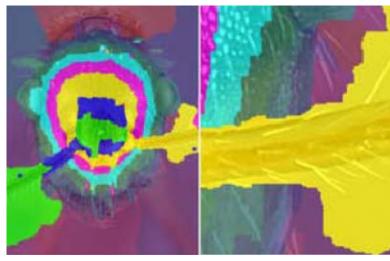
Extended depth of field









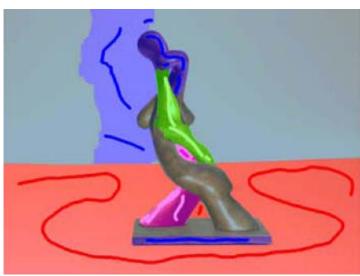




Relighting































#### Demo



• <u>video</u>